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We present the results of a study of the effects of thermal and pileup noise in liquid ionization calorimeters operating in a high
luminosity environment . The method of optimal filtering of multiply-sampled signals to obtain timing and amplitude from
calorimeter signals is described. This method has some advantages over the traditional method of sampling the peak of a shaped
signal, which include a reduced sensitivity to channel-to-channel variations in the pre-filter shaping parameters and good
performance over a wide range of operating conditions. Analytic expressions for the variance of amplitude and timing measure-
ments are found through a frequency domain approach . Implications for the choice of pre-filter shaping time, number and position
of the samples, and digitization accuracy are discussed .

1. Introduction

We describe a technique for the determination of
the amplitude and timing information of a shaped
signal from a liquid ionization detector of the type
typically used in high energy physics. In particular we
wish to concentrate on the effects of distortion of the
signal due to thermal noise and to real signals from
uncorrelated events which are close in time to the
event of interest, the "pileup" or "physics" noise. The
proper choice of the shaping function permits optimal
determination of the amplitude with a single measure-
ment at the peak of the signal . However, because of
channel-to-channel variations in the physical parame-
ters which determine the optimal shaping time and
because of practical limits on the production of shap-
ing circuits of a given shaping time in high channel
count applications, it is often necessary to work with
non-optimal shaping. However, by multiply sampling
the waveform and combining the samples in an optimal
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way, it is possible to achieve accuracy which exceeds
that of a single sample, even though the actual shaping
circuit may be far from optimal. In addition, the same
samples may be combined with a different set of coeffi-
cients to obtain timing information .

The general approach for the determination of am-
plitude and timing from the samples is that of optimal
filtering [1] . This method uses the autocorrelation func-
tion of the samples, which is a function of the ratio of
the thermal to pileup noise amplitudes, to maximize
the signal/noise ratio for determination of the time
origin and the amplitude of the signal . The method has
been tested by using Monte Carlo data, in which the
distribution of pileup noise used is that obtained from
ISAJET, a commonly used high energy physics event
generator.

The motivation for this study is the need to under-
stand such questions in designing signal processing
electronics for liquid ionization calorimeters at high
luminosity colliders, such as SSC and LHC. Practical
considerations limit the peaking time of shaped signals
to 20 ns or greater, and the entire waveform will dwell
for at least as long as the drift time of the electrons in
the detector planes, typically 400 ns . The colliders in
question will have collisions at intervals much shorter
than the dwell time, and hence pileup effects will
occur. Because of the possibility of a collision occur-
ring at each beam crossing (16 ns for the SSC), it may
be necessary to sample the waveform at the frequency
of beam crossings. Samples may be discarded, if the
trigger logic in the experiment indicates that they are
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associated with an uninteresting event. Even for inter-
esting events, it may not be necessary to digitize all
samples; one only needs to preserve enough samples to
accurately reconstruct the amplitude, timing, and
waveform quality information .

In liquid ionization calorimeters with well designed
signal processing electronics, parallel white noise and
]If noise are negligible in comparison to series white
noise [2] . The two principal sources of noise which
must be considered for liquid ionization calorimeters
operating in a high luminosity environment are there-
fore (1) series thermal noise, which has a white spec-
trum and whose amplitude depends only upon the
characteristics of the detector and the signal processing
circuitry ; and (2) pileup or physics noise, which is due
to the constant bombardment of calorimeter cells by
products of collision reactions with high cross sections
(mainly minimum bias and two jet events). Pileup sig-
nals are generated at a beam crossing frequency, and
the number spectrum of the events is given by a Pois-
son distribution, whose mean value Xi for event type i
is related to the cross section Qi, the bunch spacing Te ,
and the collider luminosity _9' by the simple formula
,Vi =YTePi . For this reason the level of pileup noise
depends on the luminosity Y of the machine, which
may vary with time . The level of pileup noise also
depends on the depth of the calorimeter section, as
deeper parts of the calorimeter are shielded from low
energy particles. Because the transverse momentum
spectrum is approximately independent of pseudora-
pidity vl (rl = -In tan B/2, in which 0 is the polar
angle of the calorimeter cell with respect to the beam
line), the pileup noise amplitude, when expressed in
units of transverse energy, is a slowly varying function
of 77 in the central region, 1771 < 3. For the case
1771 > 3, where tower size become comparable to or
smaller than the sizes of showers in the calorimeter,
special considerations apply which are studied else-
where [3] . Although thermal noise depends only on the
calorimeter geometry and the signal processing cir-
cuitry, because we work in units of transverse energy,
all signals from the calorimeter are weighted with
sin 0, so the thermal noise becomes negligible at large
1771 .

We begin in section 2 with a brief discussion of the
signal waveforms and how they are calculated . In sec-
tion 3 we discuss the two major sources of noise and
report the results of a study of the amplitude of the
pileup noise expected at the SSC, including its varia-
tion with calorimeter tower size and depth. Section 4
contains a discussion of how these noise sources con-
tribute to the resolution of the calorimeter . Assuming
that multiple samples of the shaped signal will be
taken, we introduce the notion of optimal filtering in
the treatment of these samples. In section 5 we discuss
the implications these studies have on the design of the

data acquisition system for a large calorimeter. The
method of optimal filtering is illustrated in section 6 by
means of a Monte Carlo calculation . We summarize
our results in section 7 and state the principal conclu-
sions of the paper. Preliminary reports of this work
have appeared elsewhere [4,5] .

2. Signal waveforms

The waveforms to be analyzed in this paper are
those produced by the convolution of the current wave-
form from the liquid ionization chamber with the im-
pulse response of the circuit in the electronics chain,
which we call the "pre-filter" . The latter is described
in a lumped parameter circuit model. A charge inte-
grating preamplifier with feedback capacitance CF is
followed by an analog filter, which we assume to be of
the form (CR)Z -(RC)" with equal time constants
T F = RC for the integration and differentiation stages .
There is an additional stage of integration at the
preamplifier input with time constant TA . For this
system the response function is [6]

K(jTFCJ) 2

H(W)
(j0CF1+iTAW)\1+j7FW)n+2'

The 8-response of the pre-filter h(t) is the Fourier
transform of this function, with the normalization con-
stant K chosen so that the peak of the first lobe is
unity. The current for the liquid ionization chamber,
assuming no recombination, is a linearly decreasing
function of time :

i(t)
- Nege
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td td

(0 < t < td),

	

(2)

in which Ne is the number of electrons generated in
the gap and qe is the electronic charge .

The convolution of the current waveform with the
impulse response yields the final signal waveform :

1

	

1 j
g(t) = -h(t)*i(t) = - 1

	

i(t - u)h(u) du,

	

(3)
ds

	

qs

in which qç , the integrated signal charge, is the con-
stant required to make the first lobe of g(t) equal to
unity.
A useful quantity which characterizes the impulse

response is the measurement time tm , defined as [71

"ch(t) dt

	

(4)

and represents the effective time of integration of the
current. In this expression Tzc is the zero-crossing point
of the first lobe of the impulse response, as indicated
in Fig. 1 . The ratio of charge q, in the signal to the
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Fig. 1 . Shape of the impulse response and the signal waveform
for the standard case (tm= 50 ns, (RC)2 -(CR)2 shaping,
td = 400 ns) used in this paper. The point marked r,, is used
in the calculation of the measurement time tm (see Eq . (2 .4)) .

charge of the electrons generated in the gaps is re-
lated, to a good approximation, to td and tm by [7] :
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A parameter which is convenient for experimental
use if the peaking time of the waveform tP, defined to

be the time taken for the signal to rise from 5 to 100%
of the value of the first lobe . The relationship between
t,, and tP depends on the type of pre-filter used . The
results in this paper are given in terms of tm, in order
to minimize dependence on the type of pre-filter cho-
sen. For convenience, we give in Table 1 the relation-
ship between tm and tP for three types of filters, along
with the values of two quantities I, and SP used
throughout this paper. In calculating these values and
throughout, we assume an amplifier time constant TA
of 2 ns and a drift time td of 400 ns .

An illustration of the resulting waveforms for the
case tm = 50 ns and td= 400 ns with a (CR)2 - (RC)2

pre-filter is shown in Fig. 1 . We will use this waveform
in various numerical examples in this paper, referring
to our standard case, which is an EM tower of area
071AO = 0.04 X 0.04, located 75 cm from the interac-
tion point.

3. Noise sources

In this section we treat the two sources of noise
which are important for the problem, and in each case
we use a form which conveniently (for our purposes)
separates that part of the amplitude which is depen-
dent on the signal processing parameters from that
part which depends on physical processes. In each case
we refer to this latter factor as the noise "density" .

Table 1
Values of peaking time, II , and SP for three different pre-filters, as a function of tm, the quantity used in this paper to characterize
the impulse response waveform. In calculating these values, an amplifier time constant 7F of 2 ns and a drift time td of 400 ns have
been used
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tm
[ns]

(CR) 2

[ns]

-(RC)2

[ns -1 ] [ns]

(CR) 2

[ns]

-(RC)4

[ns -1 1 [ns]

(CR) 2

[ns]

-(RC)6
1,
[ns-1 1

SP
[ns]

15 12 .2 0.2039 28.9 13 .3 0.2253 24 .9 14 .7 0.2411 24.3
20 15 .3 0.1524 39.0 17 .2 0.1588 33 .8 19 .0 0.1688 31 .5
25 18 .2 0.1230 49.5 21 .4 0.1279 43 .1 23 .2 0.1351 40 .1
30 21 .2 0.1031 60.2 25 .5 0.1079 52 .3 27 .5 0.1147 48 .7
35 24 .2 0.0889 71 .1 29 .4 0.0912 61 .6 31 .9 0.0967 57 .5
40 27 .4 0.0781 82 .1 33 .2 0.0801 71 .4 36 .2 0.0846 66 .7
45 30 .5 0.0698 93 .2 37 .5 0.0715 81 .4 40 .7 0.0758 75 .8
50 33 .7 0.0630 104.4 41 .5 0.0640 91 .2 45 .0 0.0677 85 .3
60 40 .1 0.0527 126.4 49 .6 0.0535 111.3 54 .0 0.0567 104.4
70 46 .6 0.0451 147.7 57 .7 0.0458 131.6 62.9 0.0484 123.8
80 53 .1 0.0395 168.2 65 .9 0.0401 151.5 71 .9 0.0423 143.2
90 59 .6 0.0351 187.1 74 .1 0.0357 170.7 80.8 0.0377 162.3

100 66 .2 0.0317 204.9 82 .2 0.0321 189.2 89.7 0.0339 181.0
120 79 .4 0.0264 236.2 98 .6 0.0267 223.2 107.6 0.0282 216.0
140 92 .6 0.0226 262.7 115.0 0.0229 253.1 125.5 0.0242 247.3
160 105.7 0.0198 285.4 131.4 0.0201 279.2 143.4 0.0212 275.2
180 118.9 0.0176 305.2 147.8 0.0178 302.3 161 .3 0.0188 300.2
200 132.1 0.0159 323.1 164.2 0.0160 323 .1 179.2 0.0169 322.8
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3.1 . Thermal noise

The electronic noise is expressed as the equivalent
noise charge at the input of the preamplifier. For the
case in which the capacitance of the preamplifier is not
matched to the ionization chamber gap capacitance the
relationship for the equivalent noise charge due to
series noise is [2]

ENC 2 = 'e 2 Ctoth'

dh 2

I' -

	

J dt ) dt .
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in which en is the series noise voltage density for the
amplifier, Ctot is the sum of the detector capacitance
and the channel capacitance of the transistor at the
amplifier input, and I, is the series noise integral,
which is related to the 8-response of the circuit h(t) as :

To express the noise in units of energy measured in
the calorimeter, we calculate the charge generated by a
particle of energy Eo incident on the front face . The
fraction of ionization energy deposited in the ioniza-
tion gaps for a minimum ionizing particle is the sam-
pling fraction 71s . Due primarily to the higher Z mate-
rials used in the absorber plates, the fraction of energy
lost in the absorber for showering particles exceeds the
value of 1/71 s by a factor ae (the N,/e ratio) . Therefore
the energy Eg deposited by the showering particles is
given by

Eg =Eo71s/ae>

	

(8)
and the charge of the electrons generated by this
energy is given by

cl eNe =qeEg/Wion ,

1 enCtotWionae
42- 77sgerq

in which Wion is the mean energy required to create an
ion pair in the liquid . Only a fraction rq = gs/qeNe of
these electrons are integrated in the signal, so the
integrated number of signal charges becomes

qs = rgqe7l s Eo/aeWion '

	

(10)

The scale factor needed to convert the noise from
charge units to energy units is q,/E0, which leads to
the following expression for the series thermal noise:

ot = ENC/(qs/Eo)

	

(11)

(12)

We have separated the above expression into two fac-
tors : pt, the thermal noise density, which is indepen-
dent of the signal processing parameters, and the other,

It /rq, which is independent of all of the calorimeter
constants except for td. The dimensions of pt are
Ev~T . We give here, for reference, the values of the
constants used in the above equations for the thermal

noise density. We assume a sampling fraction ?7s of
0.25, a w/e ratio ae = 1.4, and a total capacitance of
600 pf. The value of Wion for liquid argon is 23.6 eV,
and qe = 1 .6 X 10-t9 C. The resulting value for the
thermal noise density is pt = 8 MeV ns , which is
typical for a 3 X 3 cm2 cell of a liquid argon calorime-
ter in the accordion geometry with a 2 mm gap and 25
radiations length deep .

3.2. Pileup noise

The problem of the effects of overlapping events at
a high luminosity collider has received considerable
attention in workshops for the SSC and LHC [10-13].
Early estimates were concerned with the random noise
level seen in individual calorimeter cells, and the as-
sumption was frequently made that noise from neigh-
boring cells is independent and therefore may be added
in quadrature . However, we know that a significant
fraction of the pileup will come from two jet events
since the cross section for their production is about
half of the total cross section. In such events, the
energy in neighboring cells will be correlated, due to
the energy flow characteristics of jet events . As dis-
cussed below, we have evaluated this effect in a Monte
Carlo calculation based on high cross section events
and find that over a very wide range of area, the
variance of the energy deposited in a given area scales
as sV o` at SSC energies . In this paper we work in
angular space defined by the pseudorapidity 71 and the
azimuth (b, and an area in this space is a cell of lateral
dimensions .l = A7l X i10.

3.2.1 . Pileup in time-variant systems
Pileup noise is a relatively new phenomenon in high

energy physics . Typically, accidental backgrounds in
high energy physics experiments are treated as individ-
ual events which must be subtracted from the desired
signal . For calorimeters operating at high energy and
high luminosity, however, the rate of particles striking
the calorimeter is sufficiently high and their energy
sufficiently low that it is more appropriate to classify
this type of background as a noise source . In section 6
we address the question of whether an inherently non-
Gaussian distribution is adequately represented by this
treatment.

The focus of this paper is on liquid ionization
calorimeters, which are normally handled by time-in-
variant techniques of shaping and sampling (the sam-
pling introduces time-variance, but the essential ele-
ments of the signal processing are contained in the
shaping, which is a time invariant process) . In time-
variant systems, such as gated integrators, the data
processing is carried out numerically, and therefore a
slightly different approach to the analysis of the system



(E) = Y,E;/N,

Y_ Ei
QÉ=

N
- (E)2=p2Tc>

U=a(E),

Qz =

	

pz TUaoEz =aP~ .

a
S;=Q°- bQb=Eo +U°

WE. Cleland, E.G. Stern /Nucl. Instr. and Meth. i n Phys . Res. A 338 (1994) 467-497

is required . We include this discussion in the present
paper, since there are certain common features in the
two systems concerning the pileup noise. One such
concept which is applicable to either system is that of
the response function . This function plays an impor-
tant role in the analysis of the time-invariant system,
and we discuss below how the response function for a
time-variant system may be similarly defined.

Let us imagine that we are dealing with a calorime-
ter whose output waveform is a 8-function: each time
energy Eo is deposited in the cell, the detector signal is
Eo8(t - to), in which to is the time at which the inter-
actions occur. We also assume that a certain amount of
energy due to pileup events, on average, is deposited in
the calorimeter at each beam crossing . Because the
level of pileup depends on the luminosity Y of the
collider, which will vary with time, it will be important
to establish continuously the amplitude of the pileup
noise. One waywould be to measure the pileup (E) in
a narrow gate, so that only one crossing is detected .
We assume that all particles produced in the interac-
tion travel at velocity c, so that there is no overlap
between events from different crossings . Let E; be the
instantaneous value present in crossing i . In this situa-
tion we measure the mean value of energy seen and its
variance after N crossings :

in which pp, the symbol for pileup noise density, is
introduced for comparison with the time-invariant case,
and T, is the period of the machine clock, or the time
between bunch crossings. We now consider the situa-
tion where the gate is widened to a value of aT,
(a > 1) ; the mean and variance measured with the
wider gate are:

Now consider the case where a true signal of energy Eo
is present. We wish to measure this signal Qa in a gate
of width aT, but we need to subtract the pileup
background. We sample the background at that instant
in time by measuring the charge Qb in a second gate of
width bT..

The signal S calculated from the measured charge
in the two gates is

b Ub

Signal

Pileup

Signal gate

Background gate

Response function

z
Qn =apPT~ +

(a
b) bppT~

T
a/b

1
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Fig. 2. Diagram showing the relative time of a signal and gates
for an ideal calorimeter which is read into a gated integrator .
The pileup noise is measured in the background gate, and the
subtraction of the background from the signal, taking into
account the different gate widths, results in the response for
the system which is shown. It is the effective width of the
response function that determines the level of pileup noise.

and the part of its variance due to the pileup is

(13)

a
=a(1 +

b ) p° T` .

	

(14)

We now calculate the response function y(t) for
this system . The response function is defined as the
value of S for unit energy deposited at time t in the
calorimeter cell . It takes on the following values :

0

	

t< -b or t>a
a

y(t)b

-b<t<0

1 0<t<a .

This function is illustrated in Fig. 2. The response
function, when applied to the real input of the system
and integrated over time is seen to be

J ~y(t)q(t) dt = I~~y(t)(Eo8(t) +E(t)) dt =Eo ,

since the mean value of the pileup contribution E(t) is
zero . The effective width of the response function is
defined as the width of a rectangle of unit height
whose area is the integral of the square of the function :

W= f~~y2 (t) dt,

	

(15)

z
-
(a
b ) bT,+aTc =aT,(1 + b) .
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Notice that the pileup variance can be expressed as

0
2= W,0 2
P PP'

QP -hPTc

	

_ g2(ti) =PPSP
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(16)

which is a useful property of the response function for
the discussion of pileup noise. It is interesting to note
that W is not simply the sum of the two gates, although
W= 2 for the case a = b. If b = a/2, W= 3a, demon-
strating the importance of the statistical factor (alb )2
in Eq. (13) . From this example it can be seen that
measuring the baseline in a gate narrower than that
required for the signal would not be advantageous .

Because of the sensitivity to pileup, one could imag-
ine not measuring the baseline in the second gate, but
in this case it would be necessary to include in the
variance any fluctuations in pileup noise due to varia-
tions in the luminosity, or, if the detector does not
have a perfect 6-function output waveform (and no
detector really does), there will be fluctuations in the
baseline arising from the slower component of the
response, which will also increase the variance . Both
effects are removed by measuring the baseline in the
second gate, but, as shown above, this procedure af-
fects the sensitivity to pileup noise.

In summary, we see that the response function
characterizes the signal processing operations of the
system, and that its width, defined in Eq . (15) is a
convenient parameter for describing the effects of sig-
nal processing on the contribution of pileup noise. In
section 4 we calculate the response function for the
time-invariant system .

3.2.2. Pileup in systems with bipolar shaping
In the situation where pileup noise is continuously

distributed in time, Campbell's theorem [8-9] may be
used to find the pileup variance . However, at a col-
lider, where the signals are generated at fixed intervals,
it is necessary to use a discrete sum in calculating the
effect of pileup noise. The expression for this case is
derived in the appendix .

From Eq. (99) we see that the expression for the
pileup variance is

(17)

in which p2 = Var(E)/T, is the variance of the energy
deposition in the calorimeter per crossing, Tc is the
time between crossings, g(t) is the signal waveform
and SP , called the "pileup sum" in this paper, is the
discrete form of the so-called "pileup integral",

12 P = f~~g2 ( t) dt .

	

(18)

The quantity pp, called the pileup noise density, is that
part of o p which is independent of the signal process-
ing parameters. The dimensions of pp are E/ FT while
SP has dimensions of T, reflecting the time interval

over which pileup events contribute to the noise vari-
ance .

3.2.3. Monte Carlo evaluation of the pileup noise density
To estimate the effects of pileup, we use a Monte

Carlo program to simulate the time structure of the
machine by permitting collisions at points in time sepa-
rated by the bunch crossing time and use Poisson
statistics to determine the number of collisions of each
type of events at each crossing . We consider only two
jet (with transverse energy of the jet above 5 GeV) and
minimum bias events, as generated in ISAJET version
6.21 . The two types of events occur in approximately
equal proportions .

Energy deposition in the calorimeter is simulated by
the program [14] which employs the Bock parameteri-
zation [15] for the electromagnetic and hadronic show-
ers. We assume a spherical calorimeter of inner radius
75 cm with two depth segmentations : an electro-mag-
netic section of thickness 25 radiation lengths and a
hadronic section of 10 absorption lengths. Transverse
spreading in the calorimeter is parameterized in a
simple way, and comparisons with experimental data
indicate that the width is correct to an accuracy of
about 10%. In this calculation, we deal with sums of
transverse energy, i .e . we assume that sin 0 weighting
is made immediately after the preamplifier .

After the transverse energy deposition for each
calorimeter cell is determined, a sum for the cell Ei

over all events in a given crossing is made . We calcu-
late pp by evaluating the quantity

Y_ E12

	

Y,Ei
i

	

i

nn

2

(19)

which is a characteristic of the sample of events con-
tributing to the pileup . We have calculated pp for a
range of values of the area of the calorimeter, from the
size of individual cells (.al = A71 X AO = 0.04 X 0.04) up
to sizes comparable to or greater than that of jets . The
results (see Fig. 3) leads one to the conclusion that
pp (X (O004))o

.~6

over a wide range of tower sizes. For uncorrelated
noise, one would expect the variance to be linear in ,l ;
this result indicates that the correlations in energy
deposits due to the dominance ofjet production signifi-
cantly alters this naive expectation . We can combine
this scaling law, along with the obvious linear depen-
dence of the pileup variance with luminosity, and using
the absolute value of the curve shown in Fig. 3, we
arrive at an empirical formula for the pileup noise
density:

1/2

pP=380(A1700)0.76(~ )
MeV/ ns . (20)
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Jn
Fig. 3 . Monte Carlo calculation of the pileup noise density
P, = aP / SP found in a calorimeter tower as a function of
the square root of its area .l=Ov7®A~6 . For this calculation
we have used ISAJET to generate 2 jet events, one of which
has PT in the range 5-10 GeV/c. In this calculation, the
calorimeter is assumed to have spherical geometry, and the

deposition is estimated using the Bock parameterization .

Very similar results have been obtained [16] using the
Pythia event generator and a different parameteriza-
tion for the deposition of energy in the calorimeter .

In this paper, the value of the pileup noise density
(pp = 3.75 MeV/ ns ) used for our standard case cor-
responds to the data point for the cell of size 0.04 X
0.04 .

4. Contribution of noise to calorimeter resolution

Because of the relatively short (= 16 ns) spacings
between beam crossings and the high luminosity which
leads to a collision rate of several events per crossing,
the ability to correlate signals in time depends critically
on the ability to extract the timing information form
the signal itself . Intuitively, one expects that an im-
provement in timing resolution and a reduction in the
effect of event pileup would be realized as the mea-
surement time is decreased. However, such a reduction
is accompanied by two effects which lead to a deterio-
ration in the signal to noise ratio :

- The thermal noise increases as the bandwidth of
the system is increased; the ENC is proportional to
1/ tm .

- As tm is decreased, a smaller fraction ( =tm/td)
of the charge deposited in the calorimeter is utilized in
the signal processing, which leads to a reduction of the
signal height, and since the noise is measured in energy
units, a corresponding increase in the thermal noise.

Thus Qt a tm3/2 , so tm cannot be reduced to arbi-
trarily small values, and it cannot be increased to

arbitrarily large values due to the effects of event
pileup and degradation of the timing resolution . One
of the main goals of this paper is to understand how to
choose an optimum for the pre-filter shaping time t,n,
considering the combined effects of thermal and pileup
noise.
We approach the problem of determining the am-

plitude and timing information from a set of measured
samples by looking first at the traditional method for
extracting information from an overdetermined data
set : the X2 method . We then turn to a solution from
signal processing theory [1], optimal filtering, and show
that the two methods are equivalent to first order. This
equivalence is particularly relevant for online data pro-
cessing since optimal filtering calculations are ideally
suited for implementation in hardware using digital
signal processors . We then discuss some implications of
the optimal filtering formalism through the use of the
system weighting and response functions. We have
verified the method using Monte Carlo simulations of
the noise signals by recovering the known input param-
eters of the signals with optimal filtering, as discussed
in section 6.
We assume that the form of the signal at the output

of the pre-filter is known, except for its amplitude A
and time origin T (the deviation from the assumed
crossing time). The expression for this signal is

S; =Ag(ti - T),

	

(21)

in which g is the convolution of the impulse response
h(t) of the pre-filter with the drift current i(t), as
shown in Eq . (3) . We also assume that the waveform
will be sampled many times, giving a set of measure-
ments S 1 , - - -, S� . We wish to determine the parame-
ters A and T from the data set Si .

4.1 . X2 approach

We define the X2 function as follows:

X 2(A, -r) =Y_ (Si -Ag(ti - T))Vj( Sj -Ag(ti -T))

(22)

in which Vj is the weight matrix for the measured
points Si . The dependence on T is linearized by the
use of a Taylor expansion:

g(ti - T) =g(ti) -Tg , (ti) ,

in which g'(t) = dg/d t . Defining the two parameters
in the fit to be al =A and a2 =AT, we have

X2= 1: (S i -al gi +a 2gi' ) VI(Si - al gi +a2gj),
ü
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where we have adopted the obvious notational conve-
nience that g(ti) =gi and similarly for g'(t i ) . We now
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form the following sums, expressed also in the equiva-
lent matrix notation :

Q1 = Egiltjgj =g+Vg ,

Qz = y- gi Vyg; =g ,+Vg',

Q3 - Y-giviigj-g_

	

+Vg>

ii

Q4 - Lrgiviisi -g +VS,

Q5 - Y_giVjSj-g,+VS .

	

(23)
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In these equations g is the line vector of the unit-am-
plitude shaping function samples, g+ is its transpose,
and g' is its time derivative . The line vector S is the
set of measured data points . We set aX2/aai = 0, and
solve the resulting linear equations for a i . The results
are:

4 = Q]Q2 - Q3

4.2. Optimal filtering in the time domain

The covariance matrix elements eij for the parameters
a l and a2 are the elements of the inverse of the matrix
1/2 azx2/aaiaa j :

In using this method, one normally solves the above
equations, then recalculates the function with the new
time parameter, and iterates the problem. This avoids
errors due to the truncation of the Taylor expansion
for g at the first term .

In the context of calorimeter signal processing, opti-
mal filtering refers to the formation of linear combina-
tions of signal samples to recover the signal parame-
ters, namely the amplitude A and start time 7, while
minimizing the effects of noise. We define coefficients
a and b and form the linear sums u and v of signal
samples S :

u= Y_aiSi,

	

u= Y_biSi .

	

(29)

We will choose coefficients so that u will be the
amplitude A of the signal, and v will evaluate to A7 .

The shape of the signal is known, so that the sam-
ples Si will have values

S,=Ag(ti -r) =Agi -A-rgi +ni ,

where ni is a noise component and use has been made
of the Taylor series expansion as before . Since we
require the expectation value of u to be A and the
expectation value of v to be A-r, we have

A = (u) = Y (Aaigi -A7aig; + (ni)),

A7=(v)= Y_(Abi gi -Arbigi +(ni)l .

The noise will average to 0, and this leads to con-
straints on a i and bi that

Y_aigi =1 , Y_aigi=0,

	

(30)

Y_bigi =0,	Y_bigi= -1 .

	

(31)

The variances of the parameters u and u are given by

Var(u) = Y_aiaj(n inj) = EaiajRij,
ii

	

ii

Var(u) = Y_bibj(n inj) = Y_bibjRij .

	

(32)
ii

	

ij
The expectation value (n inj ) =Rij is the noise auto-
correlation function evaluated at time ti - tj which is
discussed below in section 4.3 .
We minimize the variances of a and v while satisfy-

ing the constraints of Eqs. (30) and (31) using Lagrange
multipliers . The functions to be minimized are:

I,, = Y_Rijaiaj- A(Y_aigi - 1) - KY,aigi,

	

(33)
ii

	

i

	

i

I, = FRijbibj-p,Lrbigi-p(Ebigi +1),

	

(34)
ii

	

i

	

i

and A, K, )u and p are the Lagrange multipliers .
Proceeding in the usual fashion and setting the partial
derivatives with respect to ai and bi to 0 gives :

This is a set of linear equations which can be expressed
in matrix form . In this form, the solution for a --- ai and
b --_ bi is :

a =AVg + KVg',

	

(37)

b = AVg+pVg' .

	

(38)

The matrix V is the inverse of the autocorrelation
matrix R --- Rij and is the same matrix that appears in
Eq. (22) as the weight matrix of the signal samples.

ai,,
_ ~Rijaj -Agi -Kgi =0 . (35)

aai i
aIu

= Y_ Rijbj - wgi - pgi=0. (36)
ab i jj

QÂ -ell = Q2/4 , (26)

A ,2zQ==EZZ=Qi/4, (27)

Eiz = Q3/4 . (28)

1
A ---ai= d 1Q2Q4-Q5Q31, (24)

1
A,r=a2 =Q [ QIQ5 - Q3Q4 ] , (25)

in which



g-a =Ag+Vg+Kg+Vg, = 1,

g'- a =Ag'+Vg + Kg'+Vg , = 0.

4.3. Cooariance matrix for signal samples

relation function, given by
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The Lagrange multipliers can be determined from
the constraint equations. For example, for A and K we
have

and similarly for Fr and p with the constraints of Eq.
(31) . The solution in the notation of Eqs. (23) is

where 4 = QIQ2 - Q3. Substitution of Eqs. (40) into
Eqs. (37), (38) and (29) yields the same results as were
given previously in Eqs. (24) and (25) for the general
first order X Z method . Thus we see that the require-
ment of minimizing the variances of the parameters A
and A-r and minimizing the XZ function to first order
lead to the same results .

Since we are dealing with a system which is band-
width limited by the pre-filter, data samples taken in a
time which is short compared to the dwell time of the
shaped signal are correlated. It is necessary, when
considering the treatment of highly correlated data, to
understand the autocorrelation function for the system
[17], from which we can obtain the covariance matrix
for the data samples.

In our case, we have two sources of noise; thermal
noise contributes a series noise and gives an autocorre-
lation function Rt, while pileup noise gives a parallel
noise with an autocorrelation function RP. These two
autocorrelations are summed to give a total autocorre-
lation function.

(n inj ) =R(ti -tj )=Rt (t i -tj)+RP(t i -ti ) . (41)

The function Rt is the series (thermal noise) autocor-

R,(t) =
P' f

~
-

h'(t + u)h'(u) du,

	

(42)

in which h'= dh/dt and pt is defined in Eqs. (11) and
(12). The function RP is the autocorrelation function
for pileup noise:

in which QS2 is the variance of an individual sample Si ,
o,t is given by Eq . (12) and op by Eq . (17).

0

6

0.4

-0.2

-0.4

A= Y,a;S(ti),

100 200 300 400 500 600
t (ns)

Fig. 4 . Autocorrelation functions for series thermal noise
(solid line) and pileup noise (dotted line) . Both curves are
normalized to unit amplitude. The total autocorrelation func-
tion is the sum of the solid curves multiplied by the thermal
noise variance Ut2 and the dotted curve multiplied by the
pileup noise variance oP . The autocorrelation function is
symmetric in time, so these curves apply to - t as well as t .

In Fig. 4 we show an example of R,(t) and RP(t)
for our standard case (tm =50 ns, td = 400 ns). Note
that RP is a much wider function than R t , which is due
primarily to the fact that the function g(t) is consider-
ably wider than h(t) because of the convolution with
i(t) (see Eq . (3)).

4.4. Weighting and response functions

In order to understand the implications of the solu-
tions found above, we calculate here the weighting
functions (one for each parameter) for the system as
well as the response functions, which are closely re-
lated. The general definition of the weighting function
[2] is the contribution to the system output at measure-
ment time to due to a unit impulse applied to its input
at some previous time t. For a time-invariant system
with impulse response h(t), the weighting function is
the mirror image of the impulse response, i .e . w(t) =
h(to - t) . Thus the weighting function can be viewed as
a description of the memory of the system . For a
system in which multiple samples are taken, each sam-
ple records a signal which contains the memory of the
system relative to the time of that sample . Therefore if
the signal reconstructed from the samples is of the
form

the weighting function for this system is given by

wA(t) = Y,aih(ti - t) .
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The composite weighting function for a set of 5 sam-
ples (pattern B, described below) is illustrated in Fig. 5 .

z
-Q3

_A =, K r (39)
4

Q3 -Qi
A=- ,A

, P =- , (40)

R,(t) =p'pfg(t +u)g(u) du. (43)

Note that

R(0) =atZ +aP = O's2, (44)
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Fig. 5 . Construction of the composite weighting and response
function . (a) weighting function (solid curve) and response
function (dotted) curve for a single sample with a coefficient a
of unity. These are mirror images of the functions h(t - ts)
and g(t - t,) about the time is of the sample . (b) Composite
weighting function for the case of 5 samples (pattern B),
found by multiplying each individual weighting function by the
coefficient of the sample, which is indicated by the height of
the vertical bar. (c) Solid curve : weighting function, as found
in (b); dotted curve : response function, found in a similar way
by combining the individual response functions : dashed curve :
signal waveform . As in (b), the position of the vertical bars
show the position of the samples, and their height indicates

the values of the coefficients .

The response function is the contribution that a
8-function of charge in the calorimeter at time t makes
to the output at time t0. It is related but not identical
to the weighting function, since in this case, the input
to the preamplifier is not a 8-function but the current
waveform (Eq. (2)), and the output waveform is g(t).
The amplitude response function describes the mem-
ory of the system, including the effects of drift time in
the calorimeter . It is composed of a linear sum of the
output waveforms:

y,(t) = Y_aig(ti -t) .

	

(45)

This amplitude response function (or simply "response"
function, except in cases where it is important to distin-
guish between the functions for amplitude and timing
measurements) can be viewed as a measure of the
response of the system to real signals which are out of
time . Recalling Eq . (3), we see that YA(t) is the convo-
lution of wA(t) with the current waveform

YA(t)=WA(t)*t(t)= f ~t(t-u)w,(u) du .

Fig. 5c shows both the weighting and response func-
tions for the amplitude measurement for the case of
sampling pattern B with five samples.

For the timing measurement, the weighting function
w,(t) is defined in the same way, with the coefficients
ai replaced by the bi . The timing response function
y,(t) is similarly the convolution of wz(t) and i(t) . This
gives

w*(t) = Y_bih(ti - t),
i

and

y*(t)= Y_big(ti - t) . (46)

The timing response function has two properties which
can be verified by inspection of the constraint equa-
tions Eq . (31) . One is that y,(0) = 0, and the other is
that y7(0) = -1, so that the magnitude of the timing
response function for a signal displaced by an amount
,r is simply equal to r. The curve of y r(t) vs t shows
the region over which the optimal filtering method is
able to determine the time offset . As is shown in
section 4.6, y,(t) is proportional to yA(t), which is a
useful property for real time applications of optimal
filtering.
We now consider the relationship between the vari-

ances of the parameters and properties of the response
and weighting functions. Recall (Eq. (32)) that
Var(A) = Y_aiajRii,

or
QÂ _

	

-ai aj Rt( t i - ti) + `aiaiRP(ti-ti)
=~,+6P .

The quantities 6, and 6P are the contributions to the
variance Qâ coming from thermal and pileup noise,
respectively.

By definition yA(0) is unity. The effective width of
the response function, defined in Eq . (15), is

W=f ~y,2 (t) dtYaig(ti
- t)~ 2

dt

	

(47)
i

- Y_aiaif.~g(u)g(ti-ti+u) du
ii
1
2 F,a iajR P(t i - ti),

PP

	

ii



=P' Ir2

	

I ~a ih'(t i -t)I2 dt
e
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where the latter substitution comes from Eq . (43). We
thus conclude that the pileup contribution of the vari-
ance is related to the effective width of the response
function by the simple equation

p = ppW.

By comparison with Eq . (17), we see that the effective
width of the response function W plays the same role
as the integral I2p plays for the variance of a single
data point. Note the similarity between this expression
and that derived for the simple case of a gated integra-
tor (Eq. (16)).

The thermal noise for the case of multiple sampling
can be viewed as a relation analogous to Eq . (12)

2
Pt Ieff

~t = r2
1

v

_ Pt f

	

, 2
t -

r4
J ~~IwA I

	

d

2

2
Pt= 2Y_aiai

l

	

h'(u)h'( ti -t i +u) du

= YaiajR,(ti-ti) .

I

	

2 1/3

	

2

	

\ 1/3

T-tm
1 ~

Olt
-tm

Qt
t ~

	

~ G..aiaiRt(ti - ti)

Var(AT) = ~bibjRii,

A2Q7 = EbibjR,(ti -ti) + Y_bibjRp(ti-ti)

(48)

(49)

in which I, ff is the integral over the square of the
derivative of the composite weighting function :

From the arguments given at the beginning of this
section, we know that at scales as tm3/2. Comparing
Eq. (12) with Eq . (49) suggests that we can introduce
an effective measurement time T for the multiply
sampled system by requiring that it follows the same
scaling law. We require that 6, vary as T-3 and that
when ~t = Qt2 then T= tm. This gives the relation

For the timing measurement, we proceed in a simi-
lar way. First, we note that the variance for Aa-r can
also be written in terms of its thermal and pileup
components :

To define parameters with a physical interpretation,
we consider the expression for the timing resolution for
a system with a constant fraction discriminator operat-
ing at a point to on the waveform Eg(t) of amplitude

E and normalized shape g(t) . If the noise in the
system is QE, the time resolution is given by

o-* =o,e1Eg'(to) ,
in which g'(to) is the slope of the waveform at to. In
the optimal filtering method, several points are mea-
sured on the waveform . We can, however, define an
average effective slope m for the measurement, in
analogy with the above expression :
m = tTA/AQ, .

We define two slope parameters mt and mp, which
are the effective slopes in the thermal and pileup
limits, respectively . In terms of the quantities defined
above, they are given by

and

These quantities have the useful property that they are
independent of the value of pt or pp assumed in the
calculation and depend only on the pre-filter shaping
function and the sampling pattern assumed.

In summary, the four constants T, W, mt, and mp
can be used to relate the values of QA and Aar to the
noise value for a single sample in the two limiting
cases. In the case where thermal noise dominates

W )1/2

aA=O'pfs_

(
tT

)3/2

	

and

	

AQz = ni ,
t

where at is given by Eq . (12) . In the limit where pileup
noise dominates, we have

o,A
and

	

Au,= -,
mp

where op is given by Eq . (17).
In Fig. 6 we demonstrate one of the properties of

the amplitude response function by showing how it
behaves for two extreme cases: (1) the case for thermal
noise only (i .e . pp = 0) and (2) the case for pileup noise
only (pt = 0) . In the first case, the response function
maximizes its width, since there is no penalty for pileup,
and the effective measurement time T is made as long
as the pre-filter permits, thereby minimizing the ther-
mal noise. In the second case, only pileup is important,
so the effective width W becomes as small as possible,
to minimize its effects . As is discussed in section 5.2,
the limitation to the width of the amplitude weighting
function in a practical system may be determined by
the ADC quantization error.

4.5 . Optimal filtering in the frequency domain
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The optimal filtering problem can equivalently be
considered in the frequency domain . Whereas in the
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Fig. 6 . Amplitude response function for two extreme cases: (1)
dashed curve : pileup noise only (thermal noise = 0), (2) dotted
curve : thermal noise only (pileup noise = 0) . Note that if there
is no pileup noise, the optimal filtering method broadens the
weighting function (and hence the response function) in order
to minimize the thermal noise. In the case where the thermal
noise is negligible, the method minimizes the width of the
response function in order to reduce the effects of pileup

noise.

time domain, one has a known signal as a function of
time and various noise sources, in the frequency do-
main, one has a signal with a known frequency spec-
trum, and noise sources with known spectra. The task
is to develop a filter whose frequency response is such
that it passes the signal frequencies but rejects noise
frequencies .

The formalism for frequency domain filters is devel-
oped by Papoulis [1] . In the frequency domain, a filter
is a function of frequency which multiplies the fre-
quency distribution of the signal resulting in some new
frequency distribution . The optimal filtering problem is
to develop a filter which determines the unknown
amplitude A and time offset T of a signal which has
the known form Ag(t -T) in the presence of noise.
We normalize the known signal g(t) such that it has
unit amplitude at its peak, and the problem then
reduces to that of finding the value of the amplitude
constant A with the highest signal/noise ratio.

It is shown in ref. [1] that for a signal with (complex)
frequency spectrum G(w), the Fourier transform of
g(t), and a noise power spectrum S(o)), the filter (w)
that maximizes signal/noise at time to (the point in
time at which the filter is optimized, which we choose
to be 0) has a frequency response

KAG*(6o) -i~e~
A(w) =

	

e

	

,
S(w)

WE. Cleland, E.G. Stern /Nucl. Instr. and Meth . in Phys . Res. A 338 (1994) 467-497

(50)

where G* is the complex conjugate of G and KA is a
multiplicative constant to normalize the filtered signal .
This is the well-known matched filter, which intuitively
has the right properties ; it is large at frequencies where
the signal is large and the noise is small, and it is small
where the noise is large and the signal is small.

The filtered signal yr(t), is given by the inverse
Fourier transform:

Yf(t) = 2Tr ~~G(w)~A(w)
ei` dw .

	

(51)

We wish to normalize the filter so that it gives unit
amplitude for the peak when operating on the known
waveform g(t) with spectrum G(o)). This gives the
condition that

1 1 IG(w)1 2
dw .

	

(52)
KA - 2Trf

	

S(w)

Note that the exponential factors disappear since
we are normalizing at the same point where the filter is
optimized so the actual value of to is unimportant.
With this normalization, determination of the ampli-
tude A of a signal waveform u(t) with Fourier trans-
form U(w) is just

A

The amplitude response function for the filter is the
response of the filter to a signal of unit amplitude as a
function of time shift . In the time domain, shifting the
function g(T) by amount t results in the function
g(T- t) . In the frequency domain this time shift corre-
sponds to multiplying the frequency spectrum G(o)) by
the factor e -"" . Thus the response function is ob-
tained by inserting for U(w) in Eq . (53) the quantity
G(w)e-"` giving :

YAW

	

2Tr
f~°'VA(w)G(w) e-i" dw .

	

(55)

Except for the sign of t, A'(w)G((o) is the Fourier
transform of the response function . Since yA(t) is a
real function and equal to its complex conjugate, we
can take the complex conjugate of the right hand side
to identify äYA (w)G * ((o) as the Fourier transform of
the response function YA(t) . Using the expression for
'A from Eq . (50), we have

KA

	

-

	

I G(w) 1
2

YAW =
2trf_

	

S(w)

	

et'(ro
-') do).

	

(56)

We note that our normalization procedure gives the
amplitude response function unit amplitude at t = to .

1
dw

2Tr
f ~e-°A(co)U(o)) (53)

1 ~ G*(w)U(w)
=

dw .
2Tr
KAf

S(w)
(54)



The spectral density of the filtered noise is

	

2A 12S
so the variance of the filtered signal is

~A =
21rr I~.

1
~A(a))12S(co) dw

We now turn to the optimal filter for the time offset
parameter -r. In this case, a change in the signal
waveform u(t) is related to -r through the derivative of
g :
Su(t) = -A7 g'(t) .

Thus we proceed as before, only the filter is optimized
for the Fourier transform of -g', which is -jwG(w).
Therefore the optimal filter is

~(~) =
1wK,G *(to ) e-imra .

	

(58)
S(w)

We normalize the filter to give unity when pre-
sented with the Fourier transform of -g'(t) evaluated
at t=t0:

or

1

	

~

	

1 G(w) 1 2
-KÂI

	

SZ(w)
S(m) dw

	

(57)
2ir

=KA .

1

2-rr

	

*(w)(-1WG(w)) ei"° dw

I

	

- K7
w21 G(w) 1 2

1

	

1

	

w2 1 G(w ) 12

dw .

	

(59)
Kr - 2,rr

	

S(w)

With this normalization, for an unknown signal the
value of A-r is

A,r= Z,rrJ_~X,(w)U(w) dru

Kr °° jwG*(ca)U(w)
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d w .

	

(60)
2Tr S(W)

The response function for r is the Fourier trans-
form of the complex conjugate of the product of the
filter and the signal function or

-Y'(t)

	

2ar f-~

	

1wS ai(w)

2

ej'(ru-t) dw .

This product is purely imaginary and odd in o), so
the timing response function is real as it should be, and
y r(t) is odd about t0, which means that its value is 0 at
t = t0 , as expected . Following the same reasoning used
in Eq . (57), we find for the variance

1

	

1

	

-

	

à)2 1 G(co) 1 2

	

1
dw =

	

.
AZar 27r S(w) Kr

(61)

(62)
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Fig. 7. Components of the power spectrum . The solid line is
the curve for thermal noise and the dotted curve is the power
spectrum for the pileup noise, which is also the spectrum for
the signal . Each curve is normalized to unity. The optimal
filter suppresses those frequencies outside of the signal region
while preserving those frequencies where the signal is present.

From Eqs. (56) and (61) one sees that yA and y r are
related by

K

	

AQ 2_

	

_

	

_ Y~(t)
Yr(t) = KA Y, "t(t) -

	

QAr)
YA(t)

	

m2

as was mentioned in section 4.4 . In this expression, m
is the effective slope for the timing measurement intro-
duced in section 4.4 . It can also be easily verified from
Eqs. (61) and (59) that at t = t0 , y* _ -1, as required
from its definition .

Multiplying the signal frequency spectrum with the
frequency response of a filter corresponds in the time
domain to a convolution of the signal with the Fourier
transform of the filter response . Since the optimal
filtering operation in the time domain as previously
developed is formally a discrete convolution, we iden-
tify the coefficients ai obtained earlier with the Fourier
transform of the filter response r,(tu) obtained in the
frequency domain using discrete Fourier transforms .

We have calculated the amplitude and timing opti-
mal filters for our standard case, both in the time and
frequency domain using discrete Fourier transforms .
Fig. 7 shows the power spectrum of the two noise
sources, pileup noise and thermal noise. The pileup
noise comes from real events so it has the same spec-
trum as the signal. The thermal noise is represented as
a current generator in parallel with the detector capac-
itance, so the noise 8-impulses are converted into 8'
doublets [18] . The noise waveform is the convolution of
the doublet with the pre-filter impulse response h(t),
which yields h'(t), giving its power spectrum a larger
high frequency component. We find very good agree-
ment between coefficients given by the Fourier trans-
form of a filter function with those calculated in the

(63)
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4.6 . Properties of optimal filters
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time domain . For the purpose of this comparison, we
assumed that the signal is sampled in a region symmet-
ric around time zero in order to be consistent with the
definitions used in the frequency domain calculation .
Although there is negligible difference between the
coefficients calculated by these two methods, the time
domain allows more control over the number and
position of samples (see section 5.3) making it more
useful for practical purposes .

In the frequency domain, it is easy to understand
the behavior or the amplitude response function in the
two extreme cases described in section 4.4 . Recall that
the response function is G(ce)e2°A(to) where G is the
signal frequency distribution and ?'a is the filter spec-
tral response . However, we know the form of '?A from
Eq . (50), so the response function becomes propor-
tional to I G 12/S . For the case when pt = 0 (negligible
thermal noise), then the only contribution to S(a))
would be from pileup noise which has the same form
as the signal power spectrum

	

I G 12 . The response
function is a constant in frequency space; the Fourier
transform of a constant is a 8-function . Alternatively,
for the case when pileup noise is negligible (pp -- 0),
then the filter (and hence the response function) is
only nonzero in a frequency band around the signal
frequencies . The narrower the band, the wider its
Fourier transform becomes.

Besides providing an intuitive understanding of op-
timal filters, the frequency domain formalism permits
us to derive general properties of optimal filters that
are not evident in the time domain formulation . As we
have developed optimal filtering in the frequency do-
main, we have required integration over all frequen-
cies . In the time domain, this corresponds to integra-
tion over all times and to sampling the signal at in-
finitely small time intervals. We refer to this unphysical
situation as the "infinite sampling limit" (ISL). A situa-
tion somewhat closer to reality is found by integrating
the function between fixed limits, which are deter-
mined in part by the sampling frequency and in part by
the properties of the signal waveform . This represents
the situation in which the signal is sampled periodically
and a finite number of samples are analyzed . We refer
to this situation as the "finite sampling". We give
below the limits appropriate to performing the finite
sampling integrals (FSIs) and derive analytic expres-
sions for the variances of the parameters in this case .
In a practical case of course, we must consider signals
that are sampled at a few points located at integral
multiples of the bunch crossing time . We show in
section 5 .3 the extent to which the infinite sampling
limit formulae and finite sampling integrals approxi-
mate the practical situation .

We now derive analytic expressions for the vari-
ances of the parameters A and AT in the infinite
sampling limit. Consider an optimal filter which has as
its input digitized data from a pre-filter with an im-
pulse response h(t). The impulse response spectrum
H(co) is the Fourier transform of h(t) . The signal
waveform g(t) is the convolution of h(t) with the
current waveform as discussed in Eq . (3) . In the fre-
quency domain, this means that the signal spectrum
G(m) is I(m)H(w)/g, where I(co) is the Fourier trans-
form of the current waveform i(t) . The factor 1/q s
appears because both g(t) and h(t) are normalized to
unity . The noise spectral density S(c)) is a sum of the
spectra SPGo) and St(co) for pileup and thermal noise.
Pileup noise is derived from real events so it must have
a spectrum proportional to I G 1 2 . The integral of the
pileup spectral density over all frequencies must equal
the pileup variance :

1
UP =

Z~i
f

.
SP(w) dto .

For the case of continuously distributed pileup, the
variance is known from Campbell's theorem to be
pP fg2(t) d t . From Parseval's theorem of Fourier anal-
ysis we also know that f g2(t) dt = 1/2 rr f I G(w) I z dco
so we obtain

Sp(W) = p2IG( to )I Z= PZ II(o)I ZIII(~)I 2 .

	

(64)
qs

As mentioned above, representing the series noise
as a parallel source introduces an effective differentia-
tion in the spectrum, so the pre-filter response to
thermal noise is proportional to h'(t) . The spectrum of
h'(t) is jcoH(c)) so the thermal noise spectral density is
proportional to co z I H(w) 12 . Again using Parseval's
theorem and noting the form of o,t in Eq . (11) gives

zÙ) z
St(w)= pYZ IH(ci)I2.

9
We now calculate QÂ, the variance of the amplitude

after optimal filtering, using to Eq . (57) and recalling
that r.=gslqeNe :

1

Â

	

1

	

I G(to) 1 2

O = 2,f~Sp(W)+St(to dto

1 2

I
I(m)

I
z

qeNeI

27r f~$ 0

	

2
P, II(w)IZ+picoz

(ge Ne )

(65)

1

qs
II(co)I_

	

z lH(m)I z

z

	

z z

	

dm
21T

	

q5
II(co)Iz1H(oo)Iz+ p~c)

1H(w)
2

9

dco . (66)



The point at to = 0 has been excluded because the
noise and signal do not have any DC component,
rendering the integrand undefined . Excluding this sin-
gle point does not affect the integral .

The quantity I(w) is the Fourier transform of the
current waveform i(t) . For liquid ionization calorime-
ters [7] this is the linear function of time given in Eq.
(2) . The Fourier transform of this function is

q, N,'

	

J(Otd

from which we have

2
PP wzt2

d

6â = V[8

	

_t 3
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awt d
2 e-j"d /2 sin

2

géNe2

	

to td

	

3t

	

+

	

4t

Considering the integrand of Eq . (66)

(67)

a b c
wtd w3tâ w°tâ

+
3t 3

+ w4w t ad d

with a, b, and c values of magnitude less than 1, we
see that at large w, the terms proportional to b and c
become small compared to the leading term propor-
tional to a . At small w, the term in the denominator
proportional to aw e becomes small, and the integrand
approaches 1/PP . Both of these conditions still hold if
we approximate 1I(w)1 2

/géN
2 by its first term

1/&) 2 t 2
d*

This leaves us with the expression

Jw2td

wtd	p)td

	

6 ) td
4 sin2 cos2

	

4 sine
2

+P tw2

The integral can be evaluated by contour integration
and has the value of rr/ vf2 leading to the variance for
A in the infinite sampling limit :

(71)

All quantities calculated in the ISL are designated with
a tilde (- ).

The total filtered noise variance oA has contribu-
tions from thermal and pileup noise

Sp= _
j
.
~j2A(w)1 2SP(w)

dw,

1
t
=

2Tr I~~12°A(w)12St(w)
dw .

We write the noise spectral density (see Eqs. (64) and
(65)) as

S(w) = BPUP (cw) +B,U,(w),

where

SP(w) = PPUP(w) = BPUP(to)St(

(O
) = PiU(w) = 6tU(w) .

From Eq . (72) the form for ~P , the contribution of
pileup to QÂ, is

6 P

~P =3

1
1G( w )1

2

23r I-- ~ S(w) 2 Sp(a)) dw

2 2
1 G(w)1

dw
2Tr S(cd)

1

	

IG(w)I2

2rr BpI

	

(BPpP(w)
+
etUt(w) ,2 Up( w) dw

1

	

1
F( w)1

2

	

l2

2 ,rr I BPUP(w) + BtUt(w)
dwJ

ô

	

1

	

I G(w)1
2

	

,

6P aBP ( 2rr

	

BPUP ( .) + Btut(w)
dw

aQÂ

= OP âe ,P

3
tdPtPp

2
3 -2

= 4QA ,

tdPtPp

	

t -2

2

	

=
a~A .
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(72)

(73)

and similarly for the thermal contribution . Identifying

BP=PP and 9t=Pi and applying Eq . (73) gives us the
pileup and thermal contributions in the ISL as

(74)

Note that these results are independent of any .
parameters of the impulse response function, such as
the shaping time or order of the pre-filter .

The variance of the timing parameter AQz can also
be calculated the same way starting from Eq . (62) and

1

1 (u2t2d
0.2 dw
A 2,rr IooP2P

w
2
t2

+P2w2

d

1

2rrf

1

~pP+Pitdw
4dw (68)

1

~~°°

du
(69)

2 ,rr tdPtPp 1 + u'

where we have made the substitution

tdPt
u (70)

PP
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proceeding as before . After using the same approxima-
tion for the drift function, we have

1

	

1

	

C02 dù)
A2`2 - 2-rr f--P 2 + t 2 2w 4

r

	

P dPt

27r

This integral also has the value-rr/ ~2 so

AZ
Q, = V8td tPp ,

	

(76)

with thermal and pileup contributions

m

2

tdPiPp , 2-2=4AUr ,

PP

2

tdPiPp
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1

	

u2 du

tdeiPp f

	

1 + u4
. (75)

2

	

= 3A2Q2 .

	

(77)

By comparing Eq . (48) with Eq . (74) we see that we
can obtain a value for the effective width of the re-
sponse function in the ISL:

3C2 tdPt
W=

	

1

	

.

	

(78)
Pp

The expression has the properties that one intuitively
expects, namely that the effective width is increased as
the thermal noise increases and decreases as the pileup
noise increases . We note also that the effective slope
for the timing measurement introduced in section 4.4
can be calculated in the ISL. We find

3V-2 1

tdPt 2 W

The degree to which the actual response functions
follow these formulae is discussed in section 4.7 .

Use of limits on the integrals which span all fre-
quencies corresponds to sampling the waveform at
infinitesimally spaced points extending over all time . It
is this obviously unphysical sampling pattern which
leads to the unphysical behavior of Eqs. (71) and (76)
as either p t or pp approaches zero . We now show how
our results are modified when sampling at finite inter-
vals over a finite region of time is introduced .
We suppose that the signal waveform is sampled N

times at sampling intervals TG , which could be the
machine crossing period Tc or some multiple thereof.
The full width of the sampled region is therefore
d = NT, The effect of the finite sampling is to restrict
the frequency range over which the signal processing
network operates to a finite number of discrete fre-
quencies given by :

wk =kAw,

	

Ow = 2ar/A,

	

(79)

where k has a range determined by the number of
samples

N N

	

N Nk=-
2

- Z +1, . . . -2 _1 , 1 2 . . . Z _I,- .

According to the Nyquist theorem, the largest angular
frequency that can be distinguished given the sampling
interval is tar/2T,.

To estimate the variances of the parameters we
utilize Eqs. (66) and (75), but apply finite limits :

1

	

2

	

uh du

~â

	

2ar taPtPP ~,

	

1+u4 ,

1

	

2

	

uh u2 du
AZaT

	

2ar tdPiPp ~i

	

1 +u4 .

The values of these integrals from the Maple computer
algebra program are:

du

	

v/_2 I

	

u2 +u~+1
I1+u 4

	

8

	

log
u2 -u ~2 +1

+2 tan - 1 (u~2 + 1) + 2 tan- '( uv2 - 1) I,

u2 du

	

~2 I

	

u2-u~+1
log

1+u4

	

-
8

	

u2 +u~2 +1

(80)

(81)

+2 tan -1(uV2 + 1) +2 tan-1 (uV2 - 1) I .

Note that the frequency co is related to u by the
equation u = w/co o . Since co o = PplPttd , we see that
in the case where pileup noise dominates u becomes
small, and similarly, if thermal noise dominates, u
becomes large . Therefore, the limits on the integrals
may be found by requiring that the values of the
integrals approach the values for the variances in these
two limiting cases. We choose to establish them by
evaluating ~A and AZC-T for the two limiting cases. We
therefore estimate ~t and ~P, the values of uA for the
case where either thermal or pileup noise dominates,
respectively, and by using the limiting forms of the
integrals, we relate these values to the integral limits
uu = wu/wo and u, =w,/coo . (We use the additional
subscripts A and T on the limits for the integrals for
oA and Aor , respectively.) For the pileup noise limit
the limiting form of the integral is

du
lim (-=,
u-0

	

1 + u4



and combining this with Eq . (69) we find

1

	

UA,u - UA,l

	

Ù) A,u -mA,l
- _

	

= P2
P

t
SP

	

Tr

	

tdPtP 3p

which yields
, Rp 2

P
WA ,u = - + ()A,]'

P

Similarly, for the case where thermal noise dominates,
the limiting value of the integral is

lim f

	

=

	

-
u -~

	

1 +u4

	

- 2

	

3u3

and using Eq . (69) again we find

1

	

1

	

1 1

	

1

St

	

3Tr tdptPP uA,l

	

UÂ,u)

	

3TrtdPLWÂ,1

which yields

O)A,1 =

	

2 2 '3srt dp t

Similar considerations lead to the
sions for the integral limits for AQr :

~r,l

	

St

	

+ Cd7 u
,

31Tp 2
3

	

Pw,,u =

	

~P

The expressions for the parameter
of the integral limits are therefore:

OA

1

	

TrPt td

	

1

and

AQr =

du Tr 1
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following expres-

variances in terms

3
Pt 3Tru)A,1

(8tdPtPP)1/4

	

(ISL region),

	

(82)

(thermal region),

Pp~"/\'A,u -WA,1)

	

(pileup region) .

tdPtuTr/( 1 /W,,1 - 1/Wr,u)

(BtdPtPp)1/4

	

(ISL region),

(thermal region),

(pileup region) .

(83)

There are three separate approximations for each pa-
rameter: the thermal noise region applies when the
luminosity is zero, or when pileup noise is very small
compared with the thermal noise, and the pileup re-
gion applies when pileup is the dominant form of
noise. Between these two regions, the ISL is a reason-
ably good approximation to the exact solution .

In the discussion in section 4.4, we have shown how
the optimal filtering results for oA and AQr can be

expressed in terms of four quantities : the effective
integration time T, the effective width of the response
function W, and the two effective slopes mt and m p .
From the expressions given here, it is straightforward
to express the integral limits in terms of these parame-
ters :

COA,u

Tr

m2

1/3

(

jl

)

tm
9 d3Trr2 t2 T

W

3TrmP
W

O) A,I I
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WT,1 3(oA,1
-T.u

With the integral limits, which represent the behav-
ior of a system consisting of a given pre-filter shaping
function and a given sampling pattern in the two limit-
ing regions (thermal and pileup), it is possible to use
the finite sampling integrals to obtain the values for oA
and AQr at any intermediate value of noise densities .

4.7 Numerical studies

We now illustrate the concepts that have been de-
veloped in the preceding sections, comparing the infi-
nite sampling limit and the finite sampling integral
with practical sampling scenarios . The data presented
here are for the standard case of an EM 0.04 x 0.04
tower of the accordion type, although the qualitative
behavior described is quite general . As mentioned in
section 2, our estimates for an accordion-type liquid
argon calorimeter lead to the following values for the
calorimeter parameters : pt = 8 MeV ns and pp = 3.75
MeV/ ns at y= 1033 cm-2 s -1 .

In order to see the effect of different choices of
sampling pattern on the integral limits, we present an
example of three sampling patterns (A, B, and C) of 5
samples each and the case for full sampling over the
waveform (pattern D), with one sample at each beam
crossing. The position of the three 5-sample patterns
relative to the waveform are described in Table 2 and
shown in Figs . 8 and 9, where we also show the
weighting and response functions at two values of
luminosity . Each of the patterns has the central sample
near the peak of the waveform. In pattern A, every
sample is taken, whereas in pattern B, every other
sample is taken, and in pattern C, every third sample is
taken. As can be seen in the figures, the sample
spacing can have important consequences for the shape
of the weighting functions, but the response functions
are quite similar in shape. Sampling pattern D has a
total of 44 samples, one each 16 ns, spread over the
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Fig . 8. Composite weighting function wA (t) and response function yA (t) for the amplitude measurement in the thermal noise limit.
Solid curve : weighting function, dotted curve : response function, dashed curve : signal waveform . The four plots correspond to the
four sampling patterns (A, B, C, and D) described in the text . The position of the samples is indicated by the horizontal position of
the vertical bars, and the values of the corresponding coefficients a; are indicated by the height of the bars. Note that yA(0)=1, as

required by the constraints.
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Fig . 9 . Composite weighting and response function for the amplitude measurement for the standard luminosity . See Fig . 8 for

details .
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Fig. 10 . Composite weighting function w,(t) and response function y,(t) for the timing measurement in the thermal noise limit.
Solid curve: weighting function, dotted curve : response function, dashed curve: signal waveform . The four plots correspond to the
four sampling patterns (A, B, C, and D) described in the text . The position of the samples is indicated by the horizontal position of
the vertical bars, and the values of the corresponding coefficients bi are indicated by the height of the bars . Note that y,'(0) _ -1,

as required by the constraints. The units of y, are beam crossing periods (16 ns).

entire waveform . It is included here as the limiting case

for a finite number of samples. The corresponding

waveforms for the timing measurements are shown in

Figs . 10 and 11 .
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In Table 3 we give the parameters T, W, mp, and
rn t, which characterize the sampling patterns for the
limiting cases, along with the corresponding frequency
limits for the integrals. One can see that full sampling
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Fig. 11 . Composite weighting and response function for the timing measurement for the standard luminosity (Y =1033 CM-Z s -t ) .

See Fig. 10 for details .
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Table 2
Sampling patterns studied. The period of the sampling is 16
ns, the beam crossing period at the SSC. The common sample
in the center of patterns, A, B, and C is placed near the peak
of the waveform with tm=50 ns . Pattern D, which has sam-
ples over the full waveform, contains 44 samples for tm= 50
ns

Pattern name

	

Sampling pattern

A
B
C
D
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Fig. 12 . Amplitude resolution using the method of optimal
filtering versus the pileup noise density pp =o'p / Sp . The

dot-dash curve is the ISL formula, and the solid and dashed
curves are from the finite sampling integral . The dotted curve
is the value of os for a single sample . The symbols are values
of aA found from the numerical solution in the time domain .
The full sampling solution (solid curve and (X) symbols),
described in the text, sets a lower limit to the value of o-A
which can be achieved with a finite number of samples. The
solution with 5 samples (pattern B) is the dashed curve and
asterisk (*) symbols. The vertical arrow marks the value at
which the luminosity is 1033 CM-2S-1, corresponding to the

standard case used in this paper.

Table 3
Parameters for the four sampling patterns discussed in the text . T is the effective measurement time, W is the effective width of
the response function, and m p and mt are the effective slopes in the pileup and thermal noise limits, respectively
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Fig. 13 . Time resolution using the method of optimal filtering
plotted versus the pileup noise density pp =oP / SP . The
dot-dash curve is the ISL formula, and the solid and dashed
curves are from the finite sampling integral . The dotted curve
is the value of Ao7 that would be obtained using an ideal
constant fraction discriminator working at the point of steep-
est slope in the waveform . The symbols are values of Ao,
found from the numerical solution in the time domain . The
full sampling solution (solid curve and (X) symbols), de-
scribed in the text, sets a lower limit to the value of Ao,r
which can be achieved with a finite number of samples. The
solution with 5 samples (pattern B) is the dashed curve and
asterisk (*) symbols. The vertical arrow marks the value at
which the luminosity is 10 33 cm -Z S-1, corresponding to the

standard case used in this paper.

leads to a wider integral limits, which reduces the
errors on the parameters, as is shown in Figs . 12 and
13 . For the cases with 5 samples, one sees a general
correspondence between the sample spacing and the
frequency limits, but pattern B gives generally better
performance in the amplitude measurement. This be-
havior is intimately related to the form of the compos-
ite weighting and response functions, whose complexi-
ties preclude a simple intuitive explanation.

To illustrate the behavior of the optimal filter solu-
tions as a function of luminosity, we solve for aA and
Ao-r for fixed values of p t and ta . In Fig. 12 we

Pattern T
[ns]

W
[ns]

Mt
[ns] - '

M i,
[ns] - ' [106 rad/s]

WA,u
[70 6 rad/s]

X7 .1
[10' rad/s]

0'r .u
[106 rad/s]

A 79 .1 62.4 0.0111 0.0558 9.44 59 .9 15 .9 77 .8
B 65 .4 46.1 0.0127 0.0282 11 .4 68 .1 18.0 51 .5
C 79 .9 65 .9 0.0119 0.0535 9.34 47 .7 13 .9 68 .9
D 146.0 27.1 0.0098 0.0854 5.10 115.9 4.03 134.6
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compare the values given by the FSI in our standard
case, for two sampling patterns : one with 5 samples
(pattern B) and one with full sampling (pattern D) . We
show both the time-domain calculations as well as the
values found from FSI, and the agreement is good .
Essentially, one determines the values of O)A', and &),',
using time domain calculations for the two limiting
cases, and the FSI is used to interpolate all intermedi-
ate values . In Fig. 13, we show the time domain calcu-
lation and FSI calculation for the same cases given in
Fig. 12 . Again, it is seen that FSI is a reasonably good
representation of the time-domain calculations .

From the discussion of section 4.6, there are three
regions of interest : (1) the region where thermal noise
dominates, (2) the region where both thermal and
pileup noise are important, and (3) the region where
pileup noise dominates. Each of the regions has a
characteristic dependence on p, or pp , which is evident
from Eqs. (82) and (83) and can be seen in Figs . 12 and
13 . The plots also illustrate how the pattern with 5
samples compares with the results of full sampling and
also how they compare with a single measurement at
the peak of the waveform in the case of the amplitude
or with an ideal constant fraction discriminator in the
case of the timing measurement. The abscissa in the
plot is the pileup noise density, but in a more general
sense, the plot shows the behavior of the system as a
function of (1) luminosity (pp aY 1/2), with luminosity
increasing to the right, (2) depth in the calorimeter,
increasing to the left, and (3) area of the tower size,
increasing to the right (p p a.1°.76 , while pt (x .l°s).

In Fig. 14 we show a plot of the width of the
amplitude response function as a function of pp for
sample patterns B and D, effective width in the along
with the effective width in the infinite sampling limit.
Note that the width of the response function for the
practical case of 5 samples more or less approximates
the ISL formula in the central region but there are
very large differences in either the pileup or thermal
noise regions. This is easy to understand : in the ther-
mal noise region, the filter would like to produce a
response function with a large width, but it is limited
by the finite sampling interval, whereas in the pileup
noise region, where a narrow width is desired, it is
limited by the size of the sampling period . Note that
the full sampling solution is able to approximate much
closer the ISL width, but it eventually is limited to
finite values for the same reasons.

5. Data acquisition considerations

In designing the data acquisition and triggering
systems for a large calorimeter, it is important to
understand the implication of various design choices at
the analysis stage. The choice of the number of sam-

5.1. Choice of the pre-filter shaping time
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Fig. 14 . Effective width of the amplitude response function,
plotted against the pileup noise density pp = up / Sp . The
solid curve is the ISL formula, while the dotted curve is
obtained from the time-domain optimal filter calculation,
assuming samples taken over the entire waveform (pattern D) .
The failure of the full sampling curve to follow the ISL curve
is a consequence of the finite sampling interval and the
minimum time between samples. The dot-dash curve is ob-
tained with the 5-sample sampling pattern (pattern B) . This
quantity determines the contribution of pileup noise to the

value of QA .

ples and where they are placed with respect to the
origin of the signal is an obvious example. Because of
the high channel count, data volumes will necessarily
be quite large, so it is useful to reduce the number of
samples to the minimum, consistent with the goals of
the desired amplitude and timing precision . Another
important design choice is the type of pre-filter used in
the electronics chain and its associated time constants .
Practical considerations restrict the peaking times to
= 20 ns or greater, but considerable effort is required
to build a system with high analog bandwidth, so it is
important to understand the implications of bandwidth
limiting in the front end electronics . Finally, the ques-
tion of the precision required for the digitization stage
is one that has implications for the precision of the
analyzed data, and how the digitization error propa-
gates to the error in the final result depends on choices
for both the shaping time and the number of samples.
These questions are addressed under the assumption
that the data are processed using the method of opti-
mal filtering .

In sections 4.6 and 4.7 we have seen that the use of
optimal filtering bestows upon the system a certain
insensitivity to the pre-filter shaping time tm . But there
are limits to the degree to which the optimal filter can
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compensate for an inappropriate choice of the shaping
time, and it is therefore useful to examine a method
for choosing tm.

We consider the case for a calorimeter cell operat-
ing at a given luminosity, i.e . with pp and p, fixed. An
intuitive choice for tm would be that value which
minimizes vsz , the variance of the signal including both
pileup and thermal noise. This value can be easily
found. The expression for Qsz is

I tm
_Q,Z+Qp-ppSP(tm)+Pc

2( )
rq (t.)

in which Sp is defined in Eq . (17), I I in Eq . (17), and
rq in Eq . (5) . To a good approximation, the functional
dependencies of these quantities on tm is given by
II = al /tm, Sp = ap tm, and rq = tm/td, in which al and
a p are dimensionless constants of order unity. This
results in a simple expression for QS as a function of tm
which has a minimum at

Pcta
Pp
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(84)

at which point the values for the components of QSZ
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Note that at the optimal shaping time

(85)

There is an interesting similarity between this expres-
sion and that for (iâ (Eq. (71)), the optimal filter result
in the infinite sampling limit. This argument also gives
the value 3 found in Eq . (74) for the ratio of the pileup
to thermal contribution to the variance . The numerical
coefficient appearing in Eq. (84), (3a ß /ap)i/a, is rea-
sonably insensitive to the choice of tm or to n, the
order of integration of the filter . For the values shown
in Table 1, we find that this factor is within 5% of the
value 1 .5 . Thus, to this level of accuracy, the expression
for the optimal measurement time becomes

t om = 1 .S Vpttd/Pp .

For our standard case of an (RO' -(CR) z filter, we
find a value of 4.06 for the numerical coefficient in Eq .
(85) . Comparing this with the factor of vr8 in Eq . (71)
we see that the optimal filter in the ISL yields a lower
value of the variance than asz :

o, = 0 .69asz .

Another approach to the question of optimal shap-
ing time is to examine the behavior of the optimal filter
itself as a function of tm . We consider the contribution
of the pileup and thermal noise to the value of Qâ as a
function of tm. From Eq . (48), noting that ~t a 0, z and
~p a Qp, we can write

in which the noise factors D, and Dp are dimension-
less numbers (Dp and Dt can be expressed in terms of
T and W, but that is unnecessary for this argument).
They are the factors by which the thermal noise and
pileup noise are weighted by the optimal filter . From
Eq . (72) we see that, in the ISL, ~t and S p are both
constants, independent of the measurement time . Thus
we infer that the measurement time dependencies of
D, and Dp are the inverse of those of a-IZ and o-P,
respectively . We suggest that a useful criterion for the
pre-filter shaping time would be that value for which
Dp =Dt , i.e . that at the optimal value for the measure-
ment time, it is not necessary for the filter to weigh the
two sources of noise unequally. From Eq . (74) we see
that
t
SP =

DP QzP
z =3 .

Dca-c
When Dt =Dp, the w = 3o,t3 and

3a1Pca two=PP 2 m

	

,tapt)3 >
1\lm

giving

a P

Pcta _
tm

	

(87)
PP

showing that both criteria yield the same result in this
approximation .

In Fig. 15 we illustrate the equivalence of the two
methods. While the variation of usz with respect to tm
shows a minimum at t°� it is quite shallow, due to the
extreme asymmetry of the curve about the minimum.
The crossing point of the Dt and Dp curves is a much
more sharply defined point. Note that the values of the
coefficients at which they cross is about 0.73, from
which one can conclude that at tm= tm',
o-A2=Diatz + DpQP = 0.73Qsz

which is slightly larger than the value found from the
criterion based on QA, as expected . This argument also
indicates how to choose the value of tm to achieve
optimum timing performance. Since by/~c =1/3, this
optimum occurs where 3vP =QtZ, giving top``(timing) _
tm'(amplitude)/~.

5.2 . Quantization accuracy

We now turn to the question of how the quantiza-
tion accuracy of the digitization of the samples S;
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T
60

Fig. 15 . Graph showing the equivalence between the two
methods for determining the optimum pre-filter shaping time .
The dotted curve is the value of us as a function of tm , where
it is seen that there is a very shallow minimum at to. . The two
dashed curves are the noise factors Dp(falling) and D,(rising),
which are the weights given the pileup and thermal variances
for the amplitude in the optimal filtering method (o- = DpoP
+ D,o,z). The point t.P t occurs where the two noise factors
are equal . The data are for the standard case of a 0.04x 0.04

EM cell .

affects the variance of the parameters . Intuitively one
suspects that if there are large negative values of the
filter coefficients, which indicates that the final value
of the parameter is the difference of two large num-
bers, there may be increased sensitivity to the quantiza-
tion error . It is easy to show that this is in fact the case .
If we assume that a linear ADC scale is used, with a
maximum range of t1 E = Emax - Emin1 then for a preci-
sion of nb bits, the quantization error in S i is

o,q = AE/ 12 N,

	

(88)

in which N = 2nh - 1 is the full range of the ADC.
The amplitude A and the time shift T are related to

the samples Si by the simple linear expressions

1
Ir =-F_bS .

The propagation of the quantization error to the fitted
parameters is straightforward :

Fr_ z _
QA - ~q

	

ai - QgRA,

	

(89)

A47 = qg

	

+bi
z =og R7 >

	

(90 )
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Fig . 16 . Values of the quantization coefficients and their effect on the values of oA and Aor for the case of 5 samples (pattern B),
as a function of relative luminosity (-910 =1033 CM-2S-1) . (a) Value of RA = qA 10"q' (b) Factor fA by which the value of oA is
increased by the effect of quantization error for the standard case . The values of oq , chosen to be multiples of the thermal noise 0-�
are indicated in the legend . The solid curve indicates the effect of including the quantization error in the calculation of the
coefficients, as discussed in the text . (c) Value of R r = Aqr /oq . (d) Factor fr by which the value of Aor is increased by the

quantization error, as explained in (b) . The legend for (b) also applies to (d).
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in which qA and Aq, are the contributions of the
quantization error to the variances of A and AT,
respectively and must be added in quadrature to QA
and AQr . The quantities RA and Rr, being the factors
which determine how the sample quantization error
propagates to the quantization errors in A and T,
characterize a particular solution for the coefficients .
These quantities increase with increasing luminosity, as
can be seen in Fig. 16, and this is understood as a
consequence of the appearance of negative coefficients
which are needed to reduce the effective widths of the
response functions . If the quantization error becomes a
significant component of the noise terms, it is possible
to reduce its effect through the inclusion of this term
in Eq . (32) in calculating the coefficients . The term Rij
is incremented by the amount 5iia4, and coefficients
found are those which minimize the variance including
the effects of quantization error. In Figs . 166 and 16d
we show the factors fA and f7 by which the values of
oA and AQ,r are increased by the effects of quantiza-
tion errors . The factors are defined as

-
U

1+
CIA

fA -

	

2
VA

and

We show results for three values of oq , where the
quantization error is ignored in the calculation of the
coefficients . For the largest quantization error studied
(o-q = 4o-,) we show for comparison the effect of includ-
ing it in the solution . It can be an important effect
when the pileup noise is large .

It should also be mentioned that in some data
acquisition systems, the use of a dual-range ADC may
be employed, with a break point at a certain value of
the pulse height. When a pulse whose peak is just
above the break point is measured, samples near the
peak may be digitized on the low-gain scale, whereas
samples further from the peak are digitized on the
high-gain scale with lower quantization error. By calcu-
lating coefficients in which the individual quantization
errors are introduced in the minimization process, it is
possible to weigh the samples individually to correctly
account for their precision.

For the case where a logarithmic scale is used, the
quantization error in a sample S is given by

log_ (f -1)
O-q - 12 (S-Emin),

in which

AE 1IN

f° ()l EO
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and EO represents the units of E. Propagating this
error to the error in the parameters yields the follow-
ing expressions

Iog

	

f- 1

	

z

	

2

	

2Emin
9A =A 12 ~7aigi - A

2

	

i/z
z

	

Emin
Y_

	

2l
X ~Qi

	

A
gi+2

	

ai l
/

_ f- 1

	

2Emi n
g7og

_

	

12

	

(

	

b?g?

	

A

z

	

i~z
X Y- bi2gi +

	

A2n

	

_b
21

Note that for the case Emin = 0, q "91A and q71 '9 are
independent of the signal amplitude. The quantities
Eai g,2 and Ebizg i are smaller than RA and Rt, re-
spectively, since gi _< 1.

Use of the logarithmic scale is advantageous in
situations where the fractional energy resolution is
constant, since the quantization error then remains the
same proportion of the resolution over the entire en-
ergy scale . For a calorimeter whose resolution of aV,
the fraction of error due to quantization increases with
E when a logarithmic scale is used and decreases with
E when a linear scale is used .

5.3 . Number and position of the samples

The choice of the number and position of the sam-
ples can be driven by a number of criteria, which
sometimes conflict. We itemize here a few observations
we have made in investigating a variety of sampling
patterns .

- A finite set of samples may be chosen with the
goal of achieving optimal amplitude or timing resolu-
tion. These are generally complementary sets, if the
number of samples is limited to 3 or less . Thus, in
order to use a common set of samples to determine
both amplitude and timing, one achieves noise values
within about 20% of the ISL values with at least five
samples.

- For a given number of samples (>_ 5) in the ISL
region, the sensitivity to the positioning of the samples
is quite low. However, if the system operates in either
the thermal noise or the pileup noise regions, there is a
stronger dependence on certain features of the sam-
pling pattern. In the thermal noise region, better reso-
lution is obtained by spacing the samples widely, in
order to increase the width of the effective weighting
function . However, when the separation between the
samples becomes sufficiently wide, significant ripples
can appear in the weighting function (see Fig. 8), which
can increase the thermal noise.
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Table 4
Values of the errors on the parameters A and T obtained for
the 4 sampling patterns discussed in section 4.6 for three
different values of luminosity . The quantization coefficients
RA and R, are also given in each case . The effect of quantiza-
tion error was not included in the calculation of the coeffi-
cients

- Quantization error can be affected by the sam-
pling pattern, and for the low luminosity case can
generally be reduced by using closely spaced samples.
At high luminosity, where the optimal filter reduces
the effective width of the amplitude response function
by introducing large coefficients of opposite signs, sam-
pling patterns with closely spaced samples result in
large quantization coefficients.

As an example of the effects of choosing different
sampling patterns on the resulting errors in A and T,

we give in Table 4 the results obtained for the four
sampling patterns introduced in section 4.6 at three
different luminosities . It is seen that the sensitivity to
the pattern is largest for high luminosity, and for the
particular case studied, pattern B is somewhat better
than patterns A and C. It is interesting that near the
luminosity where tm = t~(0 .5 x 1033 CM-2 s - '), all of
the patterns (including full sampling) are nearly equiva-
lent, as can also be concluded from Figs . 12 and 13 . At
low luminosity, it is clear that the choice of sampling
pattern can be very important.

The shaping time of the pre-filter circuit depends
on the values of components such as resistors and
capacitors as well as distributed inductances and capac-
itances of connections and circuit routes . Since these
may differ from channel to channel, it is important to
investigate the sensitivity of the resolution of the sys-
tem to the actual value of shaping time tm for the case
where the sampling pattern is held fixed. In Fig. 17 we
show the variation of oA and Av, for the four differ-
ent sampling patterns versus the pre-filter shaping time .
The coefficients ai and bi are recalculated for each

value of tm, corresponding to the case where the
shaping time is known. The main effect here is that the
samples are being held fixed in time while the shaping
time is varied . Thus a different value of tm corresponds
to sampling a different part of the waveform, in the
case of the three patterns with 5 samples. Since the
entire waveform is sampled for all tm for pattern D,
there is very little sensitivity to tm except at the lowest
values, where the effect of limited spacing between the
samples (Tc = 16 ns) becomes evident.

6. Monte Carlo tests

In order to verify some of the results obtained in
this paper, we have written a Monte Carlo program to
simulate the addition of the thermal and pileup noise
to a shaped signal of known amplitude, and then to
reconstruct the amplitude using the optimal filtering
method . One of the main motivations for carrying out
this study is to ascertain the extent to which the non-
Gaussian nature of the pileup distribution compro-
mises the approach of treating it as essentially a Gauss-
ian distribution .
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Fig . 17. Variation of QA and Ao as a function of measure-
ment time tm for the four different sampling patterns (A, B,
C, and D) described in the text . The positions of the samples
are held fixed in time, so different parts of the waveform are
sampled as the shaping time is varied . The coefficients are
recalculated for each value of tm . The patterns with 5 samples
(A, B, and C) have the central sample placed near the peak

for the case tm = 50 ns .

Luminosity
[cm -z s - ' ]

Pattern OA
[MeV]

Aa-,
[GeV ns]

RA R,
[ns]

1W A 12.0 0.94 0.64 53
B 9.1 0.80 0.60 39
C 9.0 0.75 0.86 42
D 4.2 0.42 0.64 59

10 33 A 41 .1 1 .50 0.95 49
B 38 .2 1 .37 0.93 58
C 40 .6 1 .28 0.98 50
D 35 .7 1.15 0.84 51

10 34 A 107.3 3.70 3.79 67
B 99 .0 2.38 1.42 94
C 111.1 2.39 1.33 62
D 83 .1 1.92 3.28 129
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6.1 . Procedure

1
ÎG(E) =

	

e(E-(E>)`/2pp
Z~p v
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The model for thermal noise approximates the ac-
tual noise generation process by an amplitude distribu-
tion of a Gaussian shape with a width p1 and multiply-
ing this amplitude by h'(t) . The interval chosen for the
origination of the waveforms is the period of the ma-
chine clock (16 ns). This distribution is clearly incor-
rect, since noise pulses are generated uniformly in
time, and therefore exhibit additional fluctuations due
to the Poisson process. In fact, generating noise signals
in this way produces a variance described by Eq . (17)
rather than the correct variance given by Eqs. (11) and
(12) . In order to simulate the Poisson nature of the
fluctuations, we define an elementary noise signal as
one with a Gaussian amplitude distribution . For each
beam crossing we obtain the number N of such signals
occurring, according to a Poisson distribution of mean
frequency 1/T, We then sum N samples from the
Gaussian distribution to find the amplitude of the
series thermal signal for the crossing . The derivative of
the impulse response h'(t) is then multiplied by this
amplitude, and the waveform is propagated to the
succeeding crossing, where the process is repeated .
This procedure is found to give an adequate represen-
tation of the series thermal noise fluctuations, as is
seen in our results presented below.

The model for the pileup noise is somewhat more
problematical and, as mentioned above, is one of the
primary motivations for this study. The procedure for
calculating the distribution of energy deposition in a
calorimeter cell is discussed in section 3.2 .3, and the
resulting histogram for one cell is shown in Fig. 18 .
Note that a large fraction of the histogram is in the
lowest bin, i.e . with zero energy deposition . This is
simply the result of particles missing the cell (or cells in
its immediate neighborhood) a substantial fraction of
the time . The remainder of the distribution shows a
falloff characteristic of the exponential distribution of
the inclusive cross section, as is evident from the his-
togram . As is discussed in section 3.2 .3 we characterize
this distribution with its variance and proceed to treat
the derived quantity op when for example combining it
with Q7 (see Eq. (44)) as if it were a Gaussian-distrib-
uted quantity . We wish to test the degree to which we
can rely upon the central limit theorem for this proce-
dure .

We proceed by working with two distributions for
the pileup noise: fNG(E), which is the obviously non-
Gaussian histogram of Fig. 18 and a Gaussian distribu-
tion fG(E), defined as
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Fig. 18. Histogram of the transverse energy deposited per
crossing in an EM cell of size0.04X0.04 at a luminosity of
10 33 CM-2 s-1 . The events are 2-jet events, with the PT of
one of the jets between 5 and 10 GeV/c, as produced by the
ISAJET event generator. The large spike in the first bin is
caused by the low occupancy . The exponential tail is charac-

teristic of the ET distribution of the particles .

in which (E) is the mean value of fIG(E) and P2 is its
variance . In either case E represents the pileup energy
seen in a calorimeter cell for one machine crossing,
where the number of interactions is assumed to be
Poisson distributed with a mean of 1 .6 events . (This
number comes from the assumption of a total cross
section of 100 mb, a machine luminosity of ~= 1033
cm -2 s -1 and a machine clock period of 16 ns .) The
random variable E is then multiplied by the signal
waveform g(t), and we proceed to the next crossing .

At any crossing the total noise signal n(t) is found
by adding together the thermal and pileup signals from
all previous crossings occurring within the deviation of
the signal waveform g(t) . We calculate
= Var(n) for comparison with the expected value
O's2 from Eq . (44) .

At a specific crossing, after the stationary value of
n(t) is reached (i .e . after the duration of the signal
g(t)), a signal waveform of a given energy E0 is simu-
lated by generating a waveform U(t) =EO g(t) . To this
signal is added the noise signal n(t) at each crossing .
For the reconstruction phase, a mask is used to pick
those crossings that are to be sampled. We give results
of the pattern discussed in section 5.3 with 5 samples
(pattern B), since it is representative of the type of
data that might be available in an offline analysis . The
values of the 5 samples Sj = U + n~ , in which j is the
crossing index and k is the event index, are then stored
in a data array. The optimal filter coefficients, calcu-
lated according to the prescription discussed in section



4.2 are then used to find the noise-distorted values of
the amplitude and timing parameters for the k th event:

AkTk = Y_hjSk.

After processing a number N of events we find the
variances Var(A) and Var(AT) are calculated . The
identical procedure is carried out for both pileup dis-
tributions AG(E) and f,(E).

6.2. Results of the simulation

We begin by showing the amplitude distribution of
the baseline obtained for the non-Gaussian distribu-
tion of the pileup noise. In Fig. 19a we show how the
distribution of Fig. 18 is transformed by the introduc-
tion of both bipolar shaping and smearing in time .
While the distribution is still quite asymmetric, it now
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Fig. 19 . (a) Distribution of the baseline found after simulating
the effect of bipolar shaping and the time distribution for the
data of Fig . 18. The dotted curve is a Gaussian of the same
area and variance as the histogram. (b) Data of (a) but with
series thermal noise added to the pileup noise. As in (a), the
dotted curve is a Gaussian of the same area and variance as

the histogram.

UL,
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Fig . 20. (a) Monte Carlo data for the value of cr," as a
function of luminosity . The closed circles are data taken from
the non-Gaussian distribution (i .e ., the data of Fig. 18) and
the open circles are for data taken from a Gaussian distribu-
tion with the same variance . The dashed curve is calculated
from the formula asz = ortz +(Y/YO)Qpo, to which Qpo is the
pileup variance calculated for Y= -moo . Statistical errors are
smaller than the size of the symbols . (b) Corresponding value
of QÂ`. The dashed curve is the same curve for a-5 shown in
(a) and the solid curve is the expected value for v, 4 from the
optimal filter method, assuming 5 samples (pattern B). (c)
Corresponding value of Ao-,". The curve is the expected
value for Ao, from the optimal filter method, assuming 5
samples. Statistical errors are smaller than the size of the

symbols .

has zero mean (guaranteed by the area balance of the
pre-filter shaping function) but with a shape which is
still quite non-Gaussian . We superpose on the his-
togram a Gaussian of the width Qhist =33 MeV, which
is the square root of the variance of the histogram. In
Fig. 19b, we show how the distribution is altered when
thermal noise is added, and again superpose a Gauss-
ian of width 42 MeV, given by the histogram. We now
compare the variance of Fig. 19a with the expected
value, given by Eq . (17) . The value of the pileup noise
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density from the histogram of Fig.

	

18 is

	

pp = 3.7
MeV/

	

ns . From Table 1 we find that SP = 104 ns for
our standard case of (RC)2 - (CR)2 pre-filter shaping
with tm = 50 ns and td = 400 ns . This yields

rrp = PPJSP/T~ - 38 MeV,

at Y=Yo, in reasonable agreement with the value of
0-hist found above. The - 20% difference between the
two values is presumably the effect of the non-Gaus-
sian nature of the distribution shown in Fig. 18 .

The remainder of the study is to carry out the
procedure outlined above, finding Monte Carlo values
for osmc = Var(n) , o-q` = Var(A) , and Ao-,m'
= Var(AT) . We choose to display these quantities
as a function of luminosity, passing from the region
where o-t >> op to the region where Qc << QP . If there
were an important effect due to the non-Gaussian
nature of the pileup noise, one would expect to see a
difference between the two data sets at high luminos-
ity . No such effect is seen at the level of statistical
accuracy of these simulations, which is approximately
1% .

7. Summary and conclusions
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The main point of this work has been to show the
utility of measuring multiple samples on a shaped
waveform and combining them to find values of the
unknown parameters A and A-r. The principal conclu-
sion is that when the value of the pre-filter shaping
time is chosen to give the minimum value for a particu-
lar level of pileup and thermal noise, the error in A
found from measuring one sample at the peak is very
close (typically within 20%) of that which can be
achieved by measuring any number of samples on the
waveform . The main advantage in multiple sampling
comes in cases where the shaping time is not the
optimal one. The optimum filter method, in effect,
redefines the shaping time numerically and therefore
permits one to come close to optimal value for the
error even though one may be rather far from the
optimal shaping time for the pre-filter .

There are limits to how well the method can work,
which become more restrictive as the number of sam-
ples is decreased. The precision of the measurement
can be seriously compromised if the pre-filter shaping
time tm is significantly longer than the optimal value,
as the quantization error may become quite significant .
This occurs since the digital filtering method effectively
creates the difference between large numbers in com-
ing to its solution, as is discussed in section 5.2.

Several references are made to the "ISL" or "in-
finite sampling limit" throughout the text . These are
analytic expressions found using the frequency domain

formalism, and they can be visualized as the values (for
oa and Ao-r) which would be obtained if one could
take infinitely many samples over the entire waveform .
These expressions are useful both because they repre-
sent limits which can be approached in any practical
situation and also because in many cases of practical
interest, where both pileup and thermal noise are
present, they approximate the practical solution to
within about 20% . Quantities calculated in this limit
are designated by a tilde (- ). A more refined version
of the frequency domain solution, which we call finite
sampling occurs when we evaluate the frequency inte-
grals with finite limits . An interesting limit is the case
of full sampling, in which samples are taken over the
entire waveform at the beam crossing period Tc . This
solution has the property (unlike the ISL solution) that
it gives meaningful values in the limit where either the
pileup or thermal noise vanishes. It is also useful as a
lower limit to the values of oA and Atrr, which can be
obtained with a practical number of samples. These
quantities include the effects of the restriction of pe-
riod of the samples to Tc but still do not represent a
practical situation, since samples are taken over by the
complete waveform . They do have the advantage, how-
ever, that they represent properly the values in the
limit where the pileup or thermal noise dominate the
errors in the samples. In order to understand the effect
of choosing a small number of samples, we make
frequent comparisons numerically to the full sampling
limit.

In order to demonstrate the utility of the ISL for-
mulae, we compare in Table 5 the quantities calculated
in three ways for our sample case, where the luminosity
is 1033 CM-2 s - ' . The accuracy of the ISL formulae

Table 5
Comparison of results for the noise in the amplitude and
timing measurement at the standard luminosity (1033
CM-2S-1) under different sampling conditions . The ISL for-
mulae and results are shown, along with the values obtained
with full sampling (sampling pattern D) and with 5 samples
(pattern B). The effective width W measures the sensitivity to
pileup noise, and the effective slope m indicates the sensitiv-
ity of the timing measurement
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Quantity ISL formula ISL Pattern
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Ao-, [GeVns] (8pitdPP) I/4 1 .00 1 .14 1.40
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becomes poor whenever the thermal noise or pileup
noise dominates, as discussed in section 4.6 .

One of the useful applications of the ISL formulae
is in their application to situations in which the noise
in the calorimeter as a function of luminosity Y, area
.~V in the calorimeter is needed . As pointed out in
section 3 .2 .3, the pileup noise density can be expressed
as a function of these three variables by the simple
equation

1 enCtotWionae
Pt = -

715Re
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pp = 380(Ar10¢)o ' 6 (

	

MeV/ ns .
o

The thermal noise density, from Eqs . (11) and (12), is

By expressing pt in terms of the geometrical constants
which determine the capacitance C and the sampling
fraction 77 5 , one can obtain scaling laws for QA , and
Aä,.

The optimal pre-filter shaping time may be found
using two different criteria, which give very similar
results . One criterion simply requires that o-s =

ßt2 +UP is a minimum ; the other requires that the

optimal filter weighs the thermal and pileup noise
equally . In either case the value for the optimal shap-
ing time is given approximately by :

tmo = 1 .5 Pttd/Pp .

Propagation of the quantization error to the error
in A and r depends upon the sampling pattern chosen .
The coefficients RA and R r characterize the solutions
in this regard . Carefully chosen sampling patterns can
achieve nearly an additional bit of precision in the
amplitude i .e ., RA = 0.6, but others can produce large
values of RA and R, . This is particularly true for cases
where pileup noise is important, when the effective
width of the amplitude response function becomes
shorter than the pre-filter shaping time tln .

There is no simple answer to the question of how
many samples are needed and where should they be
placed . As mentioned above, a single sample with
tm =to, yields a value of oA which is within 20% of
that achieved by full sampling, and therefore the bene-
fits of multiple samples are minimal . Multiple sampling
is however useful in cases where :

- pre-filter shaping times are nonuniform from
channel to channel due to variation of parameters in
the manufacture of integrated circuits;

- it is required to operate the calorimeter over a
wide range of machine luminosity ;

- non-optimal shaping is used for reasons of conve-
nience, i .e . by installing circuits of similar shaping
times in regions of the calorimeter with significantly
different values of t°, ;

- timing information of individual calorimeter cells
is important for background rejection .
Depending on which of these criteria dominate the
design, different choices for the number and position
of the samples may be made . When tm is not close to
t°, it is possible to obtain values of A and 7 from
optimal filtering with a statistical accuracy significantly
better than that of a single sample .

The use of optimal filtering permits a rapid calcula-
tion of the parameters with coefficients that can be
determined from a knowledge of the thermal and pileup
noise in the calorimeter . For this reason it is an algo-
rithm well suited to online applications, as for example
in a calorimeter trigger system . The properties of the
response functions y,(t) and yz (t), which can be gen-
erated in real time in a digital processor, can be used
to establish both the magnitude and timing of the
digitized values of the calorimeter signal .

Acknowledgements

495

It is a pleasure to acknowledge the many useful and
enlightening discussions we have had with Veljko
Radeka and Sergio Rescia throughout the course of
this work. We have also profited from many useful
comments from our colleagues in other endeavors in-
volving liquid argon calorimetry, among whom are C .
Fabjan, H . Gordon, D . Lissauer, F.E. Paige, and W.
Willis . We are indebted to C . de La Taille for bringing
to our attention the important role of quantization
errors in this analysis. The work was begun under the
SSC Generic Detector R&D Program and continued
under the R&D program for the GEM experiment .
Funding was provided in part by DOE under Contract
No . DE-AC02-80ER10667 and Grant No . DE-FG02-
90ER40646 at the University of Pittsburgh.

Appendix

Variance ofpileup noise for sampled waveforms

Pileup noise is not a true noise source, since it is
deterministic, arising from the debris of collisions which
are produced by colliding particles . However, in situa-
tions where the probability of such interactions is large
and the hit occupancy is high enough to create an
essentially continuous background, it is convenient, for
the reasons shown elsewhere in this paper, to consider
it as a noise source . Because of its deterministic na-
ture, this noise source is peculiar in that it occurs at a
fixed and known frequency, which distinguishes it from
other noise sources . One of the basic theorems relating
the variance of the output of system with a know
response function due to the frequency of a random
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noise source is Campbell's theorem. In this appendix,
we derive the analogous theorem, introduced in the
main text of the paper as Eq . (17), for the case of a
fixed frequency noise source, which for compatibility
with current context, is described as a collider produc-
ing pileup noise in a calorimeter . However, the theo-
rem itself, which is stated in Eq . (99), is general, the
only assumption being that the noise source is station-
ary and without correlations between pulses .

Consider a single channel in the calorimeter . Num-
ber each beam crossing by an index j, which will go
from -- to +- . For the beam crossing j, there will be
an associated energy (or transverse energy) deposition
of Ej . Since each beam crossing is independent of the
others, Ej can be considered to be statistically inde-
pendent of Ek as long as j 4= k . The physics determin-
ing the energy deposition in each beam crossing is the
same, so that (Ej) is the same as (Ek ), and (Ej2) _
(Ek) .

An energy deposition during beam crossing j, will
contribute a signal to subsequent beam crossings which
is determined by the signal waveform g(t) . If the signal
is sampled only at beam crossings, then it can be
considered to be a function of the difference in cross-
ing number between the energy deposition and the
signal observation . The function g(t i - t) will vanish
for values of t i - tj outside of a restricted time charac-
terized by the signal waveform . The observed signal in
any channel is the sum of the contributions from the
preceding crossings. If the signal is sampled only at
beam crossings, then

S= Y_ Eg(t - t )i jij,

The average value of the observed signal due to
pileup in the calorimeter is given by the expectation
value of the above expression :

(Si> - (y_Ejg(ti-tj)/ .

	

(91)
i

Since expectation values are linear, and g(t i - t) is
just a number, we can bring the expectation values
inside the sum, which gives

(S i > =

	

Ej)g( ti -tj) .

	

(92)

(Ej ) is independent of j, and Eg(ti - t) extends from
--to +cc, so we get

(S> = (E> Y_ g(tj) .
j - -x

(93)

To calculate the variance of the signal, we first solve
for the value of (SZ) .

Ejg(ti-tj)

J

L

	

Y_

	

Ekg(ti - tk)
J)i- ~

	

k - -~

(94)

= \(~EjEkg(ti_tj)g(ti-tk)/
l,k

Y-9(ti -
ti)g(ti - tk)(EjEk) . (95)

j,k

Two cases can be considered ; either j = k or j * k .
In the first case, (EjEk ) yields (E2 ) . If j o k, ( EjE k )
reduces to (Ej) (Ed or (E) 2 because j k and Ej is
independent of Ek . Therefore

(S2) = yg 2(ti -tj)(El

+ Y- g(ti - ti)g(ti - tk)(Ej>(Ek) .

	

(96)
j-tk

The second term can also be expressed as

(2nd term) = E(1-Sjk)9(ti-ti)g(ti-tk)
j,k

X(Ej)(Ek>,

where 3 ik is the Kronecker delta symbol . This can be
further expanded to get

(2nd term) =f Y_ g(ti-tj)(Ej)~

The terms enclosed by braces are just ( S ), so substitut-
ing into Eq . (96) yields

(Si2 ) = Lg2(ti tj)CEj2)
i

+(S)2-

	

g 2( ti tj)(E' j )
2 .

1
(98)

Recognizing that (S 2 ) - (S)2 is just the variance of S
and rearranging terms gives

Var(S) =Var(E)

	

g2 (tj ) .

	

(99)
j=x

Note that because the positive and negative lobes of
the signal must balance charge,

g(ti) =o .
j= _x

j- - X L9(ti-tk)(Ek)~

where Si is the observed signal at crossing i, Ej is the
k

energy deposited during crossing j, and g(t i - t) is the -
_ g2(ti - tj)(Ej)2 . (97)

signal waveform . i



This implies through Eq . (93) that (S) = 0, so that the
average signal is zero, as is required for baseline
restoration . In addition, a fixed amplitude energy de-
position will have Var(E) = 0 so that the variance of S
will also be 0. Thus, a constant energy deposit will not
appear in the shaped signal .
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