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Preamble

The material presented in this lecture series, which has been designed for ATLAS graduate students at the University of Arizona, is
mostly used to explain complex signal features of calorimeters and other detectors we are using to analyze the final states in
hadron collider experiments. Its intent is to be educational only, and it most certainly does not represent present evaluations of the
actual performance of any of the experiments mentioned. Matter of fact, in some cases older low performance features, long since
understood and corrected, are enhanced in the discussion for educational purposes, just to highlight the motivations and tools for
the solutions applied. Also, there is a clear bias towards the methodology used by the ATLAS experiment, because I have been
involved in this experiment for now 15 years. A serious attempt was made to show only common knowledge or otherwise
approved specific material, of course – and to provide citations when available and appropriate.

The more than 200 slides comprising this lecture series would not have been possible to collect without the direct or indirect
input from the HERA, Tevatron, and LHC experiment communities, and from colleagues from theory and phenomenology. It is a bit
unfortunate that not all the knowledge available today, reflecting the result of hard work of so many people, could be included
here. Nevertheless, I like to acknowledge everybody who helped getting us where we are today with the understanding of the
detectors and the physics of hadron collisions, in particular with respect to jet reconstruction. I like to recognize and thank the
colleagues who, in the last few years, spent nearly endless hours with me discussing topics related to these lectures, and without
whom I am sure my own understanding of these subjects would not be as far advanced as it is today. Please find the names on the
next slide.

For those of you who are reading these slides, and would like to use them for the purposes they have been put together for,
please feel free to do so. Please let me know of any even smallest error or inconsistency, or any improvement concerning the
wording and displayed material – thank you for that! I also appreciate suggestions for extension or change of focus, of course. The
best way to contact me is by e-mail <loch_AT_physics.arizona.edu>.

Tucson, April 29, 2010

Peter Loch

Department of Physics, University of Arizona

Tucson,  Arizona 85721

USA

mailto:loch@physics.arizona.edu?subject=U of A spirng 2010 jet lecture series�


3
P. Loch

U of Arizona

May 05, 2010
Acknowledgements

Argonne National Laboratory (USA)

Esteban Fullana Torregrosa, Tom LeCompte, Jimmy Proudfoot, 
Belen Salvachua, Zach Sullivan

Brookhaven National Laboratory (USA)

Ketevi Assamagan, Hong Ma, Frank Paige, Srini Rajagopalan

Carleton University (Canada)

Gerald Oakham, Manuella Vincter

CERN (Switzerland)

David Berge, Tancredi Carli, Daniel Froidevaux, Fabiola Gianotti, 
Peter Skands, Guillaume Unal

CalTech/Columbia (USA)

David Lopez, K.Perez, Zach Taylor

DESY Hamburg (Germany)

Kerstin Borras, Jörg Gayler, Hannes Jung

Fermi National Laboratory (USA)

W.Giele

Florida State University (USA)

Rick Field

IFAE Barcelona (Spain)

Martine Bosman

INFN Milan (Italy)

Leonardo Carminati, Donatella Cavalli, Silvia Resconi

INFN Pavia (Italy)

Giacomo Polesello

INFN Pisa (Italy)

Paolo Francavilla, Vincent Giangiobbe, Chiara Roda

Lawrence Berkeley National Laboratory/UC Berkeley (USA)

Christian Bauer, Beate Heinemann, Marjorie Shapiro, Jesse 
Thaler

LPSC Grenoble (France)

Pierre-Antoine Delsart

LPNHE /UPMC Universite de Paris 6 (France)

Bernard Andrieu

LPTHE/UPMC Universite de Paris 6 (France)

Matteo Cacciari, Gavin Salam

Michigan State University (USA)

Joey Huston

Max Planck Institut für Physik München (Germany)

Paola Giovaninni, Andreas Jantzsch, Sven Menke, Horst 
Oberlack, Guennadi Pospelov, Vladimir Shekelyan, Peter 
Schacht, Rolf Seuster

Rutherford Appleton Laboratory  Didcot (UK)

Monika Wielers

The following people significantly contributed with their work
and ideas to the material of this lecture series – in some case
probably without their personal knowledge (yes, I was
listening). Also, these are the people who pushed my
understanding of the jets in the hadron collider environment in
sometimes more or less controversial discussions, which I
deeply enjoyed, by issuing relevant comments, or by raising
interesting questions. Last but not least I am grateful to the
colleagues who invited me to report on jet physics related
topics at workshops, conferences, and seminars, either in form
of lectures, or as introductory or status talks. Thank you all for
this – it helped me a lot to understand the often complex signal
features we see in hadron collisions.



4
P. Loch

U of Arizona

May 05, 2010
Acknowledgements

Simon Fraser University (Canada)

D.O’Neil , D.Schouten, T.Spreitzer

SLAC (USA)

David Miller, Michael Peskin, Ariel Schwartzman 

Universidad de Sonora, Hermosillo (Mexico)

Maria Elena Tejeda-Yeomans

Universität Freiburg (Germany)

Kristin Lohwasser, Iacopo Vivarelli

Universität Heidelberg (Germany)

Victor Lendermann, Pavel Weber

Universität Mainz (Germany)

Sebastian Eckweiler, Stefan Tapprogge

Universität Wuppertal (Germany)

Christian Zeitnitz

University College London (UK)

Jon Butterworth, Mario Campanelli, Adam Davison, S.Dean, 
N.Kostantinidis, P.Sherwood

University of Arizona (USA)

Ken Johns, Venkat Kaushik, Caleb Lampen, Xiaowen Lei, Prolay
Mal, Chiara Paleari, Frederik Rühr, John Rutherfoord, Alexander 
Savine, Shufang Shu, Michael Shupe

UC Davis (USA)

John Conway

University of Chicago (USA)

Georgios Choudalakis, Frank Merritt

University of Glasgow (UK)

Craig Buttar , Arthur Moraes

University of Oregon (USA)

D.Soper, E. Torrence

University of Oxford (UK)

C.Doglioni, Cigdem Issever

University of Sheffield (UK)

Dan Tovey

University of Toronto (Canada)

Peter Krieger, Richard Teuscher

University of Victoria (Canada)

Frank Berghaus, Michel Lefebvre, Jean-Rafael Lessard, Rob 
McPherson

University of Washington (USA)

Steve Ellis, Chris Vermillion, Jon Walsh

Not working in HEP anymore…

Levan Babukhadia, Ambreesh Gupta, Kai Voss

… and all the other colleagues whom I may have forgotten and, 
so I hope, will forgive me for that! 



5
P. Loch

U of Arizona

May 05, 2010
Roadmap

Introduction
Sources of jets and missing transverse energy at LHC
Hadron collision environment

Principles of calorimetry in High Energy Physics
Interaction of particles and matter
Calorimeter design principles
Characteristic features of operating calorimeters in hadron collider 
experiments

Hadronic final state in high energy hadron collisions
Characteristic signatures at highest energies
Experimentalist’s view on partons and particles

What are jets?
Theoretical guidelines for finding jets 
Jet finding algorithms and jet definition
Reconstructing jets in the experiment
Calibrating jets
Jet substructure reconstruction
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Preliminaries

Focus on the experimental aspects
Unfolding hadron collider physics from detector signals

Triggering, acceptance, calibration, resolution
Mostly discussed using the LHC collision experiments (“ATLAS bias”)

Accumulation of experiences from previous experiments
Occasional highlights from SPS, HERA, Tevatron,…

Lecture style
Informal

Please ask questions – we should have sufficient time!
Student talks

Possibility to present selected aspects (end of semester)

Material
Some material is private to the ATLAS experiment

Mostly used to explain signal features
Use only material with publication reference for public talks

Slides on the web
Look for link on http://atlas.physics.arizona.edu/~loch

Will try to upload as soon as possible after each session

Literature
Embedded in slides

Will extract and put on the web soon!
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Large Hadron Collider

Machine
Occupies old LEP tunnel at CERN, Geneva, 
Switzerland & France
About 27 km long
50-100m underground
1232 bending magnets
392 focusing magnets
All superconducting

~96 tons of He for ~1600 magnets

Beams (design)
pp collider 

7 TeV on 7 TeV (14 TeV collision energy)
Luminosity 1034 cm-2s-1

2808 x 2808 bunches
Bunch crossing time 25 ns (40 MHz)
~20 pp collisions/bunch crossing

Heavy ion collider (Pb)
Collision energy 1150 TeV (2.76 TeV/nucleon)

LINAC2 PSB
PS SPS LHC

LINAC3 LEIR

50 MeV 1.4 GeV

26 GeV 450 GeV 7 TeV

2.76 TeV 
per nucleon

Proton acceleration chain: 
LINAC→Proton Synchrotron Booster (PSB)→Proton Synchrotron (PS)→Super Proton Synchrotron (SPS)→LHC
Pb ion acceleration chain: 
LINAC→Low Energy Ion Injector Ring (LEIR)→Proton Synchrotron (PS)→Super Proton Synchrotron (SPS)→LHC
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Large Hadron Collider

Machine
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Pb ion acceleration chain: 
LINAC→Low Energy Ion Injector Ring (LEIR)→Proton Synchrotron (PS)→Super Proton Synchrotron (SPS)→LHC

Past and future scenarios:

Initial collisions (little physics, lots of detector commissioning)

2009 900 GeV center of mass energy

2.38 TeV center of mass (world record)

Collisions for physics (restart mid-February 2010)

2010 7 TeV center of mass energy, 1029-1032 cm-2s-1, up to 1 fb-1

-2011

2012 Shutdown to prepare for 14 TeV center of mass energy
Latest status and plans at 

http://lhc-commissioning.web.cern.ch/lhc-commissioning/

http://lhc-commissioning.web.cern.ch/lhc-commissioning/�


10
P. Loch

U of Arizona

May 05, 2010
Kinematic Domains @ LHC

Enormous reach in (x,Q2)
Low x at relatively high Q2

Mostly unvcovered so far
No experimental data for 
parton densities

Validation of proton 
structure part of LHC 
physics program
Must rely on evolution of 
HERA structure functions

QCD probes whole region
Di-jet production
b/c-quark jets
Prompt photons

DGLAP

( )2 2 2 * *2 cosh 1 tanhTQ E η η≈ −

( ),
TEx e e
s

η η±= + 1 2
1 2
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Where do Jets come from at LHC?

t bW jjj
t bW l jjν
→ →
→ →

qq q q WW Hjj′ ′→ → 

Fragmentation of gluons and (light) 
quarks in QCD scattering

Most often observed interaction at LHC

Decay of heavy Standard Model (SM) 
particles 

Prominent example:

Associated with particle production in 
Vector Boson Fusion (VBF)

E.g., Higgs

Decay of Beyond Standard Model (BSM) 
particles

E.g., SUSY
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Where do Jets come from at LHC?

t bW jjj
t bW l jjν
→ →
→ →

1.8 TeVs =

14 TeVs =

 (TeV)Tp

inclusive jet cross-section

qq q q WW Hjj′ ′→ → 

2

0

nb
TeVT

d
d dp

η

σ
η

=

 
 
 

Fragmentation of gluons and (light) 
quarks in QCD scattering

Most often observed interaction at LHC

Decay of heavy Standard Model (SM) 
particles 

Prominent example:

Associated with particle production in 
Vector Boson Fusion (VBF)

E.g., Higgs

Decay of Beyond Standard Model (BSM) 
particles

E.g., SUSY
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t bW jjj
t bW l jjν
→ →
→ →

qq q q WW Hjj′ ′→ → 

top mass 
reconstruction

Fragmentation of gluons and (light) 
quarks in QCD scattering

Most often observed interaction at LHC

Decay of heavy Standard Model (SM) 
particles 

Prominent example:

Associated with particle production in 
Vector Boson Fusion (VBF)

E.g., Higgs

Decay of Beyond Standard Model (BSM) 
particles

E.g., SUSY

Where do Jets come from at LHC?
C
E
R
N

-O
PE

N
-2

0
0
8
-0

2
0
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Fragmentation of gluons and (light) 
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t bW jjj
t bW l jjν
→ →
→ →

qq q q WW Hjj′ ′→ → 

missing 
transverse 

energy

,
jets

,
leptons

Te f Tjf T ppM p= + +∑ ∑


Where do Jets come from at LHC?
C
E
R
N

-O
PE

N
-2

0
0
8
-0

2
0

Fragmentation of gluons and (light) 
quarks in QCD scattering

Most often observed interaction at LHC

Decay of heavy Standard Model (SM) 
particles 
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Associated with particle production in 
Vector Boson Fusion (VBF)
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Decay of Beyond Standard Model (BSM) 
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Collisions of other partons in the 
protons generating the signal 
interaction

Unavoidable in hadron-hadron
collisions

Independent soft to hard multi-parton
interactions 

No real first principle 

calculations
Contains low pT (non-pertubative) QCD

Tuning rather than calculations

Activity shows some correlation with 
hard scattering (radiation)

pTmin, pTmax differences

Typically tuned from data in physics 
generators

Carefully measured at Tevatron
Phase space factor applied to LHC tune 
in absence of data

One of the first things to be measured 
at LHC

Underlying Event
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Δφ

“toward”
|Δφ|<60°

“away”
|Δφ|>120°

“transverse”
60°<|Δφ|<120°

“transverse”
60°<|Δφ|<120°

leading jet

Rick Field’s (CDF) view on di-
jet events

Collisions of other partons in the 
protons generating the signal 
interaction

Unavoidable in hadron-hadron
collisions

Independent soft to hard multi-parton
interactions 

No real first principle 

calculations
Contains low pT (non-pertubative) QCD

Tuning rather than calculations

Activity shows some correlation with 
hard scattering (radiation)

pTmin, pTmax differences

Typically tuned from data in physics 
generators

Carefully measured at Tevatron
Phase space factor applied to LHC tune 
in absence of data

One of the first things to be measured 
at LHC

Look at activity (pT, # charged 
tracks) as function of leading jet 

pT in transverse region

Underlying Event
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CDF data  (√s=1.8 TeV)

LHC prediction: x2.5 the 
activity measured at 
Tevatron!

pT leading jet (GeV)

N
u

m
b

e
r 

ch
a
rg

e
d

 t
ra

ck
s 

in
 t

ra
n

sv
e
rs

e
 r

e
g

io
n

CDF data: Phys.Rev, D, 65 (2002)

2ln

ln

s

s∼

∼ PYTHIA
Model depending extrapolation to LHC:

for  

for  
but both agree Tevatron/SppS 

PHOJET
data!

Collisions of other partons in the 
protons generating the signal 
interaction

Unavoidable in hadron-hadron
collisions

Independent soft to hard multi-parton
interactions 

No real first principle 

calculations
Contains low pT (non-pertubative) QCD

Tuning rather than calculations

Activity shows some correlation with 
hard scattering (radiation)

pTmin, pTmax differences

Typically tuned from data in physics 
generators

Carefully measured at Tevatron
Phase space factor applied to LHC tune 
in absence of data

One of the first things to be measured 
at LHC

Underlying Event
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Et ~ 58 GeV

Et ~ 81 GeV
without pile-up

Pile-Up

Prog.Part.Nucl.Phys.
60:484-551,2008

Multiple interactions 
between partons in other 
protons in the same bunch 
crossing

Consequence of high rate 
(luminosity) and high proton-
proton total cross-section 
(~75 mb)

Statistically independent of 
hard scattering

Similar models used for soft 
physics as in underlying event

Signal history in 
calorimeter increases noise

Signal 10-20 times slower 
(ATLAS) than bunch crossing 
rate (25 ns)

Noise has coherent 
character

Cell signals linked through 
past shower developments
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Et ~ 58 GeV

Et ~ 81 GeV
with design luminosity 
pile-up
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Prog.Part.Nucl.Phys.
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34 2 110 cm sL − −=

8 GeV≈

0.4R ≈

0.7R ≈

18 GeV≈

( )0.1 0.1 Rπ × ⋅

( ) (GeV)TRMS p

Pile-Up

Prog.Part.Nucl.Phys.
60:484-551,2008

Multiple interactions 
between partons in other 
protons in the same bunch 
crossing

Consequence of high rate 
(luminosity) and high proton-
proton total cross-section 
(~75 mb)

Statistically independent of 
hard scattering

Similar models used for soft 
physics as in underlying event

Signal history in 
calorimeter increases noise

Signal 10-20 times slower 
(ATLAS) than bunch crossing 
rate (25 ns)

Noise has coherent 
character

Cell signals linked through 
past shower developments



22
P. Loch

U of Arizona

May 05, 2010
Why Is That Important?

Jet calibration requirements very stringent
Systematic jet energy scale 

uncertainties to be extremely 

well controlled
Top mass reconstruction

Jet cross-sections

Relative jet energy resolution 

requirement 
Inclusive jet cross-section

Di-quark mass spectra cut-off in SUSY

Event topology plays a role at 1% level of precision
Extra particle production due to event color flow

Color singlet (e.g., W) vs color octet (e.g., gluon/quark) jet source

Small and large angle gluon radiation
Quark/gluon jet differences

jet

jet

1 GeV 1%

50%
3% 3

(GeV)

100%
5% 3

(GeV)

top

E
m

E

E

E

E

η
σ

η

∆
∆ < ⇒ <

 ⊕ <= 
 ⊕ >

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Principles of Calorimetry

Detector needs for multi-purpose collider experiments
Tracking for charged particle momentum measurement 
Calorimeters for charged and neutral particle energy measurement
Muon spectrometers (tracking) for muon momentum measurements

Underlying physics for calorimetry: particle interaction with matter
Electromagnetic cascades
Hadronic cascades
Muon energy loss

Calorimetric principles in particle detection
Conversion of deposited energy into an extractable signal in homogeneous and 
sampling calorimeters
Minimum ionizing particles and muons
General signal features of electromagnetic and hadronic showers

Calorimeter characteristics in sampling calorimeters
Sampling fraction 
Signal linearity and relative resolution
Non-compensation 

Signal extraction
Charge collection
Current measurement
Pulse shapes
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ATLAS – Multipurpose LHC Detector

Total weight   :  7000 t
Overall length:  46 m
Overall diameter:  23 m
Magnetic field:  2T solenoid

+ toroid
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CMS – Multipurpose LHC Detector

Total weight:  12500 t
Overall length:  22 m
Overall diameter:  15 m
Magnetic field:  4T solenoid



26
P. Loch

U of Arizona

May 05, 2010

Detector Systems in 
Multi-purpose Collider Experiments (1)

Tracking (inner detector)
Closest to the interaction vertex
Reconstructs charged particle tracks in magnetic field

Charged particles generate current Silicon pixel elements → fit tracks to (x,y,z) 
space points defined by hit sensor location 
Collect secondary charges from gas ionizations by passing charged particles  on 
wires  in electric fields → fit tracks to space point in (x,y) plane and z from pulse 
timing
Solenoid field allows very precise pT reconstruction and less precise p 
reconstruction

Reconstructs interaction vertices
Vertex reconstructed from track fits
More than one vertex possible 

B-decays
Multiple proton interaction (pile-up)

Primary vertex defined by                         or  

Advantages and limitations
Very precise for low pT measurements
Only sensitive to charged particles
Limited polar angle coverage

Forward region in experiment excluded 

tracks
maxTp =∑ 2

tracks
maxTp =∑

T
T

T

p p
p
∆


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∆
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Detector Systems in
Multi-purpose Collider Experiments (2) 

Calorimeters
Usually wrapped around inner detector
Measures the energy of charged and neutral particles 

Uses the energy deposited by particles to generate signal 
Collects light or electric charges/current from this energy deposit in relatively small volumes
Only works if particle energy can be fully absorbed

Signals are space points with energy
Reconstructs direction and energy from known position of energy deposit
Needs assumption for “mass” to convert signal to full four momentum

ATLAS: m = 0

Advantages and limitations
Gets more precise with increasing particle energy 
Gives good energy measure for all particles except muons and neutrinos

Muons not fully absorbed!
Large coverage around interaction region

“4 π” detector – except for holes for beam pipes
Relation of incoming (deposited) energy and signal is particle type dependent

Also need to absorb all energy – large detector system
Does not work well for low energies

Particles have to reach calorimeter
Noise in readout

Slow signal formation in LHC environment
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Detector Systems in
Multi-purpose Collider Experiments (2) 

Calorimeters
Usually wrapped around inner detector
Measures the energy of charged and neutral particles 

Uses the energy deposited by particles to generate signal 
Collects light or electric charges/current from this energy deposit in relatively small volumes
Only works if particle energy can be fully absorbed

Signals are space points with energy
Reconstructs direction and energy from known position of energy deposit
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Large coverage around interaction region

“4 π” detector – except for holes for beam pipes
Relation of incoming (deposited) energy and signal is particle type dependent

Also need to absorb all energy – large detector system
Does not work well for low energies

Particles have to reach calorimeter
Noise in readout

Slow signal formation in LHC environment

1
E E
σ


Tile Calorimeters

Electromagnetic Liquid Argon
Calorimeters

Hadronic Liquid Argon EndCap
Calorimeters

Forward Liquid Argon 
Calorimeters
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Particle Interaction with Matter

Cascades or showers
Most particles entering matter start a shower of secondary particles

Exception: muons and neutrinos
The character of these cascades depends on the nature of the particle

Electrons, photons: cascades are formed by QED processes
Hadrons: cascades are dominantly formed by QCD processes

Extensions/size of these showers
Again depends on particle type
Electromagnetic showers typically small and compact
Hadronic showers much larger
Common feature: shower depths scales approximately as log(E)

Higher energies do not require much deeper detectors!

Shower development and age
Shower maximum

Depth at which energy of shower particles is too small to continue production of 
secondaries

Age of shower
Depth of shower

Shower width
Extend of shower perpendicular to direction of flight of incoming particle
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Electromagnetic Showers

QED drives cascade 
development

High energetic electrons 
entering material emit photons 
in the electric field of the nuclei

Bremsstrahlung

High energetic photons produce 
e+e- pairs in the electric field of 
the nuclei

Pair production

Rossi’s shower model (1952!)
Simple model of interplay of 
electron energy loss and photon 
pair production

Uses critical energy as cutoff 
for shower development

=

Electron energy loss through bremsstrahlung 

after 1 radiation length ( ) in matter: 

Assume this energy is taken by 1 photon,

meaning the energy of each shower particle 

after  is: ,  (
0

0 0

)

2

( ) 2N t
o

E

t X E t E

X

=with ( ) 2tN t

=

=max

The shower develops until 

(critical energy - ionization loss becomes 

large and suppresses further radiation) at

the shower maximum 0

( )

ln( )
ln2

c

c

E t E

E E
t
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Electromagnetic Showers

QED drives cascade 
development

High energetic electrons 
entering material emit photons 
in the electric field of the nuclei

Bremsstrahlung

High energetic photons produce 
e+e- pairs in the electric field of 
the nuclei

Pair production

Rossi’s shower model (1952!)
Simple model of interplay of 
electron energy loss and photon 
pair production

Uses critical energy as cutoff 
for shower development

=

Electron energy loss through bremsstrahlung 

after 1 radiation length ( ) in matter: 

Assume this energy is taken by 1 photon,

meaning the energy of each shower particle 
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Electromagnetic Showers

QED drives cascade 
development

High energetic electrons 
entering material emit photons 
in the electric field of the nuclei

Bremsstrahlung

High energetic photons produce 
e+e- pairs in the electric field of 
the nuclei

Pair production

Rossi’s shower model (1952!)
Simple model of interplay of 
electron energy loss and photon 
pair production

Uses critical energy as cutoff 
for shower development

=

Electron energy loss through bremsstrahlung 

after 1 radiation length ( ) in matter: 

Assume this energy is taken by 1 photon,

meaning the energy of each shower particle 
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Electromagnetic Showers

QED drives cascade 
development

High energetic electrons 
entering material emit photons 
in the electric field of the nuclei

Bremsstrahlung

High energetic photons produce 
e+e- pairs in the electric field of 
the nuclei

Pair production

Rossi’s shower model (1952!)
Simple model of interplay of 
electron energy loss and photon 
pair production

Uses critical energy as cutoff 
for shower development

=

Electron energy loss through bremsstrahlung 

after 1 radiation length ( ) in matter: 

Assume this energy is taken by 1 photon,

meaning the energy of each shower particle 

after  is: ,  (
0
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Electromagnetic Showers

QED drives cascade 
development

High energetic electrons 
entering material emit photons 
in the electric field of the nuclei

Bremsstrahlung

High energetic photons produce 
e+e- pairs in the electric field of 
the nuclei

Pair production

Rossi’s shower model (1952!)
Simple model of interplay of 
electron energy loss and photon 
pair production

Uses critical energy as cutoff 
for shower development

=

Electron energy loss through bremsstrahlung 

after 1 radiation length ( ) in matter: 

Assume this energy is taken by 1 photon,

meaning the energy of each shower particle 

after  is: ,  (
0

0 0

)

2

( ) 2N t
o

E

t X E t E

X

=with ( ) 2tN t
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Hadronic Showers

QCD drives fast shower development
Hadron interacts with nucleon in nuclei

Like a fixed target collision

Develops intra-nuclear cascade (fast)

Hadron production
Secondary hadrons escape nucleus

Neutral pions decay immediately into 2 photons → electromagnetic cascade

Other hadrons can hit other nucleons → internuclear cascade

Slow de-excitation of nuclei
Remaining nucleus in excited state

Evaporates energy to reach stable (ground) state

Fission and spallation possible

Binding energy and low energetic photons

Large process fluctuations 
~200 different interactions

Probability for any one of those < 1%!
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Hadronic Showers

QCD drives fast shower development
Hadron interacts with nucleon in nuclei

Like a fixed target collision

Develops intra-nuclear cascade (fast)

Hadron production
Secondary hadrons escape nucleus

Neutral pions decay immediately into 2 photons → electromagnetic cascade

Other hadrons can hit other nucleons → internuclear cascade

Slow de-excitation of nuclei
Remaining nucleus in excited state

Evaporates energy to reach stable (ground) state

Fission and spallation possible

Binding energy and low energetic photons

Large process fluctuations 
~200 different interactions

Probability for any one of those < 1%!

Grupen, 

Particle Detectors

Cambridge University Press (1996)
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Full absorption detector
Idea is to convert incoming particle energy into detectable signals

Light or electric current
Should work for charged and neutral particles

Exploits the fact that particles entering matter deposit their energy in particle 
cascades

Electrons/photons in electromagnetic showers
Charged pions, protons, neutrons in hadronic showers
Muons do not shower at all in general

Principal design challenges
Need dense matter to absorb particles within a small detector volume

Lead for electrons and photons, copper or iron for hadrons
Need “light” material to collect signals with least losses

Scintillator plastic, nobel gases and liquids
Solution I: combination of both features 

Crystal calorimetry, BGO
Solution II: sampling calorimetry
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Calorimeter Basics (2)

Sampling calorimeters
Use dense material for absorption power… 

No direct signal 

…in combination with highly efficient active material 
Generates signal

Consequence: only a certain fraction of the incoming energy is directly 
converted into a signal

Typically 1-10%

Signal is therefore subjected to sampling statistics
The same energy loss by a given particle type may generate different signals

Limit of precision in measurements

Need to understand particle response
Electromagnetic and hadronic showers
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Electromagnetic showers
Particle cascade generated by 
electrons/positrons and photons in 
matter
Developed by bremsstrahlung & pair-
production

Compact signal expected
Regular shower shapes

Small shower-to-shower fluctuations

Strong correlation between longitudinal 
and lateral shower spread

RD3 note 41, 28 Jan 1993
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0

Approximation good within 2% for 

all materials 
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Shower depth scales in :
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C. Amsler et al. (Particle Data Group), Physics Letters B667, 1 (2008) 
and 2009 partial update for the 2010 edition

http://pdg.lbl.gov/2009/html/authors_2009.html�
http://pdg.lbl.gov/2009/html/authors_2009.html�
http://pdg.lbl.gov/2009/html/authors_2009.html�
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Electromagnetic showers
Particle cascade generated by 
electrons/positrons and photons in 
matter
Developed by bremsstrahlung & pair-
production

Compact signal expected
Regular shower shapes

Small shower-to-shower fluctuations

Strong correlation between longitudinal 
and lateral shower spread

RD3 note 41, 28 Jan 1993
C. Amsler et al. (Particle Data Group), Physics Letters B667, 1 (2008) 
and 2009 partial update for the 2010 edition
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Electromagnetic showers
Particle cascade generated by 
electrons/positrons and photons in 
matter
Developed by bremsstrahlung & pair-
production

Compact signal expected
Regular shower shapes

Small shower-to-shower fluctuations

Strong correlation between longitudinal 
and lateral shower spread

RD3 note 41, 28 Jan 1993

G.A. Akopdzhanov et al. (Particle Data Group), Physics Letters B667, 
1 (2008) and 2009 partial update for the 2010 edition

( ) ( )1
( ) ( )E r E rdE

a E e b E e
E dr

α β− −= ⋅ + ⋅

P. Loch (Diss.), University of Hamburg 1992

http://www.slac.stanford.edu/spires/find/hep/www?AUTHOR=&TITLE=&C=&REPORT-NUM=&AFFILIATION=&cn=&k=&cc=&eprint=&eprint=&topcit=&url=&J=NUIMA,+&*=140,441&ps=p&DATE=&*=&FORMAT=WWW&SEQUENCE=�
http://www.slac.stanford.edu/spires/find/hep/www?AUTHOR=&TITLE=&C=&REPORT-NUM=&AFFILIATION=&cn=&k=&cc=&eprint=&eprint=&topcit=&url=&J=NUIMA,+&*=140,441&ps=p&DATE=&*=&FORMAT=WWW&SEQUENCE=�
http://www.slac.stanford.edu/spires/find/hep/www?AUTHOR=&TITLE=&C=&REPORT-NUM=&AFFILIATION=&cn=&k=&cc=&eprint=&eprint=&topcit=&url=&J=NUIMA,+&*=140,441&ps=p&DATE=&*=&FORMAT=WWW&SEQUENCE=�
http://www.slac.stanford.edu/spires/find/hep/www?AUTHOR=&TITLE=&C=&REPORT-NUM=&AFFILIATION=&cn=&k=&cc=&eprint=&eprint=&topcit=&url=&J=NUIMA,+&*=140,441&ps=p&DATE=&*=&FORMAT=WWW&SEQUENCE=�
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Hadronic signals
Much larger showers

Need deeper development
Wider shower spread

Large energy losses without signal 
generation in hadronic shower 
component

Binding energy losses
Escaping energy/slow particles 
(neutrinos/neutrons)

Signal depends on size of 
electromagnetic component

Energy invested in neutral pions lost 
for further hadronic shower 
development
Fluctuating significantly shower-by-
shower
Weakly depending on incoming 
hadron energy

Consequence: non-compensation
Hadrons generate less signal than 
electrons depositing the same energy 30 GeV

electrons

30 GeV
pions

P. Loch (Diss.), University of Hamburg 1992
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Electromagnetic
Compact

Growths in depth ~log(E)

Longitudinal extension scale is radiation 
length X0

Distance in matter in which ~50% of 
electron energy is radiated off
Photons 9/7 X0

Strong correlation between lateral and 
longitudinal shower development
Small shower-to-shower fluctuations

Very regular development

Can be simulated with high precision
1% or better, depending on features

Hadronic
Scattered, significantly bigger

Growths in depth ~log(E)
Longitudinal extension scale is 
interaction length λ >> X0

Average distance between two inelastic 
interactions in matter
Varies significantly for pions, protons, 
neutrons

Weak correlation between longitudinal 
and lateral shower development
Large shower-to-shower fluctuations

Very irregular development
Can be simulated with reasonable 
precision

~2-5% depending on feature
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Signal features in sampling 
calorimeters

Collected from ionizations in 
active material 

Not all energy deposit 
converted to signal

Proportional to incoming 
electron/photon

C.f. Rossi’s shower model, 
Approximation B 

Only charged tracks contribute 
to signal
Only pair-production for 
photons
Energy loss is constant

Signal proportional to 
integrated shower particle path

Stochastical fluctuations
Sampling character

Sampling fraction
Describes average fraction of 
deposited energy generating 
the signal

max

c0

act
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c

c

ive
0
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Integrated shower particle track length:

2 2
( )
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(only charged tracks ionize!)
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Signal Formation: Sampling Fraction

Characterizes sampling 
calorimeters

Ratio of energy deposited in active 
material and total energy deposit
Assumes constant energy loss per 
unit depth in material

Ionization only

Can be adjusted when designing the 
calorimeter

Material choices
Readout geometry

Multiple scattering
Changes sampling fraction

Effective extension of particle path 
in matter
Different for absorber and active 
material

Showering 
Cannot be included in sampling 
fraction analytically

Need measurements and/or 
simulations

activevis active

dep active absorb

active

active

absorber

absorber active

eractive absor

ac

b

tive ab

r

e

e

sorb r
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Signal Formation: Sampling Fraction

Characterizes sampling 
calorimeters

Ratio of energy deposited in active 
material and total energy deposit
Assumes constant energy loss per 
unit depth in material

Ionization only

Can be adjusted when designing the 
calorimeter

Material choices
Readout geometry

Multiple scattering
Changes sampling fraction

Effective extension of particle path 
in matter
Different for absorber and active 
material

Showering 
Cannot be included in sampling 
fraction analytically

Need measurements and/or 
simulations

active

active absorbe absorbr er active active
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θ θ

=

⋅
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C. Amsler et al. (Particle Data Group), Physics Letters B667, 1 (2008) 
and 2009 partial update for the 2010 edition
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48
P. Loch

U of Arizona

May 05, 2010
Signal Formation: Sampling Fraction

Characterizes sampling 
calorimeters

Ratio of energy deposited in active 
material and total energy deposit
Assumes constant energy loss per 
unit depth in material

Ionization only

Can be adjusted when designing the 
calorimeter

Material choices
Readout geometry

Multiple scattering
Changes sampling fraction

Effective extension of particle path 
in matter
Different for absorber and active 
material

Showering 
Cannot be included in sampling 
fraction analytically

Need measurements and/or 
simulations

vis 0

dep 0

0

( )

( ) is the calorimeter signal from test beams

or simulation, converted to energy units.

E A E
S

E E

A E

= ∝

Showering changes the electron sampling 
fraction mostly due to the strong 
dependence of photon capture (photo-
effect) on the material (cross-section ~Z5) 
leading to a non-proportional absorption of 
energy carried by soft photons deeper in 
the shower!

P. Loch (Diss.), 
University of 
Hamburg 1992

1
S

∝

5 GeV
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Electrons
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Signal Extraction

Example: charge collection in noble 
liquids

Charged particles ionizing active 
medium when traversing it

Fast passage compared to electron 
drift velocity in medium

Electrons from these ionizations are 
collected in external electric field

Similar to collection of 1-dim “line of 
charges” with constant charge density

Resulting (electron) current is base of 
signal

Positive ions much slower
Can collect charges or measure current

Characteristic features
Collected charge and current are 
proportional to energy deposited in 
active medium

Drift time for electrons in active 
medium

Determines charge collection time
Can be adjusted to optimize 
calorimeter performance

vis
d 0

d ion

( ) ;  ( ) ;  
2
e e

e

N e N e E
Q t t I t t N

t E
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What is response?
Reconstructed calorimeter signal

Based on the direct measurement –
the raw signal
May include noise suppression

Has the concept of signal (or energy) 
scale

Mostly understood as the basic signal 
before final calibrations

Does not explicitly include particle or 
jet hypothesis

Uses only calorimeter signal 
amplitudes, spatial distributions, etc.
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Calorimeter Signal in ATLAS

Slow signal collection in 
liquid argon calorimeters

~450 ns @ 1 kV/mm drift 
time versus 40 MHz/25 ns 
bunch crossing time

Measure only I0 = I(t0) 
(integrate <25 ns)

Applying a fast bi-polar 
signal shaping

Shaping time ~15 ns
With well known shape

Shaped pulse integral = 0
Net average signal 
contribution from pile-up 
= 0
Need to measure the 
pulse shape (time sampled 
readout)

Total integration ~25 bunch 
crossings

23 before signal, 1 signal, 1 
after signal

reading out (digitize) 5 
samples sufficient!
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What is digital filtering
Unfolds the expected (theoretical) pulse 
shape from a measured pulse shape

Determines signal amplitude and timing
Minimizes noise contributions

Noise reduced by ~1.4 compared to 
single reading 
Note: noise depends on the luminosity 

Requires explicit knowledge of pulse 
shape 

Folds triangular pulse with transmission 
line characteristics and active electronic 
signal shaping
Characterized by signal transfer functions 
depending on R, L, C of readout 
electronics, transmission lines

Filter coefficients from calibration 
system

Pulse “ramps” for response
Inject known currents into electronic 
chain
Use output signal to constrain 
coefficients

Noise for auto-correlation
Signal history couples fluctuations in 
time sampled readings
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W.E. Cleland and E.G. Stern, Nucl. Inst. Meth. A338 (1994) 467.
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ATLAS Digital Filtering

What is digital filtering
Unfolds the expected (theoretical) pulse 
shape from a measured pulse shape

Determines signal amplitude and timing
Minimizes noise contributions

Noise reduced by ~1.4 compared to 
single reading 
Note: noise depends on the luminosity 

Requires explicit knowledge of pulse 
shape 

Folds triangular pulse with transmission 
line characteristics and active electronic 
signal shaping
Characterized by signal transfer functions 
depending on R, L, C of readout 
electronics, transmission lines

Filter coefficients from calibration 
system

Pulse “ramps” for response
Inject known currents into electronic 
chain
Use output signal to constrain 
coefficients

Noise for auto-correlation
Signal history couples fluctuations in 
time sampled readings
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Calorimeter Response

What does signal or energy scale 
mean?

Indicates a certain level of signal 
reconstruction

Standard reconstruction often stops with 
a basic signal scale

Electromagnetic energy scale is a good 
reference

Uses direct signal  proportionality to 
electron/photon energy
Accessible in test beam experiments
Can be validated with isolated particles 
in collision environment
Provides good platform for data and 
simulation comparisons
Does not necessarily convert the 
electron signal to the true 
photon/electron energy!

Hadronic signals can also be calculated on 
this scale

Good platform for comparisons to 
simulations 
But does not return a good estimate for 
the deposited energy in non-
compensating calorimeters – see later 
discussion!

Is not a fundamental concept of physics!
Is a calorimeter feature
Definition varies from experiment to 
experiment
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Recall electrons/photons in sampling calorimeters:
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Hadronic Response (1)

D.Groom et al., NIM A338, 336-347 (1994)
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Hadronic Response (2)

Observable

provides experimental access to 
characteristic calorimeter variables in pion
test beams by fitting h/e, Ebase and m from 
the energy dependence of the pion signal 
on electromagnetic energy scale:   

Note that e/h is often constant, for 
example: in both H1 and ATLAS about 50% 
of the energy in the hadronic branch 
generates a signal independent of the 
energy itself

2.6e h =
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Jet Response

Complex mixture of hadrons 
and photons

Not a single particle response
Carries initial electromagnetic 
energy 

Mainly photons

Very simple response model
Assume the hadronic jet content 
is represented by 1 particle only

Not realistic, but helpful to 
understand basic response 
features

More evolved model
Use fragmentation function in jet 
response

This has some practical 
considerations

E.g. jet calibration in CDF

Gets non-compensation effect 
Does not address acceptance 
effect due to shower overlaps
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Jet Response

Complex mixture of hadrons 
and photons

Not a single particle response
Carries initial electromagnetic 
energy 

Mainly photons

Very simple response model
Assume the hadronic jet content 
is represented by 1 particle only

Not realistic, but helpful to 
understand basic response 
features

More evolved model
Use fragmentation function in jet 
response

This has some practical 
considerations

E.g. jet calibration in CDF

Gets non-compensation effect 
Does not address acceptance 
effect due to shower overlaps
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Jet Response

Complex mixture of hadrons 
and photons

Not a single particle response
Carries initial electromagnetic 
energy 

Mainly photons

Very simple response model
Assume the hadronic jet content 
is represented by 1 particle only

Not realistic, but helpful to 
understand basic response 
features

More evolved model
Use fragmentation function in jet 
response

This has some practical 
considerations

E.g. jet calibration in CDF

Gets non-compensation effect 
Does not address acceptance 
effect due to shower overlaps
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Jet Response

Complex mixture of hadrons 
and photons

Not a single particle response
Carries initial electromagnetic 
energy 

Mainly photons

Very simple response model
Assume the hadronic jet content 
is represented by 1 particle only

Not realistic, but helpful to 
understand basic response 
features

More evolved model
Use fragmentation function in jet 
response

This has some practical 
considerations

E.g. jet calibration in CDF

Gets non-compensation effect 
Does not address acceptance 
effect due to shower overlaps
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Acceptance and Noise in Jet Response

Noise
Fluctuations of the “zero” or “empty” 
signal reading

Pedestal fluctuations
Independent of the signal from particles

At least to first order
Mostly incoherent

No noise correlations between readout 
channels

Noise in each channel is independent 
oscillator

Gaussian in nature
Pedestal fluctuations ideally follow 
normal distribution around 0
Width of distribution (1 σ) is noise value 

Signal significance
Noise can fake particle signals

Only signals exceeding noise can be 
reliably measured

Signals larger than 3 noise are very 
likely from particles

Gaussian interpretation of pedestal 
fluctuations 

Calorimeter signal reconstruction aims to 
suppress noise

Average contribution = 0, but adds to 
fluctuations!

Small signal:
Noise only
Signal on top of noise
Sum of noise and signal
Signal after noise suppression

noiseReading ( )σ

Spatial Coordinate/Calorimeter Cell
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Acceptance and Noise in Jet Response

Noise
Fluctuations of the “zero” or “empty” 
signal reading

Pedestal fluctuations
Independent of the signal from particles

At least to first order
Mostly incoherent

No noise correlations between readout 
channels

Noise in each channel is independent 
oscillator

Gaussian in nature
Pedestal fluctuations ideally follow 
normal distribution around 0
Width of distribution (1 σ) is noise value 

Signal significance
Noise can fake particle signals

Only signals exceeding noise can be 
reliably measured

Signals larger than 3 noise are very 
likely from particles

Gaussian interpretation of pedestal 
fluctuations 

Calorimeter signal reconstruction aims to 
suppress noise

Average contribution = 0, but adds to 
fluctuations!

Small signal:
Noise only
Signal on top of noise
Sum of noise and signal
Signal after noise suppression

noiseReading ( )σ

Spatial Coordinate/Calorimeter Cell
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Acceptance and Noise in Jet Response

Noise
Fluctuations of the “zero” or “empty” 
signal reading

Pedestal fluctuations
Independent of the signal from particles

At least to first order
Mostly incoherent

No noise correlations between readout 
channels

Noise in each channel is independent 
oscillator

Gaussian in nature
Pedestal fluctuations ideally follow 
normal distribution around 0
Width of distribution (1 σ) is noise value 

Signal significance
Noise can fake particle signals

Only signals exceeding noise can be 
reliably measured

Signals larger than 3 noise are very 
likely from particles

Gaussian interpretation of pedestal 
fluctuations 

Calorimeter signal reconstruction aims to 
suppress noise

Average contribution = 0, but adds to 
fluctuations!

Small signal:
Noise only
Signal on top of noise
Sum of noise and signal
Signal after noise suppression

noiseReading ( )σ

Spatial Coordinate/Calorimeter Cell
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Acceptance and Noise in Jet Response

Noise
Fluctuations of the “zero” or “empty” 
signal reading

Pedestal fluctuations
Independent of the signal from particles

At least to first order
Mostly incoherent

No noise correlations between readout 
channels

Noise in each channel is independent 
oscillator

Gaussian in nature
Pedestal fluctuations ideally follow 
normal distribution around 0
Width of distribution (1 σ) is noise value 

Signal significance
Noise can fake particle signals

Only signals exceeding noise can be 
reliably measured

Signals larger than 3 noise are very 
likely from particles

Gaussian interpretation of pedestal 
fluctuations 

Calorimeter signal reconstruction aims to 
suppress noise

Average contribution = 0, but adds to 
fluctuations!

Small signal:
Noise only
Signal on top of noise
Sum of noise and signal
Signal after noise suppression

noiseReading ( )σ

Spatial Coordinate/Calorimeter Cell
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Acceptance and Noise in Jet Response

Noise
Fluctuations of the “zero” or “empty” 
signal reading

Pedestal fluctuations
Independent of the signal from particles

At least to first order
Mostly incoherent

No noise correlations between readout 
channels

Noise in each channel is independent 
oscillator

Gaussian in nature
Pedestal fluctuations ideally follow 
normal distribution around 0
Width of distribution (1 σ) is noise value 

Signal significance
Noise can fake particle signals

Only signals exceeding noise can be 
reliably measured

Signals larger than 3 noise are very 
likely from particles

Gaussian interpretation of pedestal 
fluctuations 

Calorimeter signal reconstruction aims to 
suppress noise

Average contribution = 0, but adds to 
fluctuations!

Large signal:
Noise only
Signal on top of noise
Sum of noise and signal
Signal after noise suppression

noiseReading ( )σ

Spatial Coordinate/Calorimeter Cell
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Acceptance and Noise in Jet Response

Noise
Fluctuations of the “zero” or “empty” 
signal reading

Pedestal fluctuations
Independent of the signal from particles

At least to first order
Mostly incoherent

No noise correlations between readout 
channels

Noise in each channel is independent 
oscillator

Gaussian in nature
Pedestal fluctuations ideally follow 
normal distribution around 0
Width of distribution (1 σ) is noise value 

Signal significance
Noise can fake particle signals

Only signals exceeding noise can be 
reliably measured

Signals larger than 3 noise are very 
likely from particles

Gaussian interpretation of pedestal 
fluctuations 

Calorimeter signal reconstruction aims to 
suppress noise

Average contribution = 0, but adds to 
fluctuations!

Large signal:
Noise only
Signal on top of noise
Sum of noise and signal
Signal after noise suppression

noiseReading ( )σ

Spatial Coordinate/Calorimeter Cell
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Acceptance and Noise in Jet Response

Noise
Fluctuations of the “zero” or “empty” 
signal reading

Pedestal fluctuations
Independent of the signal from particles

At least to first order
Mostly incoherent

No noise correlations between readout 
channels

Noise in each channel is independent 
oscillator

Gaussian in nature
Pedestal fluctuations ideally follow 
normal distribution around 0
Width of distribution (1 σ) is noise value 

Signal significance
Noise can fake particle signals

Only signals exceeding noise can be 
reliably measured

Signals larger than 3 noise are very 
likely from particles

Gaussian interpretation of pedestal 
fluctuations 

Calorimeter signal reconstruction aims to 
suppress noise

Average contribution = 0, but adds to 
fluctuations!

Large signal:
Noise only
Signal on top of noise
Sum of noise and signal
Signal after noise suppression

noiseReading ( )σ

Spatial Coordinate/Calorimeter Cell
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Acceptance and Noise in Jet Response

Noise
Fluctuations of the “zero” or “empty” 
signal reading

Pedestal fluctuations
Independent of the signal from particles

At least to first order
Mostly incoherent

No noise correlations between readout 
channels

Noise in each channel is independent 
oscillator

Gaussian in nature
Pedestal fluctuations ideally follow 
normal distribution around 0
Width of distribution (1 σ) is noise value 

Signal significance
Noise can fake particle signals

Only signals exceeding noise can be 
reliably measured

Signals larger than 3 noise are very 
likely from particles

Gaussian interpretation of pedestal 
fluctuations 

Calorimeter signal reconstruction aims to 
suppress noise

Average contribution = 0, but adds to 
fluctuations!

Large signal:
Noise only
Signal on top of noise
Sum of noise and signal
Signal after noise suppression

noiseReading ( )σ

Spatial Coordinate/Calorimeter Cell
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Acceptance and Noise in Jet Response

Noise
Fluctuations of the “zero” or “empty” 
signal reading

Pedestal fluctuations
Independent of the signal from particles

At least to first order
Mostly incoherent

No noise correlations between readout 
channels

Noise in each channel is independent 
oscillator

Gaussian in nature
Pedestal fluctuations ideally follow 
normal distribution around 0
Width of distribution (1 σ) is noise value 

Signal significance
Noise can fake particle signals

Only signals exceeding noise can be 
reliably measured

Signals larger than 3 noise are very 
likely from particles

Gaussian interpretation of pedestal 
fluctuations 

Calorimeter signal reconstruction aims to 
suppress noise

Average contribution = 0, but adds to 
fluctuations!

Large signal:
Noise only
Signal on top of noise
Sum of noise and signal
Signal after noise suppression

noiseReading ( )σ

Spatial Coordinate/Calorimeter Cell

calorimeter response 
< true signal!
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Acceptance and Noise in Jet Response

Noise
Fluctuations of the “zero” or “empty” 
signal reading

Pedestal fluctuations
Independent of the signal from particles

At least to first order
Mostly incoherent

No noise correlations between readout 
channels

Noise in each channel is independent 
oscillator

Gaussian in nature
Pedestal fluctuations ideally follow 
normal distribution around 0
Width of distribution (1 σ) is noise value 

Signal significance
Noise can fake particle signals

Only signals exceeding noise can be 
reliably measured

Signals larger than 3 noise are very 
likely from particles

Gaussian interpretation of pedestal 
fluctuations 

Calorimeter signal reconstruction aims to 
suppress noise

Average contribution = 0, but adds to 
fluctuations!

Small signal, two particles:
Noise only
Signal on top of noise
Sum of noise and signal
Signal after noise suppression

noiseReading ( )σ

Spatial Coordinate/Calorimeter Cell
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Acceptance and Noise in Jet Response

Noise
Fluctuations of the “zero” or “empty” 
signal reading

Pedestal fluctuations
Independent of the signal from particles

At least to first order
Mostly incoherent

No noise correlations between readout 
channels

Noise in each channel is independent 
oscillator

Gaussian in nature
Pedestal fluctuations ideally follow 
normal distribution around 0
Width of distribution (1 σ) is noise value 

Signal significance
Noise can fake particle signals

Only signals exceeding noise can be 
reliably measured

Signals larger than 3 noise are very 
likely from particles

Gaussian interpretation of pedestal 
fluctuations 

Calorimeter signal reconstruction aims to 
suppress noise

Average contribution = 0, but adds to 
fluctuations!

Small signal, first particle:
Noise only
Signal on top of noise
Sum of noise and signal
Signal after noise suppression

noiseReading ( )σ

Spatial Coordinate/Calorimeter Cell
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Acceptance and Noise in Jet Response

Noise
Fluctuations of the “zero” or “empty” 
signal reading

Pedestal fluctuations
Independent of the signal from particles

At least to first order
Mostly incoherent

No noise correlations between readout 
channels

Noise in each channel is independent 
oscillator

Gaussian in nature
Pedestal fluctuations ideally follow 
normal distribution around 0
Width of distribution (1 σ) is noise value 

Signal significance
Noise can fake particle signals

Only signals exceeding noise can be 
reliably measured

Signals larger than 3 noise are very 
likely from particles

Gaussian interpretation of pedestal 
fluctuations 

Calorimeter signal reconstruction aims to 
suppress noise

Average contribution = 0, but adds to 
fluctuations!

Small signal, first and second particle:
Noise only
Signal on top of noise
Sum of noise and signal
Signal after noise suppression

noiseReading ( )σ

Spatial Coordinate/Calorimeter Cell
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Acceptance and Noise in Jet Response

Noise
Fluctuations of the “zero” or “empty” 
signal reading

Pedestal fluctuations
Independent of the signal from particles

At least to first order
Mostly incoherent

No noise correlations between readout 
channels

Noise in each channel is independent 
oscillator

Gaussian in nature
Pedestal fluctuations ideally follow 
normal distribution around 0
Width of distribution (1 σ) is noise value 

Signal significance
Noise can fake particle signals

Only signals exceeding noise can be 
reliably measured

Signals larger than 3 noise are very 
likely from particles

Gaussian interpretation of pedestal 
fluctuations 

Calorimeter signal reconstruction aims to 
suppress noise

Average contribution = 0, but adds to 
fluctuations!

Small signal, two particle, sum:
Noise only
Signal on top of noise
Sum of noise and signal
Signal after noise suppression

noiseReading ( )σ

Spatial Coordinate/Calorimeter Cell
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Acceptance and Noise in Jet Response

Noise
Fluctuations of the “zero” or “empty” 
signal reading

Pedestal fluctuations
Independent of the signal from particles

At least to first order
Mostly incoherent

No noise correlations between readout 
channels

Noise in each channel is independent 
oscillator

Gaussian in nature
Pedestal fluctuations ideally follow 
normal distribution around 0
Width of distribution (1 σ) is noise value 

Signal significance
Noise can fake particle signals

Only signals exceeding noise can be 
reliably measured

Signals larger than 3 noise are very 
likely from particles

Gaussian interpretation of pedestal 
fluctuations 

Calorimeter signal reconstruction aims to 
suppress noise

Average contribution = 0, but adds to 
fluctuations!

Small signal, two particles:
Noise only
Signal on top of noise
Sum of noise and signal
Signal after noise suppression

noiseReading ( )σ

Spatial Coordinate/Calorimeter Cell
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Acceptance and Noise in Jet Response

Noise
Fluctuations of the “zero” or “empty” 
signal reading

Pedestal fluctuations
Independent of the signal from particles

At least to first order
Mostly incoherent

No noise correlations between readout 
channels

Noise in each channel is independent 
oscillator

Gaussian in nature
Pedestal fluctuations ideally follow 
normal distribution around 0
Width of distribution (1 σ) is noise value 

Signal significance
Noise can fake particle signals

Only signals exceeding noise can be 
reliably measured

Signals larger than 3 noise are very 
likely from particles

Gaussian interpretation of pedestal 
fluctuations 

Calorimeter signal reconstruction aims to 
suppress noise

Average contribution = 0, but adds to 
fluctuations!

Small signal, two particles:
Noise only
Signal on top of noise
Sum of noise and signal
Signal after noise suppression

noiseReading ( )σ

Spatial Coordinate/Calorimeter Cell
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Acceptance and Noise in Jet Response

Noise
Fluctuations of the “zero” or “empty” 
signal reading

Pedestal fluctuations
Independent of the signal from particles

At least to first order
Mostly incoherent

No noise correlations between readout 
channels

Noise in each channel is independent 
oscillator

Gaussian in nature
Pedestal fluctuations ideally follow 
normal distribution around 0
Width of distribution (1 σ) is noise value 

Signal significance
Noise can fake particle signals

Only signals exceeding noise can be 
reliably measured

Signals larger than 3 noise are very 
likely from particles

Gaussian interpretation of pedestal 
fluctuations 

Calorimeter signal reconstruction aims to 
suppress noise

Average contribution = 0, but adds to 
fluctuations!

Small signal, two particles:
Noise only
Signal on top of noise
Sum of noise and signal
Signal after noise suppression

noiseReading ( )σ

Spatial Coordinate/Calorimeter Cell

calorimeter response 
< true signal!
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ATLAS: A General Purpose Detector For LHC

Total weight   :  7000 t

Overall length:  46 m

Overall diameter:  23 m

Magnetic field:  2T solenoid + (varying) toroid field
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EM Endcap 
EMEC

EM Barrel 
EMB

Hadronic Endcap

ForwardTile Barrel

Tile Extended 
Barrel

The ATLAS Calorimeters

Electromagnetic Barrel
|η| < 1.4
Liquid argon/lead

Electromagnetic EndCap
1.375 < |η| < 3.2
Liquid argon/lead

Hadronic Tile
|η| < 1.7
Scintillator/iron

Hadronic EndCap
1.5 < |η| < 3.2
Liquid argon/copper

Forward Calorimeter
3.2 < |η| < 4.9
Liquid argon/copper and liquid 
argon/tungsten

Varying (high) granularity
Mostly projective or pseudo-projective 
readout geometries
Nearly 200,000 readout channels in 
total

Overlaps and transitions
Some complex detector geometries in 
crack regions
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Highly segmented lead/liquid argon accordion 
calorimeter

Projective readout geometry in pseudo-rapdity
and azimuth

More than 170,000 independent readout channels
No azimuthal discontinuities (cracks)

Total depth > 24 X0 (increases with pseudo-
rapidity)

Three depth segments
+ pre-sampler (limited coverage, only η < 1.8)

Strip cells in 1st layer
Thin layer for precision direction and e/π and e/γ
separation

Total depth ≈ 6 X0 (constant)
Very high granularity in pseudo-rapidity

Δη Δφ ≈ 0.003 0.1

Deep 2nd layer
Captures electromagnetic shower maximum

Total depth ≈ 16-18 X0

High granularity in both directions
Δη Δφ ≈ 0.025 0.025

Shallow cells in 3rd layer
Catches electromagnetic shower tails

Electron and photon identification
Total depth ≈ 2-12 X0 (from center to outer edge 
in pseudo-rapidity)

Relaxed granularity
Δη Δφ ≈ 0.05 0.025

Electromagnetic Barrel
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Central and Extended Tile calorimeter

Iron/scintillator with tiled readout structure
Three depth segments

Quasi-projective readout cells
Granularity first two layers

Δη Δφ ≈ 0.1 0.1
Third layer

Δη Δφ ≈ 0.2 0.1

Very fast light collection
~50 ns reduces effect of pile-up to ~3 bunch 
crossings
Dual fiber readout for each channel

Two signals from each cell
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Electromagnetic “Spanish Fan” 
accordion

Highly segmented with up to three 
longitudinal segments
Complex accordion design of lead 
absorbers and electrodes

Looks like an unfolded spanish fan

Hadronic liquid argon/copper 
calorimeter

Parallel plate design
Four longitudinal segments
Quasi-projective cells

0.025 0.025 2.5, middle layer

0.1 0.1 2.5 3.2

η
η ϕ

η
 × <

∆ ×∆ ≈  × < <

0.1 0.1 2.5

0.2 0.2 2.5 3.2

η
η ϕ

η
 × <

∆ ×∆ ≈  × < <

Hadronic

EndCap

wedge
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FCal1

FCal2

FCal3

Forward Calorimeters
Design features

Compact absorbers
Small showers

Tubular thin gap electrodes
Suppress positive charge build-up (Ar+) in 
high ionization rate environment
Stable calibration

Rectangular non-projective readout cells
Electromagnetic FCal1

Liquid argon/copper
Gap ~260 μm

Hadronic FCal2
Liquid argon/tungsten

Gap ~375 μm

Hadronic FCal3
Liquid argon/tungsten

Gap ~500 μm

0.2 0.2η ϕ∆ ×∆ ≈ ×

Forward calorimeter electrode

Readout pattern

Readout sums (detail)
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ATLAS Calorimeter Summary

Non-compensating calorimeters
Electrons generate larger signal than pions depositing the same energy

Typically e/π ≈ 1.3
High particle stopping
power over whole
detector acceptance |η|<4.9

~26-35 X0 electromagnetic 
calorimetry
~ 10 λ total for hadrons

Hermetic coverage
No significant cracks in 
azimuth
Non-pointing transition between barrel, endcap and forward

Small performance penalty for hadrons/jets

High granularity
Nearly 200,000 readout channels

Highly efficient particle identification
Jet substructure resolution capabilities
Local hadronic calibration using signal shapes
…
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What Are Jets?

The experimentalist’s view 
(…my view)

A bunch of particles generated 
by hadronization of a common 
otherwise confined source

Quark-, gluon fragmentation
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What Are Jets?

The experimentalist’s view 
(…my view)

A bunch of particles generated 
by hadronization of a common 
otherwise confined source

Quark-, gluon fragmentation
Consequence of common source

Correlated kinematic properties
Jet reflects the source by sum 
rules and conservation

Interacting particles in jet 
generate observable signal in 
detector

Protons, neutrons, pions, kaons, 
photons, electrons, muons, and 
others with laboratory lifetimes > 
10 ps (incl. corresponding anti-
particles

Non-interacting particles in jet 
do not contribute to directly 
observable signal

Neutrinos, mostly
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What Are Jets?

The experimentalist’s view 
(…my view)

A bunch of particles generated 
by hadronization of a common 
otherwise confined source

Quark-, gluon fragmentation
Consequence of common source

Correlated kinematic properties
Jet reflects the source by sum 
rules and conservation

Interacting particles in jet 
generate observable signal in 
detector

Protons, neutrons, pions, kaons, 
photons, electrons, muons, and 
others with laboratory lifetimes > 
10 ps (incl. corresponding anti-
particles)

Non-interacting particles in jet 
so not contribute to directly 
observable signal

Neutrinos, mostly
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Particle jet composition generated by  PYTHIA
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Jet Fragmentation

What is fragmentation?
Hadronization of partons into particles

Confinement in QCD: gluon pair production
Gluon radiation

How can fragmentation be measured in an experiment?
Reconstruct charged tracks in a given jet

Momentum fraction carried by these tracks reflects charged (hadron) production 
in hadronization

High track reconstruction efficiency and low momentum acceptance needed!
Final state in e+e- collisions at LEP ideal – very clean collision environment 
without underlying event, at center-of-mass energies from 90 to 209 GeV

Fragmentation function are derived from LEP data (1989-2000)

Can we measure the fragmentation of a given jet in hadron colliders?
Basically impossible, as collision environment is too “messy”

Accidental inclusion of charged tracks not from jet (underlying event, pile-up)
Loss of relevant tracks hard to detect

Need to rely on models fully describing collision event 
Compare composition of detector jets with particle jets from simulations 
(generators) like PYTHIA, which implement the LEP fragmentation functions!
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Parton & Particle Jets

Parton jets – what is this?
Basically a representation of an individual final state parton before hadronization

Still called a jet because a jet finding algorithm is applied to the simulated partonic final 
state

Jet finders explicitly or implicitly apply spatial and kinematic resolution parameters 
and (kinematic) thresholds to the interactions

Two or more close-by partons can be combined to one jet
A parton may not make it into a jet because it is below threshold

Parton jets are “biased” with respect to the jet finding algorithm and its configuration
Two different jet finders may generated two different views on the partonic event 

Particle jets
These are jets from final state particles with lifetime > 10 ps

E.g., after hadronization of partons
Sometimes non-observable particles like neutrinos or particles with very specific signal 
characteristics (muons) may not be included

E.g., the muon generated in semi-leptonic b-decays may not be considered part of the b-jet
Here a jet finder is mandatory to produce these jets

Needs to recombine the bundle of particles coming from the same source (parton)
Subjects particles to the same resolution parameters and thresholds as used for parton jets
Attempt to match parton and particle jets may allow to understand effect of fragmentation 
on jet finding efficiencies, mis-clustering (wrong particles combined), and bias on kinematic 
reconstruction

Particle jets are a good “truth” reference for detector jets
After all , particles generate the detector signal
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Parton “Jets”

Parton “jets”
Theoretical concept converting 
matrix element calculations in to jet 
picture

Depends on the order of the 
calculation

Useful tool to link experimental 
results to calculations in di-quark 
resonance reconstruction

E.g., hadronic decays of the W
boson and heavier new particles like 
Z’

Much less meaningful concept in 
QCD analysis like inclusive jet 
cross-section

Jet counting as function of pT
Number of parton jets not strictly 
linked to number of particle jets

Boundary between matrix element, 
radiation, parton showering, and 
underlying event washed out at 
particle level
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Parton “Jets”

Parton “jets”
Theoretical concept converting 
matrix element calculations in to jet 
picture

Depends on the order of the 
calculation

Useful tool to link experimental 
results to calculations in di-quark 
resonance reconstruction

E.g., hadronic decays of the W
boson and heavier new particles like 
Z’ at LO

Much less meaningful concept in 
QCD analysis like inclusive jet 
cross-section

Jet counting as function of pT
Number of parton jets not strictly 
linked to number of particle jets

Boundary between matrix element, 
radiation, parton showering, and 
underlying event washed out at 
particle level
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Parton “Jets”

Parton “jets”
Theoretical concept converting 
matrix element calculations in to jet 
picture

Depends on the order of the 
calculation

Useful tool to link experimental 
results to calculations in di-quark 
resonance reconstruction

E.g., hadronic decays of the W
boson and heavier new particles like 
Z’

Much less meaningful concept in 
QCD analysis like inclusive jet 
cross-section

Jet counting as function of pT
Number of parton jets not strictly 
linked to number of particle jets

Boundary between matrix element, 
radiation, parton showering, and 
underlying event washed out at 
particle level
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Particle Jets

Collection of particles from common source
Several sources in each collision

Hard scattering, multiple parton interactions in the underlying event, initial and final state 
radiation

Describe the simulated collision viewed with a microscope (idealized) 
Microscope technology – jet finding algorithm
Resolution – ability of a jet finder to (spatially) resolve jet structures of collision, typically a 
configuration parameter of the  jet finder
Sensitivity – kinematic threshold for particle bundle to be called a jet, another configuration 
parameter of the jet finder 
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Usefulness of Particle Jets

Good reconstruction reference for detector jets
Provide a truth reference for the reconstucted jet energy and momentum 

E.g., can be used in simulations together with fully simulated detector jets to calibrate those 
(we will follow up on this point later!)

Extract particle jets from measurement by calibration and unfolding  signal 
characteristics from detector jets

Understand effect of experimental spatial resolution and signal thresholds at particle level
Remember: electromagnetic and hadronic showers have lateral extension → diffusion of 
spatial particle flow by distributing the particle energy laterally!
Remember: noise in calorimeter imply a “useful” signal threshold → may introduce 
acceptance limitations for particle jets!

Good reference for physics
Goal of all selection and unfolding strategies in physics analysis

Reproduce particle level event from measurement as much as possible!
Require correct simulations of all aspects of particle spectrum of collision right

Matrix element, parton showers, underlying event (non-pertubative soft QCD!), parton
density functions,…

Parton shower matching to higher order matrix calculation in complex pp collision 
environment is a hot topic among theorists/phenomenologists today!

Allow to compare results from different experiments
Specific detector limitations basically removed
Also provides platform for communication with theorists (LO and some NLO )

Important limitations to be kept in mind
NLO particle level generators not available for all processes (more and more coming)
NNLO etc. not in sight 
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Jet Finding

Basic idea
Attempt to collect all particles coming from the same source in a given 
collision

Re-establishing the original correlations between these particles to reconstruct 
the kinematics and possibly even the nature of the source

Is an algorithmic challenge
Many algorithms on the market, with different limitations
No universal algorithm or algorithm configuration for all final state analysis

More later, but good to know right away!

Requires theoretical and experimental guidelines
Theory – physical features of particle jets addressed by sum (recombination) 
rules, stability of algorithm, validity for higher order calculations,…
Experiment – requirements for features of measured jets to allow most precise 
unfolding of particle jet, drives detector designs!

Guidelines often not very appreciated by older analysis/experiments
Often focus on extracting signal structures from experiment without worrying too 
much about theoretical requirements

LO analysis: apply any jet algorithm to measured signals and corresponding simulations 
with expectations to get the same physics

LHC kinematic reach and phase space need considerations of higher order 
calculations – need jet finders valid to (arbitrary!) order! 
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Theoretical Requirements For Jet Finders 

Very important at LHC
Often LO (or even NLO) not sufficient to 
understand final states

Potentially significant K-factors can only be 
applied to jet driven spectra if jet finding 
follows theoretical rules

E.g., jet cross-section shapes

Need to be able to compare 
experiments and theory

Comparison at the level of distributions
ATLAS and CMS will unfold experimental effects 
and limitations independently – different 
detector systems

Theoretical guidelines 
Infrared safety

Adding or removing soft particles should not 
change the result of jet clustering

Collinear safety
Splitting of large pT particle into two collinear 
particles should not affect the jet finding

infrared sensitivity
(soft gluon radiation merges jets)

collinear sensitivity (2)
(signal split into two towers below threshold)

collinear sensitivity (1)
(sensitive to Et ordering of seeds)
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Iterative Seeded Fixed Cone

Use following jet finder rules:
Find particle with largest pT above a seed threshold

Create an ordered list of particles descending in pT
and pick first particle

Draw a cone of fixed size around this particle
Resolution parameter of algorithm

Collect all other particles in cone and re-calculate 
cone directions from those

Use four-momentum re-summation
Collect particles in new cone of same size and find 
new direction as above

Repeat until direction does not change → cone 
becomes stable

Take next particle from list if above pT seed 
threshold 
Repeat procedure and find next proto-jet

Note that this is done with all particles, including 
the ones found in previous cones

Continue until no more proto-jets above threshold 
can be constructed

The same particle can be used by 2 or more jets
Check for overlap between proto-jets

Add lower pT jet  to higher pT jet if sum of particle 
pT in overlap  is above a certain fraction of the 
lower pT jet (merge)
Else remove overlapping  particles from higher  pT
jet and add to lower pT jet (split)

All surviving proto-jets are the final jets



99
P. Loch

U of Arizona

May 05, 2010
Iterative Seeded Fixed Cone

Use following jet finder rules:
Find particle with largest pT above a seed threshold

Create an ordered list of particles descending in pT
and pick first particle

Draw a cone of fixed size around this particle
Resolution parameter of algorithm

Collect all other particles in cone and re-calculate 
cone directions from those

Use four-momentum re-summation
Collect particles in new cone of same size and find 
new direction as above

Repeat until direction does not change → cone 
becomes stable

Take next particle from list if above pT seed 
threshold 
Repeat procedure and find next proto-jet

Note that this is done with all particles, including 
the ones found in previous cones

Continue until no more proto-jets above threshold 
can be constructed

The same particle can be used by 2 or more jets
Check for overlap between proto-jets

Add lower pT jet  to higher pT jet if sum of particle 
pT in overlap  is above a certain fraction of the 
lower pT jet (merge)
Else remove overlapping  particles from higher  pT
jet and add to lower pT jet (split)

All surviving proto-jets are the final jets

2 2
coneR Rη ϕ∆ = ∆ +∆ <
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Iterative Seeded Fixed Cone

Use following jet finder rules:
Find particle with largest pT above a seed threshold

Create an ordered list of particles descending in pT
and pick first particle

Draw a cone of fixed size around this particle
Resolution parameter of algorithm

Collect all other particles in cone and re-calculate 
cone directions from those

Use four-momentum re-summation
Collect particles in new cone of same size and find 
new direction as above

Repeat until direction does not change → cone 
becomes stable

Take next particle from list if above pT seed 
threshold 
Repeat procedure and find next proto-jet

Note that this is done with all particles, including 
the ones found in previous cones

Continue until no more proto-jets above threshold 
can be constructed

The same particle can be used by 2 or more jets
Check for overlap between proto-jets

Add lower pT jet  to higher pT jet if sum of particle 
pT in overlap  is above a certain fraction of the 
lower pT jet (merge)
Else remove overlapping  particles from higher  pT
jet and add to lower pT jet (split)

All surviving proto-jets are the final jets

2 2
cone

(first protojet)

R Rη ϕ∆ = ∆ +∆ <
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Iterative Seeded Fixed Cone

Use following jet finder rules:
Find particle with largest pT above a seed threshold

Create an ordered list of particles descending in pT
and pick first particle

Draw a cone of fixed size around this particle
Resolution parameter of algorithm

Collect all other particles in cone and re-calculate 
cone directions from those

Use four-momentum re-summation
Collect particles in new cone of same size and find 
new direction as above

Repeat until direction does not change → cone 
becomes stable

Take next particle from list if above pT seed 
threshold 
Repeat procedure and find next proto-jet

Note that this is done with all particles, including 
the ones found in previous cones

Continue until no more proto-jets above threshold 
can be constructed

The same particle can be used by 2 or more jets
Check for overlap between proto-jets

Add lower pT jet  to higher pT jet if sum of particle 
pT in overlap  is above a certain fraction of the 
lower pT jet (merge)
Else remove overlapping  particles from higher  pT
jet and add to lower pT jet (split)

All surviving proto-jets are the final jets

2 2
coneR Rη ϕ∆ = ∆ +∆ <
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Iterative Seeded Fixed Cone

Use following jet finder rules:
Find particle with largest pT above a seed threshold

Create an ordered list of particles descending in pT
and pick first particle

Draw a cone of fixed size around this particle
Resolution parameter of algorithm

Collect all other particles in cone and re-calculate 
cone directions from those

Use four-momentum re-summation
Collect particles in new cone of same size and find 
new direction as above

Repeat until direction does not change → cone 
becomes stable

Take next particle from list if above pT seed 
threshold 
Repeat procedure and find next proto-jet

Note that this is done with all particles, including 
the ones found in previous cones

Continue until no more proto-jets above threshold 
can be constructed

The same particle can be used by 2 or more jets
Check for overlap between proto-jets

Add lower pT jet  to higher pT jet if sum of particle 
pT in overlap  is above a certain fraction of the 
lower pT jet (merge)
Else remove overlapping  particles from higher  pT
jet and add to lower pT jet (split)

All surviving proto-jets are the final jets

2 2
cone

(second protojet)

R Rη ϕ∆ = ∆ +∆ <
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Iterative Seeded Fixed Cone

Use following jet finder rules:
Find particle with largest pT above a seed threshold

Create an ordered list of particles descending in pT
and pick first particle

Draw a cone of fixed size around this particle
Resolution parameter of algorithm

Collect all other particles in cone and re-calculate 
cone directions from those

Use four-momentum re-summation
Collect particles in new cone of same size and find 
new direction as above

Repeat until direction does not change → cone 
becomes stable

Take next particle from list if above pT seed 
threshold 
Repeat procedure and find next proto-jet

Note that this is done with all particles, including 
the ones found in previous cones

Continue until no more proto-jets above threshold 
can be constructed

The same particle can be used by 2 or more jets
Check for overlap between proto-jets

Add lower pT jet  to higher pT jet if sum of particle 
pT in overlap  is above a certain fraction of the 
lower pT jet (merge)
Else remove overlapping  particles from higher  pT
jet and add to lower pT jet (split)

All surviving proto-jets are the final jets

2 2
cone

(two jets)

R Rη ϕ∆ = ∆ +∆ <
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Iterative Seeded Fixed Cone

Use following jet finder rules:
Find particle with largest pT above a seed threshold

Create an ordered list of particles descending in pT
and pick first particle

Draw a cone of fixed size around this particle
Resolution parameter of algorithm

Collect all other particles in cone and re-calculate 
cone directions from those

Use four-momentum re-summation
Collect particles in new cone of same size and find 
new direction as above

Repeat until direction does not change → cone 
becomes stable

Take next particle from list if above pT seed 
threshold 
Repeat procedure and find next proto-jet

Note that this is done with all particles, including 
the ones found in previous cones

Continue until no more proto-jets above threshold 
can be constructed

The same particle can be used by 2 or more jets
Check for overlap between proto-jets

Add lower pT jet  to higher pT jet if sum of particle 
pT in overlap  is above a certain fraction of the 
lower pT jet (merge)
Else remove overlapping  particles from higher  pT
jet and add to lower pT jet (split)

All surviving proto-jets are the final jets

2 2
coneR Rη ϕ∆ = ∆ +∆ <
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Iterative Seeded Fixed Cone

Use following jet finder rules:
Find particle with largest pT above a seed threshold

Create an ordered list of particles descending in pT
and pick first particle

Draw a cone of fixed size around this particle
Resolution parameter of algorithm

Collect all other particles in cone and re-calculate 
cone directions from those

Use four-momentum re-summation
Collect particles in new cone of same size and find 
new direction as above

Repeat until direction does not change → cone 
becomes stable

Take next particle from list if above pT seed 
threshold 
Repeat procedure and find next proto-jet

Note that this is done with all particles, including 
the ones found in previous cones

Continue until no more proto-jets above threshold 
can be constructed

The same particle can be used by 2 or more jets
Check for overlap between proto-jets

Add lower pT jet  to higher pT jet if sum of particle 
pT in overlap  is above a certain fraction of the 
lower pT jet (merge)
Else remove overlapping  particles from higher  pT
jet and add to lower pT jet (split)

All surviving proto-jets are the final jets

2 2
coneR Rη ϕ∆ = ∆ +∆ <
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Iterative Seeded Fixed Cone

Use following jet finder rules:
Find particle with largest pT above a seed threshold

Create an ordered list of particles descending in pT
and pick first particle

Draw a cone of fixed size around this particle
Resolution parameter of algorithm

Collect all other particles in cone and re-calculate 
cone directions from those

Use four-momentum re-summation
Collect particles in new cone of same size and find 
new direction as above

Repeat until direction does not change → cone 
becomes stable

Take next particle from list if above pT seed 
threshold 
Repeat procedure and find next proto-jet

Note that this is done with all particles, including 
the ones found in previous cones

Continue until no more proto-jets above threshold 
can be constructed

The same particle can be used by 2 or more jets
Check for overlap between proto-jets

Add lower pT jet  to higher pT jet if sum of particle 
pT in overlap  is above a certain fraction of the 
lower pT jet (merge)
Else remove overlapping  particles from higher  pT
jet and add to lower pT jet (split)

All surviving proto-jets are the final jets

2 2
coneR Rη ϕ∆ = ∆ +∆ <
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Iterative Seeded Fixed Cone

Use following jet finder rules:
Find particle with largest pT above a seed threshold

Create an ordered list of particles descending in pT
and pick first particle

Draw a cone of fixed size around this particle
Resolution parameter of algorithm

Collect all other particles in cone and re-calculate 
cone directions from those

Use four-momentum re-summation
Collect particles in new cone of same size and find 
new direction as above

Repeat until direction does not change → cone 
becomes stable

Take next particle from list if above pT seed 
threshold 
Repeat procedure and find next proto-jet

Note that this is done with all particles, including 
the ones found in previous cones

Continue until no more proto-jets above threshold 
can be constructed

The same particle can be used by 2 or more jets
Check for overlap between proto-jets

Add lower pT jet  to higher pT jet if sum of particle 
pT in overlap  is above a certain fraction of the 
lower pT jet (merge)
Else remove overlapping  particles from higher  pT
jet and add to lower pT jet (split)

All surviving proto-jets are the final jets

2 2
cone

(first protojet)

R Rη ϕ∆ = ∆ +∆ <



108
P. Loch

U of Arizona

May 05, 2010
Iterative Seeded Fixed Cone

Use following jet finder rules:
Find particle with largest pT above a seed threshold

Create an ordered list of particles descending in pT
and pick first particle

Draw a cone of fixed size around this particle
Resolution parameter of algorithm

Collect all other particles in cone and re-calculate 
cone directions from those

Use four-momentum re-summation
Collect particles in new cone of same size and find 
new direction as above

Repeat until direction does not change → cone 
becomes stable

Take next particle from list if above pT seed 
threshold 
Repeat procedure and find next proto-jet

Note that this is done with all particles, including 
the ones found in previous cones

Continue until no more proto-jets above threshold 
can be constructed

The same particle can be used by 2 or more jets
Check for overlap between proto-jets

Add lower pT jet  to higher pT jet if sum of particle 
pT in overlap  is above a certain fraction of the 
lower pT jet (merge)
Else remove overlapping  particles from higher  pT
jet and add to lower pT jet (split)

All surviving proto-jets are the final jets

2 2
coneR Rη ϕ∆ = ∆ +∆ <
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Iterative Seeded Fixed Cone

Use following jet finder rules:
Find particle with largest pT above a seed threshold

Create an ordered list of particles descending in pT
and pick first particle

Draw a cone of fixed size around this particle
Resolution parameter of algorithm

Collect all other particles in cone and re-calculate 
cone directions from those

Use four-momentum re-summation
Collect particles in new cone of same size and find 
new direction as above

Repeat until direction does not change → cone 
becomes stable

Take next particle from list if above pT seed 
threshold 
Repeat procedure and find next proto-jet

Note that this is done with all particles, including 
the ones found in previous cones

Continue until no more proto-jets above threshold 
can be constructed

The same particle can be used by 2 or more jets
Check for overlap between proto-jets

Add lower pT jet  to higher pT jet if sum of particle 
pT in overlap  is above a certain fraction of the 
lower pT jet (merge)
Else remove overlapping  particles from higher  pT
jet and add to lower pT jet (split)

All surviving proto-jets are the final jets

2 2
coneR Rη ϕ∆ = ∆ +∆ <
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Iterative Seeded Fixed Cone

Use following jet finder rules:
Find particle with largest pT above a seed threshold

Create an ordered list of particles descending in pT
and pick first particle

Draw a cone of fixed size around this particle
Resolution parameter of algorithm

Collect all other particles in cone and re-calculate 
cone directions from those

Use four-momentum re-summation
Collect particles in new cone of same size and find 
new direction as above

Repeat until direction does not change → cone 
becomes stable

Take next particle from list if above pT seed 
threshold 
Repeat procedure and find next proto-jet

Note that this is done with all particles, including 
the ones found in previous cones

Continue until no more proto-jets above threshold 
can be constructed

The same particle can be used by 2 or more jets
Check for overlap between proto-jets

Add lower pT jet  to higher pT jet if sum of particle 
pT in overlap  is above a certain fraction of the 
lower pT jet (merge)
Else remove overlapping  particles from higher  pT
jet and add to lower pT jet (split)

All surviving proto-jets are the final jets

2 2
coneR Rη ϕ∆ = ∆ +∆ <
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Iterative Seeded Fixed Cone

Use following jet finder rules:
Find particle with largest pT above a seed threshold

Create an ordered list of particles descending in pT
and pick first particle

Draw a cone of fixed size around this particle
Resolution parameter of algorithm

Collect all other particles in cone and re-calculate 
cone directions from those

Use four-momentum re-summation
Collect particles in new cone of same size and find 
new direction as above

Repeat until direction does not change → cone 
becomes stable

Take next particle from list if above pT seed 
threshold 
Repeat procedure and find next proto-jet

Note that this is done with all particles, including 
the ones found in previous cones

Continue until no more proto-jets above threshold 
can be constructed

The same particle can be used by 2 or more jets
Check for overlap between proto-jets

Add lower pT jet  to higher pT jet if sum of particle 
pT in overlap  is above a certain fraction of the 
lower pT jet (merge)
Else remove overlapping  particles from higher  pT
jet and add to lower pT jet (split)

All surviving proto-jets are the final jets

2 2
coneR Rη ϕ∆ = ∆ +∆ <
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Iterative Seeded Fixed Cone

Use following jet finder rules:
Find particle with largest pT above a seed threshold

Create an ordered list of particles descending in pT
and pick first particle

Draw a cone of fixed size around this particle
Resolution parameter of algorithm

Collect all other particles in cone and re-calculate 
cone directions from those

Use four-momentum re-summation
Collect particles in new cone of same size and find 
new direction as above

Repeat until direction does not change → cone 
becomes stable

Take next particle from list if above pT seed 
threshold 
Repeat procedure and find next proto-jet

Note that this is done with all particles, including 
the ones found in previous cones

Continue until no more proto-jets above threshold 
can be constructed

The same particle can be used by 2 or more jets
Check for overlap between proto-jets

Add lower pT jet  to higher pT jet if sum of particle 
pT in overlap  is above a certain fraction of the 
lower pT jet (merge)
Else remove overlapping  particles from higher  pT
jet and add to lower pT jet (split)

All surviving proto-jets are the final jets

2 2
cone

(second protojet)

R Rη ϕ∆ = ∆ +∆ <
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Iterative Seeded Fixed Cone

Use following jet finder rules:
Find particle with largest pT above a seed threshold

Create an ordered list of particles descending in pT
and pick first particle

Draw a cone of fixed size around this particle
Resolution parameter of algorithm

Collect all other particles in cone and re-calculate 
cone directions from those

Use four-momentum re-summation
Collect particles in new cone of same size and find 
new direction as above

Repeat until direction does not change → cone 
becomes stable

Take next particle from list if above pT seed 
threshold 
Repeat procedure and find next proto-jet

Note that this is done with all particles, including 
the ones found in previous cones

Continue until no more proto-jets above threshold 
can be constructed

The same particle can be used by 2 or more jets
Check for overlap between proto-jets

Add lower pT jet  to higher pT jet if sum of particle 
pT in overlap  is above a certain fraction of the 
lower pT jet (merge)
Else remove overlapping  particles from higher  pT
jet and add to lower pT jet (split)

All surviving proto-jets are the final jets

2 2
cone

(second protojet)

R Rη ϕ∆ = ∆ +∆ <
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Iterative Seeded Fixed Cone

Use following jet finder rules:
Find particle with largest pT above a seed threshold

Create an ordered list of particles descending in pT
and pick first particle

Draw a cone of fixed size around this particle
Resolution parameter of algorithm

Collect all other particles in cone and re-calculate 
cone directions from those

Use four-momentum re-summation
Collect particles in new cone of same size and find 
new direction as above

Repeat until direction does not change → cone 
becomes stable

Take next particle from list if above pT seed 
threshold 
Repeat procedure and find next proto-jet

Note that this is done with all particles, including 
the ones found in previous cones

Continue until no more proto-jets above threshold 
can be constructed

The same particle can be used by 2 or more jets
Check for overlap between proto-jets

Add lower pT jet  to higher pT jet if sum of particle 
pT in overlap  is above a certain fraction of the 
lower pT jet (merge)
Else remove overlapping  particles from higher  pT
jet and add to lower pT jet (split)

All surviving proto-jets are the final jets

2 2
cone

(one jet)

R Rη ϕ∆ = ∆ +∆ <
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Iterative Seeded Fixed Cone

Use following jet finder rules:
Find particle with largest pT above a seed threshold

Create an ordered list of particles descending in pT
and pick first particle

Draw a cone of fixed size around this particle
Resolution parameter of algorithm

Collect all other particles in cone and re-calculate 
cone directions from those

Use four-momentum re-summation
Collect particles in new cone of same size and find 
new direction as above

Repeat until direction does not change → cone 
becomes stable

Take next particle from list if above pT seed 
threshold 
Repeat procedure and find next proto-jet

Note that this is done with all particles, including 
the ones found in previous cones

Continue until no more proto-jets above threshold 
can be constructed

The same particle can be used by 2 or more jets
Check for overlap between proto-jets

Add lower pT jet  to higher pT jet if sum of particle 
pT in overlap  is above a certain fraction of the 
lower pT jet (merge)
Else remove overlapping  particles from higher  pT
jet and add to lower pT jet (split)

All surviving proto-jets are the final jets

2 2
cone

(one jet)

R Rη ϕ∆ = ∆ +∆ <



116
P. Loch

U of Arizona

May 05, 2010
Iterative Seeded Fixed Cone

Other problems with iterative cone finders:
“Dark” tower problem

Original seed moves out of cone

Significant energy lost for jets

initial cone 1st cone

(not stable)

2nd cone

(not stable)

3rd cone

(stable)

original seed lost for jets!



117
P. Loch

U of Arizona

May 05, 2010
Iterative Seeded Fixed Cone

Other problems with iterative cone finders:
“Dark” tower problem

Original seed moves out of cone

Significant energy lost for jets



118
P. Loch

U of Arizona

May 05, 2010
Iterative Seeded Fixed Cone

Advantages
Simple geometry based algorithm

Easy to implement

Fast algorithm
Ideal for online application in experiment

Disadvantages
Not infrared safe 

Can partially be recovered by splitting & merging
Introduces split/merge pT fraction f (typically 0.50 - 0.75)

Kills “trace” of pertubative infinities in experiment
Hard to confirm higher order calculations in  “real life” without infinities!

Not collinear safe
Used pT seeds (thresholds) 

Jets not cone shaped
Splitting and merging potentially makes jets bigger than original cone size 
and changes jet boundaries
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Motivated by gluon splitting 
function

QCD branching happens all the 
time

Attempt to undo parton
fragmentation

Pair with strongest divergence 
likely belongs together

kT/Durham, first used in e+e-

Catani, Dokshitzer, Olsson, 
Turnock & Webber 1991

Longitudinal invariant version 
for hadron colliders

Transverse momentum instead 
of energy

Catani, Dokshitzer, Seymour & 
Webber 1993
S.D. Ellis & D. Soper 1993

Valid at all orders!
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Motivated by gluon splitting 
function

QCD branching happens all the 
time

Attempt to undo parton
fragmentation

Pair with strongest divergence 
likely belongs together

kT/Durham, first used in e+e-

Catani, Dokshitzer, Olsson, 
Turnock & Webber 1991

Longitudinal invariant version 
for hadron colliders

Transverse momentum instead 
of energy

Catani, Dokshitzer, Seymour & 
Webber 1993
S.D. Ellis & D. Soper 1993

Valid at all orders!
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Motivated by gluon splitting 
function

QCD branching happens all the 
time

Attempt to undo parton
fragmentation

Pair with strongest divergence 
likely belongs together

kT/Durham, first used in e+e-

Catani, Dokshitzer, Olsson, 
Turnock & Webber 1991

Longitudinal invariant version 
for hadron colliders

Transverse momentum instead 
of energy

Catani, Dokshitzer, Seymour & 
Webber 1993
S.D. Ellis & D. Soper 1993

Valid at all orders!
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Motivated by gluon splitting 
function

QCD branching happens all the 
time

Attempt to undo parton
fragmentation

Pair with strongest divergence 
likely belongs together

kT/Durham, first used in e+e-

Catani, Dokshitzer, Olsson, 
Turnock & Webber 1991

Longitudinal invariant version 
for hadron colliders

Transverse momentum instead 
of energy

Catani, Dokshitzer, Seymour & 
Webber 1993
S.D. Ellis & D. Soper 1993

Valid at all orders!
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kT –like Algorithms

Classic procedure
Calculate all distances dji for 
list of particles

Uses distance parameter
Calculate di for all particles

Uses pT
If minimum of both lists is a 
dij, combine i and j and add 
to list

Remove i and j, of course
If minimum is a di,  call i a 
jet and remove from list
Recalculate all distances and 
continue all particles are 
removed or called a jet

Features
Clustering sequence is 
ordered in kT

Follows jet structure 

Alternatives
Cambridge/Aachen clustering 

Uses angular distances only
Clustering sequence follows jet 
structure

Anti-kT clustering
No particular ordering, 
sequence not meaningful

2 2

2
T

Inclusive longitudinal invariant clu

min

stering

( , )ij i j ij

i i

d d d R R

d p

= ∆

=
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kT –like Algorithms

Classic procedure
Calculate all distances dji for 
list of particles

Uses distance parameter
Calculate di for all particles

Uses pT
If minimum of both lists is a 
dij, combine i and j and add 
to list

Remove i and j, of course
If minimum is a di,  call i a 
jet and remove from list
Recalculate all distances and 
continue all particles are 
removed or called a jet

Features
Clustering sequence is 
ordered in kT

Follows jet structure 

Alternatives
Cambridge/Aachen clustering 

Uses angular distances only
Clustering sequence follows jet 
structure

Anti-kT clustering
No particular ordering, 
sequence not meaningful
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kT –like Algorithms

Classic procedure
Calculate all distances dji for 
list of particles

Uses distance parameter
Calculate di for all particles

Uses pT
If minimum of both lists is a 
dij, combine i and j and add 
to list

Remove i and j, of course
If minimum is a di,  call i a 
jet and remove from list
Recalculate all distances and 
continue all particles are 
removed or called a jet

Features
Clustering sequence is 
ordered in kT

Follows jet structure 

Alternatives
Cambridge/Aachen clustering 

Uses angular distances only
Clustering sequence follows jet 
structure

Anti-kT clustering
No particular ordering, 
sequence not meaningful
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kT, n=1 Anti-kT, n=-1 Cambridge/Aachen, n=0
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kT, n=1 Anti-kT, n=-1 Cambridge/Aachen, n=0
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kT, n=1 Anti-kT, n=-1 Cambridge/Aachen, n=0
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kT, n=1 Anti-kT, n=-1 Cambridge/Aachen, n=0
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kT, n=1 Anti-kT, n=-1 Cambridge/Aachen, n=0
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kT, n=1 Anti-kT, n=-1 Cambridge/Aachen, n=0



132
P. Loch

U of Arizona

May 05, 2010
Recursive Recombination Algorithms



133
P. Loch

U of Arizona

May 05, 2010
Recursive Recombination Algorithms



134
P. Loch

U of Arizona

May 05, 2010
Recursive Recombination Algortihms



135
P. Loch

U of Arizona

May 05, 2010
Recursive Recombination Algortihms



136
P. Loch

U of Arizona

May 05, 2010
Recursive Recombination Algorithms



137
P. Loch

U of Arizona

May 05, 2010
Recursive Recombination Algorithms



138
P. Loch

U of Arizona

May 05, 2010
Recursive Recombination Algorithms



139
P. Loch

U of Arizona

May 05, 2010
Recursive Recombination Algorithms



140
P. Loch

U of Arizona

May 05, 2010
Recursive Recombination Algorithms



141
P. Loch

U of Arizona

May 05, 2010
Recursive Recombination Algorithms



142
P. Loch

U of Arizona

May 05, 2010
Validity of Jet Algorithms

Need to be valid to any order of perturbative calculations
Experiment needs to keep sensitivity to perturbative infinities 

Jet algorithms must be infrared safe!
Stable for multi-jet final states

Clearly a problem for classic (seeded) cone algorithms
Tevatron: modifications to algorithms and optimization of algorithm configurations

Mid-point seeded cone: put seed between two particles
Split & merge fraction: adjust between 0.5 – 0.75 for best “resolution”

LHC: need more stable approaches
Multi-jet context important for QCD measurements

Extractions of inclusive and exclusive cross-sections, PDFs
Signal-to-background enhancements in searches

Event selection/filtering based on topology
Other kinematic parameters relevant for discovery 



143
P. Loch

U of Arizona

May 05, 2010
Validity of Jet Algorithms

Need to be valid to any order of perturbative calculations
Experiment needs to keep sensitivity to perturbative infinities 

Jet algorithms must be infrared safe!
Stable for multi-jet final states

Clearly a problem for classic (seeded) cone algorithms
Tevatron: modifications to algorithms and optimization of algorithm configurations

Mid-point seeded cone: put seed between two particles
Split & merge fraction: adjust between 0.5 – 0.75 for best “resolution”

LHC: need more stable approaches
Multi-jet context important for QCD measurements

Extractions of inclusive and exclusive cross-sections, PDFs
Signal-to-background enhancements in searches

Event selection/filtering based on topology
Other kinematic parameters relevant for discovery 

Starts to miss cones

at next order!
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Midpoint Seeded Cone

Attempt to increase infrared 
safety for seeded cone

Midpoint algorithm starts with 
seeded cone 

Seed threshold may be 0 to 
increase collinear safety

Place new seeds between two 
close stable cones

Also center of three stable 
cones possible

Re-iterate using midpoint seeds
Isolated stable cones are 
unchanged

Still not completely safe!
Apply split & merge

Usually split/merge fraction 
0.75 

2 2
cone

Find midpoints for stable cones wi hi

2

t n

R y Rϕ∆ = ∆ +∆ ≤
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Midpoint Seeded Cone

Attempt to increase infrared 
safety for seeded cone

Midpoint algorithm starts with 
seeded cone 

Seed threshold may be 0 to 
increase collinear safety

Place new seeds between two 
close stable cones

Also center of three stable 
cones possible

Re-iterate using midpoint seeds
Isolated stable cones are 
unchanged

Still not completely safe!
Apply split & merge

Usually split/merge fraction 
0.75 

2 2
cone

Find midpoints for stable cones wi hi

2

t n

R y Rϕ∆ = ∆ +∆ ≤
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Midpoint Seeded Cone

Attempt to increase infrared 
safety for seeded cone

Midpoint algorithm starts with 
seeded cone 

Seed threshold may be 0 to 
increase collinear safety

Place new seeds between two 
close stable cones

Also center of three stable 
cones possible

Re-iterate using midpoint seeds
Isolated stable cones are 
unchanged

Still not completely safe!
Apply split & merge

Usually split/merge fraction 
0.75 

2 2
cone

Find midpoints for stable cones wi hi

2

t n

R y Rϕ∆ = ∆ +∆ ≤
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Midpoint Seeded Cone

Attempt to increase infrared 
safety for seeded cone

Midpoint algorithm starts with 
seeded cone 

Seed threshold may be 0 to 
increase collinear safety

Place new seeds between two 
close stable cones

Also center of three stable 
cones possible

Re-iterate using midpoint seeds
Isolated stable cones are 
unchanged

Still not completely safe!
Apply split & merge

Usually split/merge fraction 
0.75 

2 2
cone

Find midpoints for stable cones wi hi

2

t n

R y Rϕ∆ = ∆ +∆ ≤
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Midpoint Seeded Cone

Attempt to increase infrared 
safety for seeded cone

Midpoint algorithm starts with 
seeded cone 

Seed threshold may be 0 to 
increase collinear safety

Place new seeds between two 
close stable cones

Also center of three stable 
cones possible

Re-iterate using midpoint seeds
Isolated stable cones are 
unchanged

Still not completely safe!
Apply split & merge

Usually split/merge fraction 
0.75 

(from G. Salam & G. Soyez, JHEP 0705:086,2007)
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Improvements to cone 
algorithms: no seeds

All stable cones are considered
Avoid collinear unsafety in 
seeded cone algorithm

Avoid infrared safety issue 
Adding infinitively soft 
particle does not lead to new 
(hard) cone

Exact seedless cone finder
Problematic for larger 
number of particles

Approximate implementation
Pre-clustering in coarse 
towers

Not necessarily appropriate 
for particles and even some 
calorimeter signals

32

153

4 64 fixed order parton level

10 10240 very low multiplicity fi

Exact seedless cone for  particles:
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Improvements to cone 
algorithms: no seeds

All stable cones are considered
Avoid collinear unsafety in 
seeded cone algorithm

Avoid infrared safety issue 
Adding infinitively soft 
particle does not lead to new 
(hard) cone

Exact seedless cone finder
Problematic for larger 
number of particles

Approximate implementation
Pre-clustering in coarse 
towers

Not necessarily appropriate 
for particles and even some 
calorimeter signals

32

153

4 64 fixed order parton level

10 10240 very low multiplicity fi

Exact seedless cone for  particles:
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Seedless Fixed Cone

Improvements to cone 
algorithms: no seeds

All stable cones are considered
Avoid collinear unsafety in 
seeded cone algorithm

Avoid infrared safety issue 
Adding infinitively soft 
particle does not lead to new 
(hard) cone

Exact seedless cone finder
Problematic for larger 
number of particles

Approximate implementation
Pre-clustering in coarse 
towers

Not necessarily appropriate 
for particles and even some 
calorimeter signals

32

153

4 64 fixed order parton level

10 10240 very low multiplicity fi

Exact seedless cone for  particles:
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Improvements to cone 
algorithms: no seeds

All stable cones are considered
Avoid collinear unsafety in 
seeded cone algorithm

Avoid infrared safety issue 
Adding infinitively soft 
particle does not lead to new 
(hard) cone

Exact seedless cone finder
Problematic for larger 
number of particles

Approximate implementation
Pre-clustering in coarse 
towers

Not necessarily appropriate 
for particles and even some 
calorimeter signals

32

153

4 64 fixed order parton level

10 10240 very low multiplicity fi

Exact seedless cone for  particles:
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SISCone (Salam, Soyez 2007)
Exact seedless cone with geometrical (distance) ordering

Speeds up algorithm considerably!

Find all distinctive ways on how a segment can enclose a subset of the 
particles

Instead of finding all stable segments!

Re-calculate the centroid of each segment
E.g., pT weighted re-calculation of direction
“E-scheme” works as well

Segments (cones) are stable if particle content does not change
Retain only one solution for each segment

Still needs split & merge to remove overlap
Recommended split/merge fraction is 0.75

Typical times
N2lnN for particles in 2-dim plane 

1-dim example:
See following slides!

(inspired by G. Salam & G. Soyez, JHEP 0705:086,2007)
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coneFind all distinctive segments of size 2 ( ( ) operations in 1-dim)R O N
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Reposition segments to centroids (green - unchanged red - chan, ged)
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Retain only one stable solution for each segment
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Apply split & merge
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Similar ordering and combinations in 2-dim
Use circles instead of linear segments

Still need split & merge
One additional parameter outside of jet/cone size

Not very satisfactory!

But at least a practical seedless cone algorithm
Very comparable performance to e.g. Midpoint!

(from G. Salam & G. Soyez, JHEP 0705:086,2007)
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Infrared safety failure 
rates

Computing performance

(from G. Salam & G. Soyez, JHEP 0705:086,2007)
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Computing performance an 
issue

Time for traditional kT is ~N3

Very slow for LHC

FastJet implementations 
Use geometrical ordering to 
find out which pairs of 
particles have to be 
manipulated instead of 
recalculating them all!

Very acceptable performance in 
this case!

3
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Recursive Recombination (kT)

Computing performance an 
issue

Time for traditional kT is ~N3

Very slow for LHC

FastJet implementations 
Use geometrical ordering to 
find out which pairs of 
particles have to be 
manipulated instead of 
recalculating them all!

Very acceptable performance in 
this case!
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FastJet kT

Address the search approach
Need to find minimum in 
standard kT

Order N3 operations

Consider geometrically nearest 
neighbours in FastJet kT

Replace full search by search 
over (jet, jet neighbours)

Need to find nearest neighbours
for each proto-jet fast

Several different approaches: 
ATLAS (Delsart 2006) uses 
simple geometrical model, 
Salam & Cacciari (2006) 
suggest Voronoi cells

Both based on same fact 
relating dij and geometrical 
distance in ΔR

Both use geometrically 
ordered lists of proto-jets
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Fast kT (ATLAS – Delsart)

Possible implementation 
(P.A. Delsart, 2006)

Nearest neighbour search
Idea is to only limit recalculation of 
distances to nearest neighbours

Try to find all proto-jets having 
proto-jet k as nearest neighbour

Center pseudo-rapdity (or 
rapdity)/azimuth plane on k
Take first proto-jet j closest to k in 
pseudo-rapidity
Compute middle line Ljk between k
and j
All proto-jets below Ljk are closer to 
j than k → k is not nearest 
neighbour of those

Take next closest proto-jet i in 
pseudo-rapidity

Proceed as above with exclusion of 
all proto-jets above Lik

Search stops when point below 
intersection of Ljk and Lik is 
reached, no more points have k as 
nearest neighbour

( )

2

Assume  proto-jets are uniformly distributed in ,  plane

(rectangular with fintie size, area )
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FastJet kT (Salam & Cacciari)

Apply geometrical methods 
to nearest neighbour
searches

Voronoi cell around proto-jet k
defines area of nearest 
neighbours

No point inside area is closer 
to any other protojet
Apply to protojets in pseudo-
rapdity/azimuth plane

Useful tool to limit nearest 
neighbour search 

Determines region of re-
calculation of distances in kT
Allows quick updates without 
manipulating too many long 
lists

Complex algorithm!
Read G. Salam & M. Cacciari, 
Phys.Lett.B641:57-61 (2006) 

(source http://en.wikipedia.org/wiki/Voronoi_diagram)

Complexity estimate (Monte Carlo e

ln  tota

xperime

l compl

nt)

ty

:

exiN N

http://www.slac.stanford.edu/spires/find/hep/www?rawcmd=find+a+salam+and+t+kt�
http://www.slac.stanford.edu/spires/find/hep/www?rawcmd=find+a+salam+and+t+kt�
http://www.slac.stanford.edu/spires/find/hep/www?rawcmd=find+a+salam+and+t+kt�
http://www.slac.stanford.edu/spires/find/hep/www?rawcmd=find+a+salam+and+t+kt�
http://www.slac.stanford.edu/spires/find/hep/www?rawcmd=find+a+salam+and+t+kt�
http://www.slac.stanford.edu/spires/find/hep/www?rawcmd=find+a+salam+and+t+kt�
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Jet Algorithm Performance

Various jet algorithms produce different jets from the same collision event
Clearly driven by the different sensitivities of the individual algorithms

Cannot expect completely identical picture of event from jets
Different topology/number of jets
Differences in kinematics and shape for jets found at the same direction

Choice of algorithm motivated by physics analysis goal
E.g., IR safe algorithms for jet counting in W + n jets and others
Narrow jets for W mass spectroscopy
Small area jets to suppress pile-up contribution

Measure of jet algorithm performance depends on final state
Cone preferred for resonances

E.g., 2 – 3…n prong heavy particle decays like top, Z’, etc.
Boosted resonances may require jet substructure analysis – need kT algorithm! 

Recursive recombination algorithms preferred for QCD cross-sections
High level of IR safety makes jet counting more stable

Pile-up suppression easiest for regularly shaped jets
E.g., Anti-kT most cone-like, can calculate jet area analytically even after split and merge

Measures of jet performance
Particle level measures prefer observables from final state

Di-jet mass spectra etc.
Quality of spectrum important

Deviation from Gaussian etc.
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Jet Shapes (1)

(from P.A. Delsart)
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Jet Shapes (2)

(from P.A. Delsart)
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Jet Shapes (3)

(from G. Salam’s talk at the ATLAS Hadronic Calibration Workshop Tucson 2008)
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Jet Reconstruction Performance (1)

(from Salam ,Cacciari, Soyez, 

http://quality.fastjet.fr)

Quality estimator for distributions
Best reconstruction: narrow Gaussian

We understand the error on the mean!
Observed distributions often deviate from Gaussian

Need estimators on size of deviations!
Should be least biased measures

Best performance gives closest to Gaussian distributions
List of variables describing shape of distribution on next slide

Focus on unbiased estimators
E.g., distribution quantile describes the narrowest range of values 
containing a requested fraction of all events
Kurtosis and skewness harder to understand, but 
clear message in case of Gaussian distribution! 

http://quality.fastjet.fr/�
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Jet Reconstruction Performance Estimators
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Jet Reconstruction Performance

Quality of mass reconstruction for various jet finders and 
configurations

Standard model – top quark hadronic decay
Left plot – various jet finders and distance parameters

BSM – Z’  (2 TeV) hadronic decay 
Right plot – various jet finders with best configuration
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Jet Performance Examples (1)

(from Cacciari, Rojo, Salam, Soyez, JHEP 0812:032,2008)
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Jet Performance Examples (2)

(from Cacciari, Rojo, Salam, Soyez, JHEP 0812:032,2008)
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Jet Performance Examples (3)

(from Cacciari, Rojo, Salam, Soyez, JHEP 0812:032,2008)
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Jet Performance Examples (3)

(from Cacciari, Rojo, Salam, Soyez, JHEP 0812:032,2008)
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Interactive Tool

Web-based jet performance evaluation available
http://www.lpthe.jussieu.fr/~salam/jet-quality

http://www.lpthe.jussieu.fr/~salam/jet-quality�
http://www.lpthe.jussieu.fr/~salam/jet-quality�
http://www.lpthe.jussieu.fr/~salam/jet-quality�
http://www.lpthe.jussieu.fr/~salam/jet-quality�
http://www.lpthe.jussieu.fr/~salam/jet-quality/�
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pp Collisions at 7 TeV in LHC!

CERN press release March 30, 
2010 

Rolf Heuer (Director General, 
CERN): 

“Beams collided at 7 TeV in the 
LHC at 13:06 CEST today, 
marking the start of the LHC 
research program. Particle 
physicists around the world are 
looking forward to a potentially 
rich harvest of new physics as 
the LHC begins its first long run 
at an energy three and a half 
times higher than previously 
achieved at a particle 
accelerator. …”

That was at 4:06am (Arizona) this 
morning…

We were probably not awake 
but are as excited!

… and we already see two-jet 
events!

See event displays on the right!
Two different events!
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pp Collisions at 7 TeV in LHC! 

Top: Muon candidate

Two collisions at the same 
time

Pile-up!
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Recall!

Recall: the experimentalists’ view on  jets 
A bunch of particles generated by 
hadronization of a common source

Quark, gluon fragmenation
As a consequence, the particles in this bunch 
have correlated kinematic properties

Reflecting the source by sum rules and
Conservation laws

The interacting particles in this bunch 
generated an observable signal in a detector

Protons, neutrons, pions, photons, electrons, 
muons, other particles with laboratory 
lifetimes >~10ps, and the corresponding 
anti-particles

The non-interacting particles do not generate a 
directly observable signal

Neutrinos, mostly

What is jet reconstruction, then?
Model/simulation: particle jet

Attempt to collect the final state particles described above into objects (jets) representing the original parton
kinematic
Re-establishing the correlations

Experiment: detector jet
Attempt to collect the detector signals from these particles to measure their original kinematics
Usually not the parton!
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Detector Effects On Jets

100 MeV

10 GeV

1 GeV

Change of composition
Radiation and decay inside 
detector volume
“Randomization” of original 
particle content

Defocusing changes shape in 
lab frame

Charged particles bend in 
solenoid field

Attenuation changes energy
Total loss of soft charged 
particles in magnetic field
Partial and total energy loss of 
charged and neutral particles in 
inactive upstream material

Hadronic and electromagnetic 
cacades in calorimeters

Distribute energy spatially
Lateral particle shower overlap
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Detector Effects On Jets

Change of composition
Radiation and decay inside 
detector volume
“Randomization” of original 
particle content

Defocusing changes shape in 
lab frame

Charged particles bend in 
solenoid field

Attenuation changes energy
Total loss of soft charged 
particles in magnetic field
Partial and total energy loss of 
charged and neutral particles in 
inactive upstream material

Hadronic and electromagnetic 
cacades in calorimeters

Distribute energy spatially
Lateral particle shower overlap
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Detector Effects On Jets

Change of composition
Radiation and decay inside 
detector volume
“Randomization” of original 
particle content

Defocusing changes shape in 
lab frame

Charged particles bend in 
solenoid field

Attenuation changes energy
Total loss of soft charged 
particles in magnetic field
Partial and total energy loss of 
charged and neutral particles in 
inactive upstream material

Hadronic and electromagnetic 
cacades in calorimeters

Distribute energy spatially
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Detector Effects On Jets

Change of composition
Radiation and decay inside 
detector volume
“Randomization” of original 
particle content

Defocusing changes shape in 
lab frame

Charged particles bend in 
solenoid field

Attenuation changes energy
Total loss of soft charged 
particles in magnetic field
Partial and total energy loss of 
charged and neutral particles in 
inactive upstream material

Hadronic and electromagnetic 
cacades in calorimeters
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Detector Effects On Jets

Change of composition
Radiation and decay inside 
detector volume
“Randomization” of original 
particle content

Defocusing changes shape in 
lab frame

Charged particles bend in 
solenoid field

Attenuation changes energy
Total loss of soft charged 
particles in magnetic field
Partial and total energy loss of 
charged and neutral particles in 
inactive upstream material

Hadronic and electromagnetic 
cacades in calorimeters

Distribute energy spatially
Lateral particle shower overlap
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Jet Reconstruction Challenges

Experiment (“Nature”) Jet Reconstruction Challenges

physics reaction of interest (interaction or parton level)

added tracks from underlying event
added tracks from in-time (same trigger) pile-up event

jet reconstruction algorithm efficiency

longitudinal energy leakage
detector signal inefficiencies (dead channels, HV…)

pile-up noise from (off- and in-time) bunch crossings
electronic noise

calo signal definition (clustering, noise suppression…)
dead material losses (front, cracks, transitions…)

detector response characteristics (e/h ≠ 1)
jet reconstruction algorithm efficiency

lost soft tracks due to magnetic field
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Jet Reconstruction Challenges

Experiment (“Nature”)

physics reaction of interest (interaction or parton level)

added tracks from underlying event
added tracks from in-time (same trigger) pile-up event

jet reconstruction algorithm efficiency

longitudinal energy leakage
detector signal inefficiencies (dead channels, HV…)

pile-up noise from (off- and in-time) bunch crossings
electronic noise

calo signal definition (clustering, noise suppression…)
dead material losses (front, cracks, transitions…)

detector response characteristics (e/h ≠ 1)
jet reconstruction algorithm efficiency

lost soft tracks due to magnetic field

Jet Reconstruction Challenges
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Jet Reconstruction Challenges

Experiment (“Nature”)

physics reaction of interest (interaction or parton level)

added tracks from underlying event
added tracks from in-time (same trigger) pile-up event

jet reconstruction algorithm efficiency

longitudinal energy leakage
detector signal inefficiencies (dead channels, HV…)

pile-up noise from (off- and in-time) bunch crossings
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calo signal definition (clustering, noise suppression…)
dead material losses (front, cracks, transitions…)
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Jet Reconstruction Challenges

Experiment (“Nature”)

physics reaction of interest (interaction or parton level)

added tracks from underlying event
added tracks from in-time (same trigger) pile-up event

jet reconstruction algorithm efficiency

longitudinal energy leakage
detector signal inefficiencies (dead channels, HV…)

pile-up noise from (off- and in-time) bunch crossings
electronic noise

calo signal definition (clustering, noise suppression…)
dead material losses (front, cracks, transitions…)

detector response characteristics (e/h ≠ 1)
jet reconstruction algorithm efficiency

lost soft tracks due to magnetic field

Jet Reconstruction Challenges



189
P. Loch

U of Arizona

May 05, 2010
Jet Reconstruction Task

Experiment (“Nature”) The experiment starts with the actual collision or the 
generator…

Triggered collision with signal parton collision, 
fragmentation & underlying event (experiment), or:
Interaction level calculation with fragmentation and 
underlying event modeling (simulations)

… go to the particles in the simulation …
Here particle level event represent the underlying 
interaction and the full complexity of the physics of the 
collision in the experiment

… collect the detector signals …
From the readout (experiment), or:
Take the stable (observable) particles and simulate the 
signals in the detector (e.g., the calorimeter and tracking 
detector)(simulations)

… and compare them!
Complex – need to include all experimental biases like 
event selection (trigger bias), topology and detector 
inefficiencies

This establishes particle jet references for the 
detector jets!

Of course only in a statistical sense, i.e. at the level of 
distributions!
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Jet Reconstruction Task

Experiment (“Nature”)

Particles

2 2( , )pdf Q xΜ ⊗

UE
MB

MB MB

Multiple Interactions

Stable Particles

Decays

Jet Finding

Particle 
Jets

Generated
Particles

Modeling Particle Jets



191
P. Loch

U of Arizona

May 05, 2010
Jet Reconstruction Task

Modeling Calorimeter JetsExperiment (“Nature”)

Reconstructed 
Jets

Stable Particles

Raw Calorimeter Signals

Detector Simulation

Reconstructed Calorimeter Signals

Signal Reconstruction

Jet Finding

Identified 
Particles
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Jet Reconstruction Task

Measuring Calorimeter JetsExperiment (“Nature”)

Reconstructed 
Jets

Observable Particles

Raw Calorimeter Signals

Measurement

Reconstructed Calorimeter Signals

Signal Reconstruction

Jet Finding

Identified 
Particles
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Jet Calibration

What is jet calibration?
Straight forward: attempt to reconstruct a measured jet such that its final four-momentum 
is close to the true jet kinematics generating the signal

Why is it needed?
Could compare simulated and measured calorimeter signals at any scale and deduct the 
true kinematics from the corresponding particle jet in simulation

Remember energy scales in calorimeters?
But need to reconstruct any jet in the experiment

Even (or especially) the ones in events we have not simulated – which probably means new 
physics?
To understand these events the best measurement of the true jet independent of the availability 
of simulations for this specific event – no simulation bias allowed in general!

Can we calibrated without simulations at all?
Complex physics and detector environment – hard to avoid simulations for precision 
reconstruction!
But there are in-situ jet calibrations (more at another time from a special guest speaker!)

So jet reconstruction needs to include a calibration
Use a simulated calibration sample representing simple final state

Chose a somewhat understood Standard Model topology like QCD di-jets
Calibrate using measurable jet features

Establish functions using jet observables as parameters to calibrate calorimeter jets from a basic 
scale to the final jet energy scale
If done right, simulation biases can be reduced, especially concerning the correct simulation of the 
event topology

Understand the limitations (systematic error) in the context of the analysis
All this is the global subject of the remaining lectures!
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Jet Calibration Validation

Any jet calibration needs to be validated
First step is the initial closure test – apply the calibration to the same samples which were 
used to  extract it

Residual (average) deviations from the expected or true jet energy should be small – can be 
considered a first input to the systematic error!

Then apply calibration to jets in other topologies/physics channels and measure deviation 
from expected kinematics – this is the validation

Often done with simulated physics as they have an intrinsic truth reference (particle jets)
Samples with widely different topology than calibration sample preferred, possibly even several 
topologies

Understanding biases introduced 
in any given procedure is part of 
the validation

Need to develop calibrations with least 
biases

Biases can be introduced by the use of 
simulations – physics model limitations, 
inappropriate calorimeter shower simulations 
and signal extraction modeling, …
Also experimental biases due to trigger 
and event selections changing shapes of distributions etc. – more later!

Need to understand if small or hidden biases in calibration sample and  chosen calibration 
model do not increase for other topologies

Calorimeter signal definition can introduce biases due to different sensitivities to noise, jet shape 
reconstruction,… 
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Requirements For Jet Reconstruction Validation

Some obvious procedural requirements
Need the same signal treatment in data and simulation

Including the same jet finder and jet finder configuration
Need to understand the detector data very well

Need to unfold all signal extraction inefficiencies and any detector problem
Can be done by including those into the simulated signal reconstruction (e.g. 
noise) or by developing corrections for the experimental data

Need to understand the detector simulation  very well
Signal defining electromagnetic and hadronic shower features need to be 
reproduced to highest possible precision

Jet reconstruction validation
Compare basic performance measures for data and simulation 

Signal linearity, relative energy resolution, jet shapes…
Level of comparison is good estimate for systematic error of a given 
reconstruction and calibration

Assumes that simulation reflects state-of-art understanding of physics and 
detector 
Lack of understanding (data is the “truth”) then reflects measurement error

Ok, but…
Still have not told you how simulation based jet calibration is really done!

Like to lay down the ground rules first!
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Step Back: Calorimeter Signals

Need to have another look at the calorimeter
Basically all calorimeters at collider experiments show some level of non-
compensation

For sure the ones in ATLAS and CMS are!

Needs to be corrected for jet calibration
And all other hadronic final state contributions like isolated hadrons, tau-leptons, and low 
pT hadronic signals

Can this be done for highest spatial calorimeter granularity (cells)?
Not easy to see – individual cell signal without any other context hard to calibrate in non-
compensating calorimeters

Better to establish a larger context first to find out which calibration the calorimeter 
cell signal needs

Reconstructed jet itself – in ATLAS this is called Global Calibration
Topological cell clusters without jet context – in ATLAS this is called Local Calibration

Cannot recommend to use cells directly to find jets: 
High multiplicity on input for jet finders
Negative signal treatment required for four-momentum recombination 

Noise can create E<0 in cells 
Jets should consistent of significant (relevant) signal objects

Cell signal not a good image of the particle flow in jets

Larger calorimeter signal objects clearly preferred
Towers of cells – add cell signal up in projective calorimeter towers
Topological clusters of cells – add cell signals following signal correlations in showers
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Impose a regular grid view on event
Δη Δφ = 0.1 0.1 grid
Motivated by particle Et flow in hadron-hadron
collisions
Well suited for trigger purposes

Collect cells into tower grid
Cells signals can be summed with geometrical 
weights

Depend on cell area containment ratio 
Weight = 1 for projective cells of equal or 
smaller than tower size

Summing can be selective
Noise filter can be applied!

Towers have massless four-momentum 
representation

Fixed direction given by geometrical grid 
center
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Calorimeter Signal Definitions

Need to have another look at the calorimeter
Basically all calorimeters at collider experiments show some level of non-
compensation

For sure the ones in ATLAS and CMS are!

Needs to be corrected for jet calibration
And all other hadronic final state contributions like isolated hadrons, tau-leptons, and low 
pT hadronic signals

Can this be done for highest spatial calorimeter granularity (cells)?
Not easy to see – individual cell signal without any other context hard to calibrate in non-
compensating calorimeters

Better to establish a larger context first to find out which calibration the calorimeter 
cell signal needs

Reconstructed jet itself – in ATLAS this is called Global Calibration
Topological cell clusters without jet context – in ATLAS this is called Local Calibration

Cannot recommend to use cells directly to find jets: 
High multiplicity on input for jet finders
Negative signal treatment required for four-momentum recombination 

Noise can create E<0 in cells 
Jets should consistent of significant (relevant) signal objects

Cell signal not a good image of the particle flow in jets

Larger calorimeter signal objects clearly preferred
Towers of cells – add cell signal up in projective calorimeter towers
Topological clusters of cells – add cell signals following signal correlations in showers
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Calorimeter Towers

η
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Calorimeter Towers
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Impose a regular grid view on event
Δη Δφ = 0.1 0.1 grid
Motivated by particle Et flow in hadron-hadron
collisions
Well suited for trigger purposes

Collect cells into tower grid
Cells signals can be summed with geometrical 
weights

Depend on cell area containment ratio 
Weight = 1 for projective cells of equal or 
smaller than tower size

Summing can be selective
Noise filter can be applied to cell signals!

Towers have massless four-momentum 
representation
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More On Calorimeter Towers

Signal integration
Towers represent longitudinally 
summed cell signals

2-dimensional signal objects
Can include partial and complete 
signals from several particles

Towers can preserve more detailed 
signal features

Associated information to be collected 
at tower formation
E.g., energy sharing in 
electromagnetic and hadronic
calorimeters
Longitudinal signal center of gravity

Signal splitting
Towers can split signal from single 
particles

Hadronic shower width can be larger 
then tower bin, especially at higher 
pseudo-rapidity
Can cause problems with infrared 
safety

Can cause problems for seeded jet 
finders

Collateral instability
Can lead to lost signals cone-like jets

Energy in tower bins outside of jet can 
belong to particle signal in jet

(drawing by K. Perez, Columbia University)
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Topological Cell Clusters

Collect cell into energy “blobs”
Idea is to collect all cell signals 
belonging to a given particle into 
one cluster of cells

Basically reconstruct the 
shower for each particle 
entering the calorimeter

Needs algorithm to form energy 
blobs at the location of the 
shower signal in the calorimeter

Follow the shower-induced cell 
signal correlations

Extract most significant signal 
from all calorimeter cells

Cluster formation uses signal 
significance as guidance

Not the total signal – noise 
changes from calorimeter 
region to calorimeter region

Implicit noise suppression in 
cluster formation

Cluster signals should include 
least amount of noise
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Topological Cell Clusters

Collect cell into energy “blobs”
Idea is to collect all cell signals 
belonging to a given particle into 
one cluster of cells

Basically reconstruct the 
shower for each particle 
entering the calorimeter

Needs algorithm to form energy 
blobs at the location of the 
shower signal in the calorimeter

Follow the shower-induced cell 
signal correlations

Extract most significant signal 
from all calorimeter cells

Cluster formation uses signal 
significance as guidance

Not the total signal – noise 
changes from calorimeter 
region to calorimeter region

Implicit noise suppression in 
cluster formation

Cluster signals should include 
least amount of noise

Electronic Noise in Calorimeter Cells S. M
enke, ATLAS Physics W

orkshop 
07/2005

Pile-up Noise in Calorimeter Cells S. M
enke, ATLAS Physics W

orkshop 
07/2005
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ATLAS Topological Cell Clustering

Cluster seeding
Defined by signal significance above 
primary threshold

Cells above this threshold can seed 
cluster

Cluster growth
Defined by signal significance above 
secondary threshold

Cells neighbouring seeds with 
significance above this threshold drive 
cluster growths

Cluster signal
Defined by cells with significance above 
basic threshold

Cells to be considered in cluster energy 
sums

Use of negative signal cells
Thresholds are considered for the 
absolute (unsigned) signal magnitude

Large negative signals can seed and 
grow clusters 

Parameters for each stage optimized 
with testbeam data

Experimental single pion shower shapes 
guide cluster algorithm develpoment

Clean tuning reference!

cell

cell

cell

cell

cell

cell
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ATLAS Topological Cell Clustering

Cluster seeding
Defined by signal significance above 
primary threshold

Cells above this threshold can seed 
cluster

Cluster growth control
Defined by signal significance above 
secondary threshold

Cells neighbouring seeds with 
significance above this threshold drive 
cluster growths

Cluster signal
Defined by cells with significance above 
basic threshold

Cells to be considered in cluster energy 
sums

Use of negative signal cells
Thresholds are considered for the 
absolute (unsigned) signal magnitude

Large negative signals can seed and 
grow clusters 

Parameters for each stage optimized 
with testbeam data

Experimental single pion shower shapes 
guide cluster algorithm develpoment

Clean tuning reference!

↑ P
↑
N

↑ S

180 GeV pions

Resolution of Sum Eclus

↑
S↑

N
↑
P

Mean of Sum Eclus
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Clustering Algorithms

1. Find cell with most significant seed over primary threshold S

2. Collect all cells with significance above basic threshold P
Consider neighbours in three dimensions

Defined by (partly) shared area, (partly) shared edge, or shared corner point

E.g., 26 neighbours for perfectly cubed volumes of equal size

Neighbours can be in other calorimeter regions or even other calorimeter 
sub-systems

Granularity change to be considered in neighbouring definition

3. For all cells neighbouring seeds with signal significance above 
secondary threshold N, collect neighbours of neighbours if their 
signal significance is above P

Same rules as for collection around primary seed

4. Continue until cluster does not grow anymore
Automatically generate “guard ring” of small signal cells at cluster margin

In three dimensions, of course

5. Take next not yet used seed cell and collect next cluster
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Effect Of Strict Nearest Neighbour Approach

Large topologically connected regions in calorimeter can lead to 
large cell clusters

Lost particle flow structure can introduce problems for jets
Infrared safety, in particular

Need to refine the clustering algorithm
Try to match single particle shower shapes better

Splitting the clusters
Examine spatial cluster signal structure – find local signal maxima

“hill and valley” structural analysis in three dimensions

Split cluster between two maxima
In three dimensions, of course!

Share energy of cells in signal valleys
Needs sharing rules – introduces “geometrically” weighted cell energy 
contribution to cluster signal

Introduces new tunable parameter
Local signal maximum threshold is defined in units of energy, not 
significance!
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Splitting & Cell Energy Sharing

Splitting technique
Guided by finest calorimeter 
granularity

Typically in electromagnetic 
calorimeter

Allows to split larger cell signals 
without signal valley

Typically in hadronic calorimeters
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Splitting & Cell Energy Sharing

Splitting technique
Guided by finest calorimeter 
granularity

Typically in electromagnetic 
calorimeter

Allows to split larger cell signals 
without signal valley

Typically in hadronic calorimeters

1 2

1
1

1 2

2 1

Rule for energy sharing (ATLAS example):

1

(  is the distance of the cell from the centroid of cluster )

Each cell can only appear in up to two clusters 
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Cluster Shapes

Clusters have shapes
Geometrical moments and sizes

Lateral and longitudinal

Tilt of principal axis
With respect to direction 
extrapolation from primary 
vertex (magnetic field!)

Density and compactness 
measures

Cluster energy distribution in 
cells 

Energy sharing between 
calorimeter segments and 
modules

Shower structures

Useful for cluster calibration
Exploit shape sensitivity to 
shower character

Hadronic versus electromagnetic
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Cell Signal Significance Spectrum

Modeled effect of 
topological clustering on 
the cell signal 
significance spectrum, 
for purposes of 
illustration here with 
only the primary (seed) 
threshold, no secondary 
(growth) threshold.
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no clusters, cells 
with signal & noise
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no clusters, cells 
with signal & noise

no clusters, cells 
with only noise

clustered cells, 
signal & noise

clustered noise cells
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Cell Signal Significance Spectrum

probability for 
“true” signal for all 
cells

probability for 
“true” signal for 
clustered cells
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Cell Signal Significance Spectrum

probability for 
“true” signal for all 
cells

probability for 
“true” signal for 
clustered cells

Note change of shape of 
probability density 
function due to 
correlations introduced by 
showering – clustered 
small signal cells have 
more likely some true 
signal because they are in 
the neighbor-hood of a 
cell with significant signal, 
while cells with the same 
signal from noise only are 
more often suppressed!  
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Probably For Cell To Have True Signal 

Significant boost of  
likelihood that small 
signals are generated by 
particles (rather than 
noise) in clustered cells!
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Cluster signal
Sum of clustered cell energies

Possibly with geometrical weight 
introduced by cluster splitting

Cluster direction & location
Barycenter in (η,φ) from energy 
weighted cell directions

Negative signal cells contribute with 
absolute of their signal
Small effect on direction of final 
cluster from particles – negative 
signals are noise, i.e. small!

Consistent approach for direction 
calculation 

Leaves true signal and noise clusters 
at the right direction

Same approach for geometrical signal 
center

“center of gravity”

Cluster four-momentum
Massless pseudo-particle approach 
similar to tower

Consistent with cluster idea of 
reconstructing showers rather than 
particles

cell, cluster

0,cluster cell, cluster 0,cell
clustered 

cell,

cluster

cells

(electromagnetic energy scale)

(with 1 only for cells shared between clusters)

Total cluster signal: 

Direction and location:

w

E w E

w
η

≠

=

= ∑
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Cluster Kinematics

Cluster signal
Sum of clustered cell energies

Possibly with geometrical weight 
introduced by cluster splitting

Cluster direction & location
Barycenter in (η,φ) from energy 
weighted cell directions

Negative signal cells contribute with 
absolute of their signal
Small effect on direction of final 
cluster from particles – negative 
signals are noise, i.e. small!

Consistent approach for direction 
calculation 

Leaves true signal and noise clusters 
at the right direction

Same approach for geometrical signal 
center

“center of gravity”

Cluster four-momentum
Massless pseudo-particle approach 
similar to tower

Consistent with cluster idea of 
reconstructing showers rather than 
particles

( ) cluster cluster
cluster cluster 0,cluster

cluster cluster

cluster

cluster cluster cluster

(electromagnetic energy scale)
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Cluster Features

Signal integration
Clusters sum cell signals without grid

3-dimensional signal objects
Can include partial and complete 
signals from several particles

Clusters preserve some detailed 
signal features

Associated information to be 
collected at cluster formation
E.g., energy sharing in 
electromagnetic and hadronic
calorimeters
Longitudinal signal center of gravity
Shapes 

Signal splitting
Topological clusters need splitting 
algorithm

Cannot follow individual showers 
perfectly in jet environments
Can cause problems with infrared 
safety

Few problems with seed and energy 
leakage

Can include energy from cells even 
outside of jet cone

(drawing by K. Perez, Columbia University)
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Noise Suppressed Tower Signals

Signal formation
Fill towers with cells from topological 
clusters

These survived noise suppression
Same energy collection as unbiased 
towers

Signal integration
Sum cell signals on tower grid

2-dimensional signal objects
Can include partial and complete 
signals from several particles

Same additional signal features as 
unbiased towers

Associated information to be collected 
at tower formation
E.g., energy sharing in 
electromagnetic and hadronic
calorimeters
Longitudinal signal center of gravity

Signal splitting
Can split showers, have problems with 
seeds, and cell energy “leakage”

Same problems as unbiased tower
Applies regular  geometrical splitting

Transverse energy flow motivated 
energy distribution
Avoid splitting threshold parameter 

(drawing by K. Perez, Columbia University)
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General cluster features
Motivated by shower reconstruction

No bias in signal definition towards reconstruction of a certain, possibly very specific, physics signal object like a jet
Clusters have shapes and location information

Spatial cell energy distributions and their correlations drive longitudinal and lateral extensions 
Density and energy sharing measures
Signal center of gravity and (directional) barycenter

Shapes are sensitive to shower nature 
At least for a reasonable clustering algorithm

Local (cluster) calibration strategy
First reconstruct truly deposited energy at cluster location…

e/h, mostly
…then correct for other energy losses in the vicinity of signal cluster

Dead material energy losses and signal losses due to noise suppression

Calibration input
Reconstructed cluster shapes represent shower shapes

E.g., dense and compact clusters indicate electromagnetic shower activity anywhere in the calorimeter 
Can be intrinsic to a hadronic shower!

Calibration functions can exploit the cluster shapes to apply the corrections for e/h ≠ 1 dynamically
Location of cluster together with shape 

E.g., dense and compact clusters located in electromagnetic calorimeter indicate electron or photon as particle originating the 
signal

Cluster not (part of) hadronic shower signal!
Clusters can classified before calibration

Electron/photon clusters need different calibration than dense clusters from hadronic showers! 

Cluster calibration extensions
Shapes,  location and size also indicate  possible energy losses around the cluster

Some correlations between energy losses in inactive material in front or inside of clusters
Cluster size and signal neighbourhood sensitive to lost true signal in noise suppression algorithm 

Out-of-cluster corrections
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Cluster Classification (ATLAS)

Phase-space pion counting method
Classify clusters using the correlation of

Shower shape variables in single π MC events

Electromagnetic fraction estimator in bin of shower shape variables:

Implementation
keep F in bins of η, E, λ, ρ of clusters for a given cluster

If E < 0, then classify as unknown
Lookup F from the observables |η|, E, λ, ρ
Cluster is EM if F > 50%, hadronic otherwise

0

0

0,cluster cluster cluster
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Hadronic Cluster Calibration

Calibration with cell signal weights
Idea is to compensate for lack of pion response in each cell

Pioneered in CDHS and applied in H1
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Idea is to compensate for lack of pion response in each cell

Pioneered in CDHS and applied in H1
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Hadronic Cluster Calibration

Calibration with cell signal weights
Idea is to compensate for lack of pion response in each cell

Pioneered in CDHS and applied in H1

Uses deposited energies in cells
Deposit can be in active or passive medium of calorimeter!
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Hadronic Cluster Calibration

Calibration with cell signal weights
Idea is to compensate for lack of pion response in each cell

Pioneered in CDHS and applied in H1

Uses deposited energies in cells
Deposit can be in active or passive medium of calorimeter!

( )

invisible
cell

"deposited" energy anywhere within cell boundari

em
cell

em
cell

escaped
celdeposited,cell

escalib
cell,cluster

0,cell em active

recon

ion
cell

ion
ce

l

l

r

l

st

, , ,

E E E

w
E c A t xE

E

E

E= + + +

=
 = ⋅ ⊕ 







escaped
c

ucted em scale sig

el

nal

l( is the energy escaping the calorimeter, i.e.

carried by neutrinos - it is often assigned to the cell

in which the neutrino vertex is loca d

 

te )

E





260
P. Loch

U of Arizona

May 05, 2010
Hadronic Cluster Calibration

Calibration with cell signal weights
Idea is to compensate for lack of pion response in each cell

Pioneered in CDHS and applied in H1

Uses deposited energies in cells
Deposit can be in active or passive medium of calorimeter!

Energy deposited in cell not available in experiment
Use of detector simulations

Deposited energy and signal available

Use “unit cell” volume concept to collect invisible energies

Shower model dependent!

Use single pion testbeam data
Develop model for weights in cells

Fit parameters of model using cells testbeam
Minimize resolution with beam energy constraint

Statistical – does not necessarily produce the correct weights!
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Cell Signal Weights

Basic idea
Use a dynamically self-adjusting calibration 
weight 

High cell signal density → 
electromagnetic deposit

Low cell signal density → hadronic
deposit

Principal weighting function characteristics
Depends on cell energy density

Depends on cell location

Accidental application to electron signals 
should yield correct energy as well

Extraction of weighting functions
Minimize resolution in (pion) testbeam data 

Fitting function model 

May not produce the correct weights –
may even be unphysical!

Use simulation 
Deterministic  approach relates signal to 
deposited energy within cell volume – no 
fitting!

May depend on details of (hadronic) 
shower modeling

rec,cell cell 0,cell deposited,cell( )E w E E= ⋅ =
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Cell Signal Weights

Basic idea
Use a dynamically self-adjusting calibration 
weight 

High cell signal density → 
electromagnetic deposit

Low cell signal density → hadronic
deposit

Principal weighting function characteristics
Depends on cell energy density

Depends on cell location

Accidental application to electron signals 
should yield correct energy as well

Extraction of weighting functions
Minimize resolution in (pion) testbeam data 

Fitting function model 

May not produce the correct weights –
may even be unphysical!

Use simulation 
Deterministic  approach relates signal to 
deposited energy within cell volume – no 
fitting!

May depend on details of (hadronic) 
shower modeling
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Cell Signal Weights

Basic idea
Use a dynamically self-adjusting calibration 
weight 

High cell signal density → 
electromagnetic deposit

Low cell signal density → hadronic
deposit

Principal weighting function characteristics
Depends on cell energy density

Depends on cell location

Accidental application to electron signals 
should yield correct energy as well

Extraction of weighting functions
Minimize resolution in (pion) testbeam data 

Fitting function model 

May not produce the correct weights –
may even be unphysical!

Use simulation 
Deterministic  approach relates signal to 
deposited energy within cell volume – no 
fitting!

May depend on details of (hadronic) 
shower modeling
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Cell Signal Weights

Basic idea
Use a dynamically self-adjusting calibration 
weight 

High cell signal density → 
electromagnetic deposit

Low cell signal density → hadronic
deposit

Principal weighting function characteristics
Depends on cell energy density

Depends on cell location

Accidental application to electron signals 
should yield correct energy as well

Extraction of weighting functions
Minimize resolution in (pion) testbeam data 

Fitting function model 

May not produce the correct weights –
may even be unphysical!

Use simulation 
Deterministic  approach relates signal to 
deposited energy within cell volume – no 
fitting!

May depend on details of (hadronic) 
shower modeling
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Cell Signal Weights

Basic idea
Use a dynamically self-adjusting calibration 
weight 

High cell signal density → 
electromagnetic deposit

Low cell signal density → hadronic
deposit

Principal weighting function characteristics
Depends on cell energy density

Depends on cell location

Accidental application to electron signals 
should yield correct energy as well

Extraction of weighting functions
Minimize resolution in (pion) testbeam data 

Fitting function model 

May not produce the correct weights –
may even be unphysical!

Use simulation 
Deterministic  approach relates signal to 
deposited energy within cell volume – no 
fitting!

May depend on details of (hadronic) 
shower modeling

( )2

rec,cell beam2
2

events

2 2

Fit  ( , ),  ( , ) with

min

i.e.:

0 and 0

x x

E E

α β

χ
σ

χ χ
α β

−
= =

∂ ∂
= =

∂ ∂

∑

 

 

rec,cell

0,cell

E

E
deposited,cell

0,cell

E

E



266
P. Loch

U of Arizona

May 05, 2010
Cell Signal Weights

Basic idea
Use a dynamically self-adjusting calibration 
weight 

High cell signal density → 
electromagnetic deposit

Low cell signal density → hadronic
deposit

Principal weighting function characteristics
Depends on cell energy density

Depends on cell location

Accidental application to electron signals 
should yield correct energy as well

Extraction of weighting functions
Minimize resolution in (pion) testbeam data 

Fitting function model 

May not produce the correct weights –
may even be unphysical!

Use simulation 
Deterministic  approach relates signal to 
deposited energy within cell volume – no 
fitting!

May depend on details of (hadronic) 
shower modeling

ATLAS cluster-based approach:
1. Use only cells in hadronic clusters

2. Cluster sets global energy scale as a 
reference for densities

3. Calculate Edeposited,cell/E0,cell from single 
pion simulations in bins of cluster 
energy, cell energy density, cluster 
direction, and calorimeter sampling layer

4. Store [Edeposited,cell/E0,cell]-1 in look-up 
tables

5. Retrieve weights for any cell in any 
cluster from look-up table to reconstruct 
cell and cluster energies
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Cell Signal Weights

Basic idea
Use a dynamically self-adjusting calibration 
weight 

High cell signal density → 
electromagnetic deposit

Low cell signal density → hadronic
deposit

Principal weighting function characteristics
Depends on cell energy density

Depends on cell location

Accidental application to electron signals 
should yield correct energy as well

Extraction of weighting functions
Minimize resolution in (pion) testbeam data 

Fitting function model 

May not produce the correct weights –
may even be unphysical!

Use simulation 
Deterministic  approach relates signal to 
deposited energy within cell volume – no 
fitting!

May depend on details of (hadronic) 
shower modeling

ATLAS cluster-based approach:
1. Use only cells in hadronic clusters

2. Cluster sets global energy scale as a 
reference for densities

3. Calculate Edeposited,cell/E0,cell from single 
pion simulations in bins of cluster 
energy, cell energy density, cluster 
direction, and calorimeter sampling layer

4. Store [Edeposited,cell/E0,cell]-1 in look-up 
tables

5. Retrieve weights for any cell in any 
cluster from look-up table to reconstruct 
cell and cluster energies

calib
rec,cluster rec,cell

cells in cluster

calib
cell,cluster 0,cluster cluster cell cell 0,cell

cells in cluster

( , , , )

E E

w E S Eη ρ

= =

⋅

∑

∑
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Cluster Dead Material Corrections

Dead material
Energy losses not directly measurable

Signal distribution in vicinity can help
Introduces need for signal corrections up to 
O(10%)

Exclusive use of signal features
Corrections depend on electromagnetic or 
hadronic energy deposit

Major contributions
Upstream materials
Material between LArG and Tile (central)

Cracks
dominant sources for signal losses

|η|≈1.4-1.5
|η|≈3.2

Clearly affects detection efficiency for 
particles and jets

Already in trigger!
Hard to recover jet reconstruction 
inefficiencies 

Generate fake missing Et contribution
Topology dependence of missing Et 
reconstruction quality

Additive correction:
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Out-of-cluster Corrections

Compensate loss of true signal
Limited efficiency of noise 
suppression scheme

Discard cells with small true 
energy not close to a primary or 
secondary seed
Accidental acceptance of a pure 
noise cell

Can be significant for isolated pions
10% at low energy

Correction derived from single 
pions

Compensates the isolated particle 
loss
But in jets neighboring clusters can 
pick up lost energy

Use isolation moment to measure 
effective “free surface” of each 
cluster

Scale single pion correction with 
this moment (0…1)

Additive correction:

single pions

QCD jets
calib+DM+OOC
rec,cluster rec,cluster

calib+DM OOC
rec,cluster rec,cluster cluster isol 0,cluster( , , , )

E E

E E x m E

=

= +

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Local Calibration Features

Attempt to calibrate hadronic calorimeter signals 
in smallest possible signal context

Topological clustering implements noise 
suppression with least bias signal feature 
extraction

Residual concerns about infrared safety!
No bias towards a certain physics analysis

Calibration driven by calorimeter signal features 
without further assumption 

Good common signal base for all hadronic final 
state objects

Jets, missing Et, taus
Factorization of cluster calibration

Cluster classification largely avoids 
application of hadronic calibration to 
Electromagnetic signal objects

Low energy regime challenging
Signal weights for 
hadronic calibration are 
functions of cluster and 
cell parameters and 
variables

Cluster energy and 
direction
Cell signal density and 
location (sampling 
layer)

Dead material and out of 
cluster corrections are 
independently applicable

Factorized calibration 
scheme

Local calibration does not 
reproduce jet energy

Energy losses not correlated with 
cluster signals can not be corrected

Magnetic field losses
Dead material losses

Needs additional jet energy scale 
corrections

Use specific jet context to derive 
those

Only applicable to cluster jets!
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Use jet context for cell calibration
Determine cell weights using jet energy constraints

Same principle idea as for local cell weighting, but 
different global energy scale
Needs jet truth reference

Jet context relevant
Supports assumption of hadronic signal activity
Has enhanced electromagnetic component 
contributing to the weighting function 
parameterizations of all cells – larger (volume/area) 
context than topological clustering
May be biased with respect to calorimeter signal 
definition and jet algorithms

Jet energy references for calorimeter jets
Simulation

Matching particle level jet (same jet definition) 
energy

Experiment
pT balance with electromagnetic system like photon 
or Z-boson
W mass spectroscopy 

Sampling energy based jet calibration
Coarser than cell signals but less numerical 
complexity

Fewer function parameters
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Truth Jet Matching

Simulated particle jets
Establish “true” energy reference to constrain calibration function fits for 
calorimeter jets

Attempt to reconstruct true jet energy

Need matching definition
Geometrical distance

Isolation and unique 1-to-1 jet matching

2 2
particle,jet rec,jet particle,jet rec,jet( ) ( )

R

η η ϕ ϕ

∆ =

− + −
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Global Calibration Fits Using Simulations

Select matched jet pair
Typically small matching radius

Rmatch = 0.2 – 0.3

Restrict jet directions to regions 
with good calorimeter response

No excessive dead material
Away from cracks and complex 
transition geometries

Calibration functions
Cell signal weighting

Large weights for low density 
signals
Small weights for high density 
signals

Sampling layer signal weighting
Weights determined by 
longitudinal energy sharing in 
calorimeter jet

Functions can be complex
Often highly non-linear systems

Example of calorimeter regions to be
considered for jet calibration fits in ATLAS

(tinted green). The red tinted regions indicate
calorimeter cracks and transitions. The points
show the simulated jet response on electro-
magnetic energy scale, as function of the jet
pseudorapidity.
(figure for illustration purposes only!)
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Global Calibration Fits Using Simulations

Select matched jet pair
Typically small matching radius

Rmatch = 0.2 – 0.3

Restrict jet directions to regions 
with good calorimeter response

No excessive dead material
Away from cracks and complex 
transition geometries

Calibration functions
Cell signal weighting

Large weights for low density 
signals
Small weights for high density 
signals

Sampling layer signal weighting
Weights determined by 
longitudinal energy sharing in 
calorimeter jet

Functions can be complex
Often highly non-linear systems
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Global Calibration Fits Using Simulations

Select matched jet pair
Typically small matching radius

Rmatch = 0.2 – 0.3

Restrict jet directions to regions 
with good calorimeter response

No excessive dead material
Away from cracks and complex 
transition geometries

Calibration functions
Cell signal weighting

Large weights for low density 
signals
Small weights for high density 
signals

Sampling layer signal weighting
Weights determined by 
longitudinal energy sharing in 
calorimeter jet

Functions can be complex
Often highly non-linear systems
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Global Calibration Fits Using Simulations

Select matched jet pair
Typically small matching radius

Rmatch = 0.2 – 0.3

Restrict jet directions to regions 
with good calorimeter response

No excessive dead material
Away from cracks and complex 
transition geometries

Calibration functions
Cell signal weighting

Large weights for low density 
signals
Small weights for high density 
signals

Sampling layer signal weighting
Weights determined by 
longitudinal energy sharing in 
calorimeter jet

Functions can be complex
Often highly non-linear systems

rec, 0, 0,cell
cells in

sampling 

0,cell
jet

EM

 cells in

EMC EMC
0,cell

all jet cells

C ,

  

Possible parameterizations:
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Fitting

Possible constraints

Resolution optimization

Signal linearity

Combination of both

Regularization of calibration 

functions

Try to linearize function ansatz

Use polynomials 

Can reduce fits to solving system 

of linear equations

Non-linear function fitting

Use numerical approaches to 

find (local) minimum for multi-

dimensional test functions (e.g., 

software like MINUIT etc.)

{ }
( )

rec,jet cell cell cell 0,cell
cells in jet

2

rec,jet particle,jet2
2 2

matching rec,jet particle,jet
jet pairs

Reconstructed jet energy with cell calibration:

Fit  such that...
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Global Calibration Fits Using Simulations

Attempted de-convolution of signal contributions
Normalization choice convolutes various jet response features

E.g., cell weights correct for dead material and magnetic field induced energy losses, etc.

Limited de-convolution
Fit corrections for energy losses in material between calorimeter modules with different functional form

Separation in terms, but still a correlated parameter fit

( )

rec,jet cell cell cell 0,cell DM,jet
cells in jet

2

rec,jet particle,jet2
2 2

m

2

atching rec,jet particle,jet
jet p

Reconstructed jet energy with cell calibration:

Use  test function such

( , )
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Global Calibration Fits Using Simulations

Attempted de-convolution of signal contributions
Normalization choice convolutes various jet response features

E.g., cell weights correct for dead material and magnetic field induced energy losses, etc.

Limited de-convolution
Fit corrections for energy losses in material between calorimeter modules with different functional form

Separation in terms, but still a correlated parameter fit

( )

rec,jet cell cell cell 0,cell DM,jet
cells in jet

2

rec,jet particle,jet2
2 2

m

2

atching rec,jet particle,jet
jet p

Reconstructed jet energy with cell calibration:

Use  test function such
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Preliminaries

Plots for this session
Most if not all plots shown in this session are meant as examples and for 
illustration purposes

Educational showcases to highlight certain features of energy scales and 
calorimeter response

They do not represent the up-to-date estimates for ATLAS jet 
reconstruction performance

In general much better than the (old) results shown here!

Not many new plots can be shown in public yet!

The performance plots shown are published 
Reflection of state-of-art at a given moment in time

No experimental collision data available at that time!
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Summary Of Jet Inputs

Experiment and simulation
Calorimeter towers

2-dim signal objects from all cells or only 
cells surviving noise suppression 
(topological towers in ATLAS)

Calorimeter clusters
3-dim signal objects with implied noise 
suppression (topological clusters in ATLAS)

Tracks
Reconstructed inner detector tracks – only 
charged particles with pT > pTthreshold = 500 
MeV – 1 GeV (typically)

Simulation only
Generated stable particles

Typically τlab > 10 ps to be a signal source

towers

clusters

particles

tracks
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Calorimeter jet response
Electromagnetic energy scale

Available for all signal 
definitions
No attempt to compensate or 
correct signal for limited 
calorimeter acceptance

Global hadronic energy scale
All signal definitions, but 
specific calibrations for each 
definition
Calibrations normalized to 
reconstruct full true jet energy 
in “golden regions” of 
calorimeter

Local hadronic energy scale
Topological clusters only
No jet context – calibration 
insufficient to recover 
calorimeter acceptance 
limitations – no corrections for 
total loss in dead material and 
magnetic field charged 
particles losses)

0,tower particle
towers in particles in

jet jet0,jet

0,jet 0,tower particle
towers in particles i

jet

reconstructed calorimeter jet 

Unbiased and noise-suppressed towers:
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Calorimeter jet response
Electromagnetic energy scale

Available for all signal 
definitions
No attempt to compensate or 
correct signal for limited 
calorimeter acceptance

Global hadronic energy scale
All signal definitions, but 
specific calibrations for each 
definition
Calibrations normalized to 
reconstruct full true jet energy 
in “golden regions” of 
calorimeter

Local hadronic energy scale
Topological clusters only
No jet context – calibration 
insufficient to recover 
calorimeter acceptance 
limitations – no corrections for 
total loss in dead material and 
magnetic field charged 
particles losses)

cell cell 0,cell DM
cells in

jet
rec,jet

0,jetrec,jet
cell cell 0,cell DM

cells in 0,jet
jet

Cell based calibration for all calorimeter 

signals and jets in "golden spot":
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Calorimeter jet response
Electromagnetic energy scale

Available for all signal 
definitions
No attempt to compensate or 
correct signal for limited 
calorimeter acceptance

Global hadronic energy scale
All signal definitions, but 
specific calibrations for each 
definition
Calibrations normalized to 
reconstruct full true jet energy 
in “golden regions” of 
calorimeter

Local hadronic energy scale
Topological clusters only
No jet context – calibration 
insufficient to recover 
calorimeter acceptance 
limitations – no corrections for 
total loss in dead material and 
magnetic field charged 
particles losses)

rec,cluster particle
clusters in particles in

jet jetrec,jet

rec,jet rec,cluster particle
towers in p

jet

reconstructed calorimeter jet 

Locally calibrated clusters only:
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Final Jet Energy Scale (JES)
Final jet calibration

All corrections applied

Best estimate of true (particle) jet energy
Flat response as function of pT

Uniform response across whole calorimeter

Relative energy resolution
Depends on the calorimeter jet response – calibration applies compensation corrections

Resolution improvements by including jet signal features
Requires corrections sensitive to measurable jet variables

Can use signals from other detectors

Determination with simulations
Measure residual deviations of the calorimeter jet response from truth jet energy

Derive corrections from the calorimeter response at a given scale as function of pT (linearity) 
and pseudorapidity (uniformity) for all particle jets

Use numerical inversion to parameterize corrections
Conversion from truth variable dependence of response to reconstructed variable response
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From simulations 
Compare calorimeter response with particle 
jet energy as function of the particle jet 
energy

All jets, all regions, full kinematic coverage

Residual deviation from linearity
Depend on calorimeter energy scale –
large for electromagnetic energy scale and 
local calibration due to missing jet level 
corrections

Small for global calibration due to jet 
energy normalization

Corrections can be extracted from residuals
A bit tricky – need to use numerical 
inversion (see later)

From experiment
Validate and extract calibrations from 
collision data

W boson mass in hadronic decay is jet 
energy scale reference

pT balance of electromagnetic signal (Z 
boson, photon) and jet

Note change of reference scale
In-situ channels provide interaction 
(parton) level truth reference!

Global Calibration

Local Calibration

tower jet closure test for calibrated 

calorimeter response

cluster jet closure 
test
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Signal Uniformity

Simulations
Compare calorimeter response 
with particle jet energy as 
function of the jet direction

All jets in full kinematic range

Residual non-uniformities 
expected in cracks

Only jets in “golden regions” 
used for calibration

From experiment
Di-jet pT balance

Balance pT of well calibrated jet 
in “golden region” with jet in 
other calorimeter regions 

Can also use photon pT balance 
with jets outside of “golden 
region”

Global Calibration

Local Calibration
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Relative Jet Energy Resolution

Simulations

Measure fluctuations of 

calorimeter jet energy as 

function of truth jet energy

All jets in full kinematic range 

and in various regions of 

pseudo-rapidity

From experiment

Di-jet final states

Measure relative fluctuations 

of jet energies in back-to-back 

(pT) balanced di-jets

Global Calibration

Local Calibration
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JES Calibration Parameterizations

Golden rule of calorimetric energy measurement
The fully calibrated calorimeter signal is most probably the true jet (or particle) 
energy

Interpretation holds only for symmetrically distributed  fluctuations – mean value is 
identical to average value 

The resolution of the measurement is given by the characteristics of the signal 
fluctuations

Can only be strictly and correctly understood in case of Gaussian response distributions

We need a normally distributed response!

Problem for all calibration techniques
Residual deviations from expected jet reconstruction performance must be measure 
as function of true quantities

Only then is the fluctuation of the response R = Ereco/Etrue really Gaussian after calibration

But need to apply corrections to measured jets
Need parameterization as function of reconstructed quantities

Simple re-binning does not maintain the Gaussian characteristics of the fluctuations – hard 
to control error!

Use numerical inversion to transfer the calibrations from true to measured 
parameters

Maintains Gaussian character 
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Understanding Response Fluctuations

Toy model 
Generate flat jet energy 
spectrum

Uniform energy distribution 
for Ejet in [Emin,Emax]

Smear true jet energy with 
Gaussian

Assume perfect average 
calibration

Width of distribution follows 
calorimetric energy resolution 
function  

Calculate the response 
In bins of Etrue and in bins of 
Esmear = Ereco

Repeat exercise with steeply 
falling energy spectrum

smear reco true

2
2

true

smear true

2

Calibrated response:

Calorimeter resolution function (no noise):

Smeared energy:

 is a random number following the Gaussian PD

1 1
(

F:

) exp
2

e
2

i.

E

E

E E E

a
c

E E

E E r

g r

r

r

σ

σ

π

= =

= +

= + ⋅

 = −  

smear true

true

. distributed around 0 with a width of 1

Response fluctuations:

with  0
E E

R R
E
−

= =
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Response Distributions

true( )p E const= 4
true true( )p E E −∝

Lower edge of E spectrum

Center of E spectrum

High end of E spectrum

smea

t

r

rue

binned in 

binned in 

E

E
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Response Distributions

true( )p E const= 4
true true( )p E E −∝

Lower edge of E spectrum

Center of E spectrum

High end of E spectrum

smea

t

r

rue

binned in 

binned in 

E

E



294
P. Loch

U of Arizona

May 05, 2010
Numerical Inversion

( )trueR E

( )recR E

( )true trueR E E

trueE

Transfer of response function 
from dependence on true 
variable to dependence on 
measured variable

( )rec true true( ) ( )R E R R E E= ⋅

rec true true( )E R E E
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Numerical Inversion Functions

Often simple functions
Address residual energy (pT) 
and direction dependence of 
calorimeter jet response

Determine response 
functions R in bins of true 
jet pT and reconstructed 
pseudo-rapidity ηrec,jet

Apply numerical inversion to 
determine calibration 
functions in reconstructed 
variable space (pT,rec,jet,
ηrec,jet )

Use calibration functions to 
get jet energy scale

Technique can be applied to 
locally or globally calibrated 
jet response, with likely 
different calibration 
functions 

truth,jet1
T,truth,jet r

1
T,truth

eco,jet T,truth,jet reco,jet

,jet r

reco

eco,jet T,truth,jet reco,jet

T,

,jet truth,

truth,jet re

rec,jet

jet

( , ) (

with  and

then apply numerical inversio

( , ) ( ,

, )

(

n

,

)

f p R p

f p

E
R p p

E
η

η

η

η
η

η

η

−

−

=

=



numerical
inversion

co,jet T,reco,jet reco,jet) ( , )f p η



T,truth,jet rec,jet( , )f p η

T,rec,jet rec,jet( , )f p η

T,trT,r uthec,jet ,jet(GeV)  ( Vor Ge )p p
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Numerical Inversion Functions

Often simple functions
Address residual energy (pT) 
and direction dependence of 
calorimeter jet response

Determine response 
functions R in bins of true 
jet pT and reconstructed 
pseudo-rapidity ηrec,jet

Apply numerical inversion to 
determine calibration 
functions in reconstructed 
variable space (pT,rec,jet,
ηrec,jet )

Use calibration functions to 
get jet energy scale

Technique can be applied to 
locally or globally calibrated 
jet response, with likely 
different calibration 
functions 

reco,jet

reco,jet

calib,jet

calib,jet

cell cell 0,cell DM
cells in

jet

T,reco,jet reco,jet 0,jet
cell cell 0,cell DM

cells in 0,jet
jet

, wi

global cal
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Erec,jet Versus Etruth,jet

Why not use direct relation 
between reconstructed and true 
energy?

Same simulation data input
Has been used in some 
experiments

Dependence on truth energy 
spectrum

Need to make sure calibration 
sample is uniform in truth 
energy
Alternatively, unfold driving 
truth energy spectrum 

Residual non-gaussian behaviour
of truth energy distribution

Error on reconstructed energy 
hard to understand
Could still use response 
distribution → same issues as 
discussed on previous slide!

rec,jet (GeV)E

truth,jet (GeV)E

4
truth,jetcross-section E −∝

4
truth,jetweight E∝

truth,jet (GeV)E



298
P. Loch

U of Arizona

May 05, 2010
Erec,jet Versus Etruth,jet

Why not use direct relation 
between reconstructed and true 
energy?

Same simulation data input
Has been used in some 
experiments

Dependence on truth energy 
spectrum

Need to make sure calibration 
sample is uniform in truth 
energy
Alternatively, unfold driving 
truth energy spectrum 

Residual non-gaussian behaviour
of truth energy distribution

Error on reconstructed energy 
hard to understand
Could still use response 
distribution → same issues as 
discussed on previous slide!

truth,jet (GeV)E

rec,jet (GeV)E

truth,jet (GeV)E

4
truth,jetcross-section E −∝

4
truth,jetweight E∝
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Erec,jet Versus Etruth,jet

Why not use direct relation 
between reconstructed and true 
energy?

Same simulation data input
Has been used in some 
experiments

Dependence on truth energy 
spectrum

Need to make sure calibration 
sample is uniform in truth 
energy
Alternatively, unfold driving 
truth energy spectrum 

Residual non-gaussian behaviour
of truth energy distribution

Error on reconstructed energy 
hard to understand
Could still use response 
distribution → same issues as 
discussed on previous slide!

truth,jet (GeV)E

rec,jet (GeV)E

truth,jet (GeV)E

truth,jet rec,jet 1( ), [ , [i ih E E E E +∈

rec,jet truth,jet 1( ), [ , [i ih E E E E +∈

4
truth,jet truth,jet

rec,jet 1

( ) ,

[ , [i i

h E E

E E E

κ

+

⋅ ⋅

∈
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Systematic Error

Strategy from simulations
Determine all calibrations with fixed conditions

Ideal detector model – everything is aligned
Fixed (best) GEANT4 shower model – from testbeam evaluations
Fixed calorimeter signal definition – e.g., towers
Fixed jet definition – like seeded cone with size 0.7
Fixed final state – QCD di-jets preferred

Study change in performance for changing conditions with ideal calibration 
applied

Detector misalignment and changes in material budgets
Different shower GEANT4 model
Different calorimeter signal definitions – e.g., clusters
Different jet definitions – e.g., kT, AntikT, different cone or cone sizes…
Different physics final state – preferably more busy ones like SUSY, ttbar,…

Use observed differences as systematic error estimates
Use of collision data

Compare triggered final states with simulations
Level of comparison represents understanding of measurement – systematic 
error (at least for standard final states)

Use in-situ final states to validate calibration
Careful about biases and reference levels (see session 9)
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Performance Evaluation

Calibration functions determined with “perfect” detector description and 
one reference jet definition

Validate performance in perfect detector 
Signal linearity & resolution

Quality of calibration for a real detector
A priori unknown real detector 

Absolute and relative alignments, inactive material distributions 
Estimate effect of distorted (real) detector

Implement realistic assumptions for misalignment in simulations
Small variations of inactive material thicknesses and locations
But use “perfect”  calibration for reconstruction

Change jet signals
Tower or clusters

E.g, change from reference calorimeter signal
Different jet finder

E.g., use kT instead of cone 
Different configuration

E.g., use narrow jets (cone size 0.4) instead of wide jets (0.7)
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Signal Linearity & Resolution

Response 
Linear within +/-1% after calibration applied 
for pT>100 GeV

Clear improvement compared to basic signal 
scale

Problems with low pT regime
ATLAS limit pT>20-40 GeV, depending on 
luminosity
May be resolution bias – under study

Resolution
Jet energy resolution clearly improved by 
calibration as well

Slight dependence on calibration strategy

Close to required performance

65%
3%
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Characterizes “real” detector jet 
response 

Variation of response with direction

Changing inactive material 
distribution

Cracks between calorimeter 
modules

Variations 
No strong dependence on 
calorimeter signal definition

Towers/clusters

ATLAS cone jet performs better in 
crack region at low pT

Signal Uniformity

narrow jets

narrow jets

R
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Deviation From Signal Linearity

Estimated effect of a distorted detector 

Effect of detector 
distortion depends on 
jet size, calo signal 
choice, and kinematic 
domain

ATLAS MC
(preliminary)

( )
( )

rec,jet truth,jet distorted

rec,jet truth,jet ideal

E E

E E
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Resolution Direction Dependence

Larger fluctuations for kT jets at 
low pT

Vacuum effect for tower jets?
Less pronounced for cluster jets

Noise suppression important in 
this domain

Very similar resolutions at high pT
No strong dependence on jet 
definition
No strong dependence on 
calorimeter signal definition

No significant noise contribution 
anymore

η

narrow jets

2 2

cluster tower

for 0

for 0

E Eσ

σ σ
σ

σ σ

σ σ

ψ
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Different Final States: Quark Jets

tt qqb→ tt qqb→

(high mulitplicity  jets)
SUSY

q

(high mulitplicity  jets)
SUSY

q

AT
LA

S 
pl

ot
s 

fr
om

 a
rX

iv
:0

90
1.

05
12

[h
ep

-e
x]



307
P. Loch

U of Arizona

May 05, 2010
CMS Factorized Jet Calibration

Factorized calibration allows use of collision data
CMS sequence applies factorized scheme with required and optional corrections

Required corrections can initially be extracted from collision data
Average signal offset from pile-up and UE can be extracted from minimum bias triggers

Relative direction dependence of response can be corrected from di-jet pT balance

The absolute pT scale correction can be derived from prompt photon production

Optional corrections refine jet calibration
Use jet by jet calorimeter or track observables to reduce fluctuations 

Includes energy fractions in EMC, track pT fractions, underlying event corrections using 
jet areas, flavor dependencies and others…

May need very good simulations!
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ATLAS JES Correction Model for First Data

optional

data driven

MC
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Data Driven JES Corrections: PileUp

PileUp subtraction
Goal:

Correct in-time and residual out-of-time pile-up 
contribution to a jet on average

Tools:
Zero bias (random) events, minimum bias events

Measurement:
Et density in Δη Δφ bins as function of 
# vertices

TopoCluster feature (size, average 

energy as function of depth) changes

as function of # vertices 

Remarks:
Uses expectations from the average Et flow for a given 
instantaneous luminosity

Instantaneous luminosity is measured by the # 
vertices in the event

Requires measure of jet size (AntiKt advantage)

Concerns:
Stable and safe determination of average

DD

Determination of the Absolute Jet Energy 
Scale in the D0 Calorimeters. NIM A424, 
352 (1999)

Note that magnitude of correction depends on
calorimeter signal processing & definition –
application easier to see for tower based jets!



PU
T,jet

PU
T vtx

PU PU vtx

jet area

PU
offset,jet PU vtx jet

( , )
( , ) ( , )

( , )

E

E N
N

E N A

η
ρ η ρ η

η ϕ

ρ η

= =
∆ ×∆

= ⋅




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In-Situ Calibration Validation  

tot

prompt (direct) photon production:

QCD Compton scattering 

( 95% of )

annihilation

gq q

qq g
γ

γ

σ
γ

→

→



balance photon with (mostly) quark

jet pT to validate or constrain 

pT,reco,jet

Balancing jet pT with electromagnetic 
system

Truth from collision 
Based on idea that electromagnetic 
particles are well measured
Limits accuracy to precision of photon or 
electron signal reconstruction

Provides interaction (parton) level reference
Note that simulation based approaches 
use particle level reference

Can use direct photon production
Kinematic reach for jet pT ~200-400 GeV
for 1% precision – depends on center of 
mass energy
Relatively large cross-section
Background from QCD di-jets – one jet 
fluctuates into π0 faking photon

Can also use Z+jet(s)
Cross-section suppressed, but less 
background – two electron final state 
cleaner
Can also use two muon final state

Note specific physics environment
Underlying event different from other final 
states

Less radiation in photon/Z hemisphere 
Often only good reference for quark jets

Narrow jets in lower radiation 
environment
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In-Situ Calibration Validation

Balancing jet pT with electromagnetic 
system

Truth from collision 
Based on idea that electromagnetic 
particles are well measured
Limits accuracy to precision of photon or 
electron signal reconstruction

Provides interaction (parton) level reference
Note that simulation based approaches 
use particle level reference

Can use direct photon production
Kinematic reach for jet pT ~200-400 GeV
for 1% precision – depends on center of 
mass energy
Relatively large cross-section
Background from QCD di-jets – one jet 
fluctuates into π0 faking photon

Can also use Z+jet(s)
Cross-section suppressed, but less 
background – two electron final state 
cleaner
Can also use two muon final state

Note specific physics environment
Underlying event different from other final 
states

Less radiation in photon/Z hemisphere 
Often only good reference for quark jets

Narrow jets in lower radiation 
environment

-boson + jet production:Z

balance Z pT reconstructed from 
decay leptons with quark jet pT to 
validate or constrain pT,reco,jet



312
P. Loch

U of Arizona

May 05, 2010
Data Driven JES Corrections: Scale

Absolute response
Goal:

Correct for energy (pT) 
dependent jet response

Tools: 
Direct photons, Z+jet(s),…

Measurement:
pT balance of well calibrated 
system (photon, Z)  against jet in 
central region

Remarks:
Usually uses central reference 
and central jets (region of flat 
reponse)

Concerns:
Limit in precision and estimates 
for systematics w/o well 
understood simulations not clear
Needs corrections to undo out-
of-cone etc. to compare to 
particle level calibrations

T
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Missing Transverse Energy Projections

Missing Transverse Energy Projection Fraction 
method (MPF)

Uses pT balance in photon+jet events to 
determine jet response

Technically on any jet response scale, but most 
useful if jet signal is corrected for e/h and other 
(local) detector effects

Based on projection of event missing transverse 
energy (MET) on photon pT direction

MET mostly generated by jet response

Least sensitive to underlying event and pile-up due 
to randomization in azimuth

Allows to validate the jet energy response
Reference can be energy instead of pT

Basis of absolute jet energy scale in DZero
Also under study for LHC

Considerations
Perfect balance at parton level perturbed at 
particle level

Parton showering and hadronization, including 
initial and final state radiation (ISR & FSR)

Can be suppressed by selecting back-to-back 
photon-jet topologies

Imperfect calorimeter response generates 
missing transverse energy

Handle for calibration

T

T, T,jet T, T,jet

parton level part

T, T,jet

particle levelon level

T,

T, jet
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Missing Transverse Energy Projections

Missing Transverse Energy Projection Fraction 
method (MPF)

Uses pT balance in photon+jet events to 
determine jet response

Technically on any jet response scale, but most 
useful if jet signal is corrected for e/h and other 
(local) detector effects

Based on projection of event missing transverse 
energy (MET) on photon pT direction

MET mostly generated by jet response

Least sensitive to underlying event and pile-up due 
to randomization in azimuth

Allows to validate the jet energy response
Reference can be energy instead of pT

Basis of absolute jet energy scale in DZero
Also under study for LHC

Considerations
Perfect balance at parton level perturbed at 
particle level

Parton showering and hadronization, including 
initial and final state radiation (ISR & FSR)

Can be suppressed by selecting back-to-back 
photon-jet topologies

Imperfect calorimeter response generates 
missing transverse energy

Handle for calibration

ATL-PHYS-PUB-2009-015 (2009)

2
0 1 2

scale scale

( ) ln ln
E E

j E b b b
E E

′ ′
′ = + +

ATLAS Simulations
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Data Driven JES Evaluation

Photon+jet(s)
Well measured electromagnetic system 
balances jet response

Central value theoretical uncertainty ~2% 
limits precision

Due to photon isolation requirements

But very good final state for evaluating 
calibrations

Can test different correction levels in 
factorized calibrations

E.g., local hadronic calibration in ATLAS

Limited pT reach for 1-2% precision
25->300 GeV within 100 pb-1

Z+jet(s)
Similar idea, but less initial statistics

Smaller reach but less background

CERN-OPEN-2008-020
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Data Driven JES Evaluation

Photon+jet(s)
Well measured electromagnetic system 
balances jet response

Central value theoretical uncertainty ~2% 
limits precision

Due to photon isolation requirements

But very good final state for evaluating 
calibrations

Can test different correction levels in 
factorized calibrations

E.g., local hadronic calibration in ATLAS

Limited pT reach for 1-2% precision
25->300 GeV within 100 pb-1

Z+jet(s)
Similar idea, but less initial statistics

Smaller reach but less background

CERN-OPEN-2008-020
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W Mass Spectroscopy

In-situ calibration validation handle
Precise reference in ttbar events

Hadronically decaying W-bosons

Jet calibrations should reproduce W-
mass

Note color singlet source

No color connection to rest of 
collision – different underlying event 
as QCD

Also only light quark jet reference

Expected to be sensitive to jet 
algorithms

Narrow jets perform better – as 
expected

,recoSimulated di-jet invariant mass ( ) 

spectrum for  jets with 0.4 (narrow jets) 

in  final states at 14 TeV

WM

kT R

tt s

=

=

CERN-OPEN-2008-020

arXiv:0901.0512 [hep-ex]

11 fb−
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W boson mass from two jets
Clean event sample can be 
accumulated quickly

Original studies for center of 
mass energy of 14 TeV and 
luminosity of 1033 cm-2s-1

~130 clean events/day in 
ttbar

Angular and energy scale 
component in reconstruction

Energy scale dominant

( ),reco jet,1 jet,2 jet1,jet2

parton1,parton2
jet1,jet2

jet1,jet2

invariant mass from decay jets:

bias from angular mismeasurement:

is small 

2 1 cos

1 cos
(cos

 major contribution from energy s

) 1
1 cos

ca

WM E E θ

θ
θ

θ
→

= −

−
= ≈

−


( )
( )

,PDG

jet,1 jet,1 jet,2 jet,2 jet1,jet2 jet1,jet2

jet,1 jet,1 jet,2 jet,2 jet1,jet2

jet,1 jet,2 ,reco

2 ( ) ( ) (cos ) 1 cos

2 ( ) ( ) 1 cos

( ) ( )

le:

simple rescaling method assuming energy independent 

sc

W

W

M

E E E E

E E E E

E E M

κ κ θ θ

κ κ θ

κ κ

= −

≈ −

= ⋅



jet,1 jet,2( ) ( )ale shift  works reasonably wellE Eκ κ κ= =→

jet1,jet2(cos )θ

jet1,jet2cosθ

arXiv:0901.0512 [hep-ex] 
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κ

jet (GeV)E

arXiv:0901.0512 [hep-ex] 

( ),reco jet,1 jet,2 jet1,jet2

parton1,parton2
jet1,jet2

jet1,jet2

invariant mass from decay jets:

bias from angular mismeasurement:

is small 

2 1 cos

1 cos
(cos

 major contribution from energy s

) 1
1 cos

ca

WM E E θ

θ
θ

θ
→

= −

−
= ≈

−


( )
( )

,PDG

jet,1 jet,1 jet,2 jet,2 jet1,jet2 jet1,jet2

jet,1 jet,1 jet,2 jet,2 jet1,jet2

jet,1 jet,2 ,reco

2 ( ) ( ) (cos ) 1 cos

2 ( ) ( ) 1 cos

( ) ( )

le:

simple rescaling method assuming energy independent 

sc

W

W

M

E E E E

E E E E

E E M

κ κ θ θ

κ κ θ

κ κ

= −

≈ −

= ⋅



jet,1 jet,2( ) ( )ale shift  works reasonably wellE Eκ κ κ= =→

W boson mass from two jets
Clean event sample can be 
accumulated quickly

Original studies for center of 
mass energy of 14 TeV and 
luminosity of 1033 cm-2s-1

~130 clean events/day in 
ttbar

Angular and energy scale 
component in reconstruction

Energy scale dominant
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2

JES scale  relative to perfect jet response;

resolution parameter  relative to nominal jet energy 

resolution;

find best matching template distribution ( )

for reconstructed distribution ( ):
W

W

M

M
αβ

α

α
β

χ =





( ) ( )2 2 2
( ) ( )

1 1

stability of fit tested by subdividing total sample into 16

"measureme

( ) (

nts" (770 pb 1

)

6 48 

min

pb ):

W WW W M M WM M dM
αββ σ σ

− −→ ×

− + =∫  

W mass from templates
Produce W mass distribution 
templates

Use parton or particle level 
simulations
Smear with JES and resolution 
variations
Store W mass distributions as 
function of smearing parameters

Find response and resolution 
smearing parameters 

Find best fit template

( ), ( )W WM Mαβ 

jet (GeV)E

arXiv:0901.0512 [hep-ex] arXiv:0901.0512 [hep-ex] α

Measurement Number
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Biases In W Mass Reconstruction

Boosted W
pT boost reduces angle between decay jets

Reconstructed mass underestimates true W mass
See example below for W boosted into the ATLAS end-cap calorimeter 
region

Pile-up can add energy to the system
Not an improvement of the measurement – accidental and thus 
uncorrelated jet energy shifts lead to shift in reconstructed mass

 pile

 no 

-up 

pile-up

included•
•

34 2 110 cm s

14 TeVs

− −=

=



1.8Wη ≈

,PDG

,reco

W

W

M

M

P.Loch and P.Savard, in Proc. of the 7th Conference 
on Calorimetry in High Energy Physics, Tucson, 
Arizona, 1997 530-536, World Scientific (1998) 

290 GeV

(GeV)WE

611 GeV

T,Wp
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Di-jet balance
Calibrate jet in “golden” reference 
region

Use e.g. photon pT balance

Use this jet as “truth” reference

Balance pT with jet in more complex 
calorimeter region

Note: relative energy resolution of 
reference jet can be worse than probe jet –
more forward jet has more energy at same 
pT

Resolution bias needs to be controlled

Apply corrections to all jets at given 
direction

Need to understand topology – additional 
soft jet contribution

Can also be used to measure jet energy 
resolution

Need to consider phase space sharing with 
possible additional soft jets

Multi-jet balance
Validation of very high pT jets

In-situ calibrations with photons etc. only 
reaches 200-300 GeV (pT)

But need to validate very high pT jet scale 
as well

Bootstrap approach
Find multi-jet events with one hard jet in 
non-validated phase-space

Balance hard jet with several well 
calibrated lower pT jets (e.g., from 
photons)

Look for more harder jets and use scale 
corrections from lower pT jets (bootstrap 
corrections)

Note that errors evolve from low to high 
pT

Hard to achieve O(1%) precision

Likely need simulation based approach
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jet,recoηel
ec

tr
om

ag
ne

tic
 s

ca
le

 je
t 

re
sp

on
se

arXiv:0901.0512 [hep-ex] 

( )
probe reference probe reference
T,reco T,reco T,reco T,reco

averageprobe reference
T,recoT,reco T,reco

T,average
T,reco probe

asymmetry measure:

correction factors (use numerical i

2

2 (
( ,

nv

)

ersion):

p p p p
A

pp p

A p
c p η

− −
= =

+

−
=

average
reco probe probe

T,reco probeaverage
T,reco probe

, )
( , )

2 ( , )
c p

A p

η
η

η+


Correct direction-dependent jet response
Establish absolute scale in “golden region” of 
the detector

Balancing pT of a central (lower energy) jet with 
a more forward (higher energy jet)

Avoid biases by compensating reference jet 
response first

Determine direction dependent correction 
factors

Use pT asymmetry measure for back-to-back jet

Careful – resolution bias due to different jet 
energy ranges can still be present!

Jet energy resolution from di-jet pT balance
Select event topology

Di-jets back-to-back in azimuth

Same rapidity region

Similar pT

Use asymmetry measure to calculate jet energy 
resolution

Width of the distribution of A

Understand soft radiation contribution
pT balance approach (DØ)

Use di-jet energy resolution dependence on third 
jet pT as scale to unfold radiation contribution

kT balance approach (UA2, CDF)
Determination of radiation contribution using 
bisector decomposition
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T

jet1 jet2 jet1 jet2
T,reco T,reco T,reco T,reco
jet1 jet2 average
T,reco T,reco T,re

T

co

average
T,rec

T

o

asymmetry measure (slightly modified):

 resolution for jets in same  region with simil

2

ar :

2

p

p

p p p p
A

p p p

p

pη
σ

− −
= =

+

=

jet1 jet2 jet2 jet1
T,reco T,reco T,reco T,reco

resolution is symmetrized by randomly computing

or 

for each ev

 

ent

E
A E

p p p p

σσ ≈

− −

Correct direction-dependent jet response
Establish absolute scale in “golden region” of 
the detector

Balancing pT of a central (lower energy) jet with 
a more forward (higher energy jet)

Avoid biases by compensating reference jet 
response first

Determine direction dependent correction 
factors

Use pT asymmetry measure for back-to-back jet

Careful – resolution bias due to different jet 
energy ranges can still be present!

Jet energy resolution from di-jet pT balance
Select event topology

Di-jets back-to-back in azimuth

Same rapidity region

Similar pT

Use asymmetry measure to calculate jet energy 
resolution

Width of the distribution of A

Understand soft radiation contribution
pT balance approach (DØ)

Use di-jet energy resolution dependence on third 
jet pT as scale to unfold radiation contribution

kT balance approach (UA2, CDF)
Determination of radiation contribution using 
bisector decomposition

arXiv:0901.0512
[hep-ex] 
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Correct direction-dependent jet response
Establish absolute scale in “golden region” of 
the detector

Balancing pT of a central (lower energy) jet with 
a more forward (higher energy jet)

Avoid biases by compensating reference jet 
response first

Determine direction dependent correction 
factors

Use pT asymmetry measure for back-to-back jet

Careful – resolution bias due to different jet 
energy ranges can still be present!

Jet energy resolution from di-jet pT balance
Select event topology

Di-jets back-to-back in azimuth

Same rapidity region

Similar pT

Use asymmetry measure to calculate jet energy 
resolution

Width of the distribution of A

Understand soft radiation contribution
pT balance approach (DØ)

Use di-jet energy resolution dependence on third 
jet pT as scale to unfold radiation contribution

kT balance approach (UA2, CDF)
Determination of radiation contribution using 
bisector decomposition

T average
T,reco,jet3 T,threshold T,re

T,theshold T

T

,min

,

co
T

determine clean di-jet resolution by linear

extrapolation of

,

typically with ,

implied by calorimeter jet 

(7 10) 

reconstruct

GeV

( ,

i  o

)

on, t

p

p

p

p

p
p

p

p
σ

≥ = −

<

T

T,reco,jet3

av

reco,jet3

av

erage
T,rec

erage
T,reco

0

T, in

T

m

o

0:

fit has some bias problems due t

lim ( )

o phase sp

 

ace

limitations at low together in the presence

of  

p

p

p

p

p
p

σ
→

=

arXiv:0901.0512
[hep-ex] 
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Correct direction-dependent jet response
Establish absolute scale in “golden region” of 
the detector

Balancing pT of a central (lower energy) jet with 
a more forward (higher energy jet)

Avoid biases by compensating reference jet 
response first

Determine direction dependent correction 
factors

Use pT asymmetry measure for back-to-back jet

Careful – resolution bias due to different jet 
energy ranges can still be present!

Jet energy resolution from di-jet pT balance
Select event topology

Di-jets back-to-back in azimuth

Same rapidity region

Similar pT

Use asymmetry measure to calculate jet energy 
resolution

Width of the distribution of A

Understand soft radiation contribution
pT balance approach (DØ)

Use di-jet energy resolution dependence on third 
jet pT as scale to unfold radiation contribution

kT balance approach (UA2, CDF)
Determination of radiation contribution using 
bisector decomposition

( )
T

T,reco,jet3

T

T

average
T,reco T,reco

T,reco T,reco

T,reco T,reco,jet3 T,reco

T,reco
T,reco corrected

( ) ( )

lim ( )
 

resolution correctio

               
( 10 GeV

n factor from

such

, )

 that

( )

pp

p

p p

p p

p p

p p p

p
p

σ

σ

σ σ

→∞

=

=
<

 
= 

 

 

 T

T,reco,jet3 T,reco
T,reco

T,reco T,reco

Twith a parameterization of the  dependence of the

correcti

( 10 GeV, )

( ) l

on b

og

y

 

p p
p

p a p

p

b

<

= + ⋅

The detailed documentation of this approach, 
including a full systematic evaluation and discussion 
of the low pT bias using ATLAS simulations, is 
available to ATLAS members only in:

E.Hughes, D.Lopez, A.Schwartzman, 

ATL-COM-PHYS-2009-408 (2009)

http://cdsweb.cern.ch/record/1194533/files/ATL-COM-PHYS-2009-408.pdf�
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Correct direction-dependent jet response
Establish absolute scale in “golden region” of 
the detector

Balancing pT of a central (lower energy) jet with 
a more forward (higher energy jet)

Avoid biases by compensating reference jet 
response first

Determine direction dependent correction 
factors

Use pT asymmetry measure for back-to-back jet

Careful – resolution bias due to different jet 
energy ranges can still be present!

Jet energy resolution from di-jet pT balance
Select event topology

Di-jets back-to-back in azimuth

Same rapidity region

Similar pT

Use asymmetry measure to calculate jet energy 
resolution

Width of the distribution of A

Understand soft radiation contribution
pT balance approach (DØ)

Use di-jet energy resolution dependence on third 
jet pT as scale to unfold radiation contribution

kT balance approach (UA2, CDF)
Determination of radiation contribution using 
bisector decomposition

,calo radiation,

,

2 2 2
,calo radiation,

,

2 2
radiation,

(ignoring effects from an

 most sensitive to calorimeter resolution effects:

,  with 

 most sensitive to (gluon) radiation effects:T

E

T

E

k

k

ψ

ψ

η

η

σ σσ σ σ

σ σ ⊥

= +

=









2 2 2 2
radiation, radiation, ,calo

gular resolution, underlying event, out of cone losses)

assume radiation is random wrt jet directions:

E ψ ησ σ σ σ σ⊥ = ⇒ = −

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Correct direction-dependent jet response
Establish absolute scale in “golden region” of 
the detector

Balancing pT of a central (lower energy) jet with 
a more forward (higher energy jet)

Avoid biases by compensating reference jet 
response first

Determine direction dependent correction 
factors

Use pT asymmetry measure for back-to-back jet

Careful – resolution bias due to different jet 
energy ranges can still be present!

Jet energy resolution from di-jet pT balance
Select event topology

Di-jets back-to-back in azimuth

Same rapidity region

Similar pT

Use asymmetry measure to calculate jet energy 
resolution

Width of the distribution of A

Understand soft radiation contribution
pT balance approach (DØ)

Use di-jet energy resolution dependence on third 
jet pT as scale to unfold radiation contribution

kT balance approach (UA2, CDF)
Determination of radiation contribution using 
bisector decomposition

average average
T,reco T,reco

average
T,reco T,min

note ,  and

as expec

( )

( )

ted!

p p

const p p

ψ

η ψ

σ

σ σ

∝

≈ < >

arXiv:0901.0512
[hep-ex] 
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Jets Not From Hard Scatter

Dangerous background for W+n jets 
cross-sections etc.

Lowest pT jet of final state can be faked 
or misinterpreted as coming from 
underlying event or multiple interactions

Extra jets from UE are hard to handle
No real experimental indication of jet 
source
Some correlation with hard scattering?
Jet area?
No separate vertex

Jet-by-jet handle for multiple proton 
interactions

Match tracks with vertices to calorimeter 
jet

Calculate track pT fraction from given 
vertex

Classic indicator for multiple interactions 
is number of reconstructed vertices in 
event

Tevatron with RMS(z_vertex) ~ 30 cm
LHC RMS(z_vertex) ~ 8 cm

If we can attach vertices to reconstructed 
jets, we can in principle identify jets not 
from hard scattering

Limited to pseudorapidities within 2.5!

CE
RN

-O
PE

N
-2

00
8-

02
0
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Jets Not From Hard Scatter

Track jets
Find jets in reconstructed tracks
~60% of jet pT, with RMS ~0.3 –
not a good kinematic estimator

Dedicated 3-dim jet algorithm
Cluster track jets in pseudo-
rapidity, azimuth, and 
delta(ZVertex)

Match track and calorimeter jet
Helps response!

CE
RN

-O
PE

N
-2

00
8-

02
0

,

,

T track
trk

T calo

p
f

p
=

ATLAS MC
(preliminary)
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Other Sources Of JES Uncertainties

Longidtudinal jet energy leakage
Dangerous – can changes jet pT
cross-section shape at high pT

Fake compositeness signal

Correlated with muon
spectrometer hits

Not strong correlation expected
Insufficient for precise JES

Will likely not produce reconstructed 
tracks, only  

Helps to tag suspicious jets
Suppress suspicious events/jets

Careful – real  muon may be inside jet
b decay

Should produce track – cleaner signal 
inside jet

Also background for missing 
transverse energy!
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Effect of calibration on inclusive jet cross-section
One the first physics results expected from ATLAS & CMS

CMS PAS SBM-07-001
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Extras
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QCD Jet Production @ LHC

1

2

3

4

5

6

qq

gg
gq

qq′
qq

qq′

Fran
cavilla/R

o
d
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T
L-PH

Y
S
-2

0
0
8
-0

6
2

Jet physics
High transverse momentum jets 
quickly accessible!
100,000 jets with pT > 1 TeV at 1 
fb-1

Early attempt at inclusive cross-
section

Most likely jet origin changes 
with pT and direction
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Jet Cross-section Theoretical Uncertainties

Neglecting orders in ME 
calculations

K-factor NLO-LO can be 
significant

Much smaller effect of scale 
variations in NLO

PDF uncertainties
Diven by gluon structure 
function uncertainties

Especially at higher pT

Plot shows error PDFs in various 
regions

CTEQ 6.1 family

Fran
cavilla/R

o
d
a, A

T
L-PH

Y
S
-2

0
0
8
-0

6
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Inclusive Jet Cross-section Measurement

QCD swamps trigger and acquisition 
band width

Highly prescaled low pT triggers

Trigger rates follow cross-section for 
pT>~300 GeV

Depending on luminosity 

Need to understand trigger bias 
effect on cross-section 
measurement

Low pT problematic due to 
efficiency and purity issues anyway!

Safe pT>~60-80 GeV

ATLAS Level 1
Trigger pre-scale

L = 1031cm-2s-1

10 100 1000
pT (GeV)

60

70

80

90

100

E
ff
ic

ie
n
cy
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%

)
central jets
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Fake Jets

Average number of jets in minimum bias events estimates fake jet 
reconstruction rate as function of pT threshold

no pileup!
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Extracting PDFs

From inclusive jet cross-sections
Measure cross-section in regions of 
pseudo-rapidity

Statistical error quickly reduced
Trigger, JES more important

1%
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Jet Substructure

Particle flow inside a jet hints to 
source

Jet can be a discovery tool by 
itself

In particular most interesting for 
boosted (new) heavy particle like 
Kaluza-Klein excitations

But also interesting for Standard 
Model particles like boosted top 
quarks

Usefulness depends on the ability 
to resolve decay structure

E.g., 2-prong (like W) or 3-prong 
(top) decays

Resolution scale given by mass 
of particle (or by particle 
hypothesis) – to be reflected 
with detector capabilities

 inside 

reconstructed jet, e.g.

from  (SM) or

heavy new object lik

2 prong decay

 

e

 or 

(BSM)

W qq

gg Z qqφ
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′→ →
KK
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from  (SM) or

heavy new object like
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Observables and tools
Single jet mass

Mass generated by four-
momentum recombination 
should reflect heavy source 

Scales proportional to pT for 
light quark or gluon jet 

Subject to severe detector effects 
Lateral energy spread by 
individual particle cascades 
reduces single jet mass 
resolution

Calorimeter signal definition 
choices on top of shower spread 
can enhance or reduce 
sensitivity to in-jet particle flow 
and thus improve or worsen 
single jet mass resolution
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Observables and tools
Single jet mass

Mass generated by four-
momentum recombination 
should reflect heavy source 

Scales proportional to pT for 
light quark or gluon jet 

Subject to severe detector effects 
Lateral energy spread by 
individual particle cascades 
reduces single jet mass 
resolution

Calorimeter signal definition 
choices on top of shower spread 
can enhance or reduce 
sensitivity to in-jet particle flow 
and thus improve or worsen 
single jet mass resolution min

jet

T,jet 115 G

70  GeV

eV

0p

p

=

≈

jet 2.5η ≤

jet 2.5η ≤

min

jet

T,jet 685 G

4.  TeV

eV

2p

p

=

≈
S.D.Ellis, J.Huston, K.Hatakeyama, P.Loch, and M.Tönnesmann, 

Prog.Part.Nucl.Phys.60 484-551 (2008)

NLO Jet Mass Calculations 
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Observables and tools
Single jet mass

Mass generated by four-
momentum recombination 
should reflect heavy source 

Scales proportional to pT for 
light quark or gluon jet 

Subject to severe detector effects 
Lateral energy spread by 
individual particle cascades 
reduces single jet mass 
resolution

Calorimeter signal definition 
choices on top of shower spread 
can enhance or reduce 
sensitivity to in-jet particle flow 
and thus improve or worsen 
single jet mass resolution
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jet constituents
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 requires good reconstruction of particle flow in 

jet by detector signal  depends on chosen 

calorimeter 
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(old plot, educational purpose only!)
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( )jet,reco jet,truth jet,truthm m m−

(plots from Chiara Paleari) 
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Relative mass 
change

Truncate jet mass
Calculate mass 
using only 
constituents above 
pT thresholds

Compare ratio to 
unbiased mass

Particle (hadron), 
cluster, tower jets

( )10 jet T,log ( 0) GeVim p >

S.D.Ellis, J.Huston, K.Hatakeyama, P.Loch, and 
M.Tönnesmann, Prog.Part.Nucl.Phys.60 484-
551 (2008); also in arXiv:0901.0512 [hep-ex] 
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Observables and tools
Recombination scales and order 
in kT like algorithms 

Jet decomposition tracing back 
the (recursive) recombination 

Can be considered resolving 
fragmentation to a given scale

Scale of last clustering step 
relates to mass of source in two-
prong decay

Scale of next-to-last clustering 
step relates to mass of source in 
three-prong decay

Can be expected to correlate with 
jet mass in heavy particle decays

But different resolution – likely 
less sensitive to detector effects!

T

2
T,

recall variables

scale in kT algorithms provides a  scale

at which a given recombination can be undone

 and 

(1) build list of  and  f

:

principal kT clustering 

min
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rom
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i i i j

i i

j

j
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R
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d d
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∆
= =

−

 all protojets

(2) if common minimum is a , call  from list

     and call it a jet

(3) else combine  and  to a jet and add to list, and

     remove the previous protojets  and  

(4) repeat from (1) 

id i

i j

i j

2 2
scale

12 1

T,jet

1 2
scale 2

2

T

until no protojets are left

, with  being a resolution parameter

example: 2 refers to the last recombination in 

the clustering sequence, i.e.

def
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Recombination scales and order 
in kT like algorithms 

Jet decomposition tracing back 
the (recursive) recombination 

Can be considered resolving 
fragmentation to a given scale

Scale of last clustering step 
relates to mass of source in two-
prong decay

Scale of next-to-last clustering 
step relates to mass of source in 
three-prong decay

Can be expected to correlate with 
jet mass in heavy particle decays

But different resolution – likely 
less sensitive to detector effects!

1 2
scale jet

1 2
scale T,jet

T

s

 for jets with 40 GeV, for QCD and hadronically

decaying boosted .

Note that for QCD  is logarithmically below  due

to the strong ordering (in ) in QCD evolution, while 

y m

W

y p

k

y

→

→

>

1 2
cale  reflects the 2-prong decay of the  bosonWm W→ ≈

arXiv:0901.0512 [hep-ex] 

kT Jets Yscale
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Observables and tools
Recombination scales and order 
in kT like algorithms 

Jet decomposition tracing back 
the (recursive) recombination 

Can be considered resolving 
fragmentation to a given scale

Scale of last clustering step 
relates to mass of source in two-
prong decay

Scale of next-to-last clustering 
step relates to mass of source in 
three-prong decay

Can be expected to correlate with 
jet mass in heavy particle decays

But different resolution – likely 
less sensitive to detector effects!

to

1 2
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scale

2 3
scale

ATLAS simulation:

,  ( ) TeV

( ) 300 GeV
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   peaks at 100 GeV 
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Observables and tools
Recombination scales and order 
in kT like algorithms 

Jet decomposition tracing back 
the (recursive) recombination 

Can be considered resolving 
fragmentation to a given scale

Scale of last clustering step 
relates to mass of source in two-
prong decay

Scale of next-to-last clustering 
step relates to mass of source in 
three-prong decay

Can be expected to correlate with 
jet mass in heavy particle decays

But different resolution – likely 
less sensitive to detector effects!
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Observables and tools
Recombination scales and order 
in kT like algorithms 

Jet decomposition tracing back 
the (recursive) recombination 

Can be considered resolving 
fragmentation to a given scale

Scale of last clustering step 
relates to mass of source in two-
prong decay

Scale of next-to-last clustering 
step relates to mass of source in 
three-prong decay

Can be expected to correlate with 
jet mass in heavy particle decays

But different resolution – likely 
less sensitive to detector effects!
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 for jets with 

40 GeV from hadronically decaying boosted .

 is calculated for parameterized, response

smearing simulation (fast, no lateral show

scale scale scale
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 indications that

  is little sensitive to details of showering
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kT Jet Yscale Performance Estimates
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T,Look for  with >200 GeV in 

/  production - about 5% of total 

cross-section:

HH bbg p

WH ZH

→

J.M. Butterworth, A.R. Davison, M.Rubin, G.P.Salam,

Phys.Rev.Lett.100:242001,2008

.

( )

1 2

T

T

1

T

2

use Cambridge/Aachen kT flavour jet finder to find large jet ( 1.2), 

>200 GeV for sub-jet analysis

(1) break jet  into two subjects , , with ,  by undoin

1
,  

g last 

  r

1

   ec
j

H

j

bb H

m
R p m

pz z

R

p

j j j m m

=

>

−
 

1

1 1

1 2

2 2 2
2 ,

ombination

(2) if there is a significant mass drop such that ,  and the 

      splitting ( , ) is not too asymmetric, i.e. 

                                             min( , )  j j j j

j jm m

p R

j

m

j

p

j

µ<

∆

→

2

2
u

1

c t ,  

      then the jet  is assumed to be the heavy particle neighbourhood 

      and the analysis stops

(3) else, set  and go back to step (1)

apply filter to all heavy particle neighbourhoods

j

j

j j

y

=

>

filter filter

, with a finer angular

scale , e.g.,   min(0.3, 2) seems to be good for LHC,

and take the 3 hardest objects that appear  ,  including 

the hardest ( ( )) radiation. Tag the  j

bb bb

s

R R R R

H bbg

bα

< =

→ →
 ets and calculate the 

invariant mass.

Observables and tools
Direct attempt to reconstruct 
sub-jets within jet

Narrow jet reconstruction in 
bigger jet motivated by mass 
drop 

Includes signal enhancement 
strategy

Requires additional (3rd) jet from 
gluon radiation in the decay 
system
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J.M. Butterworth, A.R. Davison, M.Rubin, G.P.Salam,

Phys.Rev.Lett.100:242001,2008

.

Observables and tools
Direct attempt to reconstruct 
sub-jets within jet

Narrow jet reconstruction in 
bigger jet motivated by mass 
drop 

Includes signal enhancement 
strategy

Requires additional (3rd) jet from 
gluon radiation in the decay 
system

background

H→bb
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Observables and tools
Jet pruning

Enhancement of jet components 
to increase substructure resolution

Applied in kT-style jet clustering 
procedure

Jet trimming
Applies a filter by removing soft 
sub-jets in a jet

Soft pT cut-off evaluated 
dynamically jet by jet

 attempt to suppress underlying event and pile-up

   contributions to jets

 cleans jets by vetoing spurious recombinations

   during clustering  kT and C/A jets only!

 sensitive variables a

Jet Pruning
•

•
→

•

T

12

T,1 T,2 T,

cut

cut

re angular distance  

   and relative  hierarchy ,  in 

   recombination 1,2

 suppress large distances and large hierarchies at each

   clustering iteration

   

mi

 

( )

 

,

 

n p

R

z p p p

R

z z

p

p

φ

φ

≡

>
<

→

= ∆

•

cut cut T

cut

works better for heavy particle decays than for QCD:

 not clear what  is for QCD    for heavy

   particle decays

 also not clear what   should be  contamination 

   looks hard early in

R R m p

z

• − ≈

• −

cut

 clustering, especially for kT; for

   heavy particles, 0.1(0.15) works well for kT(C/A)

   jets from boosted top

z =
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 attempt to suppress underlying event and pile-up

   contributions to jets

 cleans jets by vetoing spurious recombinations

   during clustering  kT and C/A jets only!

 sensitive variables a

Jet Pruning
•

•
→

•

T

12

T,1 T,2 T,

cut

cut

re angular distance  

   and relative  hierarchy ,  in 

   recombination 1,2

 suppress large distances and large hierarchies at each

   clustering iteration

   

mi

 

( )

 

,

 

n p

R

z p p p

R

z z

p

p

φ

φ

≡

>
<

→

= ∆

•

cut cut T

cut

works better for heavy particle decays than for QCD:

 not clear what  is for QCD    for heavy

   particle decays

 also not clear what   should be  contamination 

   looks hard early in

R R m p

z

• − ≈

• −

cut

 clustering, especially for kT; for

   heavy particles, 0.1(0.15) works well for kT(C/A)

   jets from boosted top

z =

Observables and tools
Jet pruning

Enhancement of jet components 
to increase substructure resolution

Applied in kT-style jet clustering 
procedure

Jet trimming
Applies a filter by removing soft 
sub-jets in a jet

Soft pT cut-off evaluated 
dynamically jet by jet

D.Krohn, Jet Trimming, talk given at the Theoretical-
experimental workshop on jet & jet substructure at LHC, 

University of Washington, January 10-15, 2010 (based on 
D.Krohn, J.Thaler, L.T. Wang, arXiv:0912.1342)
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 attempt to suppress underlying event and pile-up

   contributions to jets

 cleans jets by vetoing spurious recombinations

   during clustering  kT and C/A jets only!

 sensitive variables a

Jet Pruning
•

•
→

•

T

12

T,1 T,2 T,

cut

cut

re angular distance  

   and relative  hierarchy ,  in 

   recombination 1,2

 suppress large distances and large hierarchies at each

   clustering iteration

   

mi

 

( )

 

,

 

n p

R

z p p p

R

z z

p

p

φ

φ

≡

>
<

→

= ∆

•

cut cut T

cut

works better for heavy particle decays than for QCD:

 not clear what  is for QCD    for heavy

   particle decays

 also not clear what   should be  contamination 

   looks hard early in

R R m p

z

• − ≈

• −

cut

 clustering, especially for kT; for

   heavy particles, 0.1(0.15) works well for kT(C/A)

   jets from boosted top

z =
D.Krohn, Jet Trimming, talk given at the Theoretical-

experimental workshop on jet & jet substructure at LHC, 
University of Washington, January 10-15, 2010 (based on 

D.Krohn, J.Thaler, L.T. Wang, arXiv:0912.1342)

Observables and tools
Jet pruning

Enhancement of jet components 
to increase substructure resolution

Applied in kT-style jet clustering 
procedure

Jet trimming
Applies a filter by removing soft 
sub-jets in a jet

Soft pT cut-off evaluated 
dynamically jet by jet
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 improves jet mass measurement for boosted top etc.

Jet Pruning
•

pruned

unpruned

jet T,jet (GeV) for boosted top decays ( 200 GeV)m p >

Observables and tools
Jet pruning

Enhancement of jet components 
to increase substructure resolution

Applied in kT-style jet clustering 
procedure

Jet trimming
Applies a filter by removing soft 
sub-jets in a jet

Soft pT cut-off evaluated 
dynamically jet by jet

J. Walsh, Understanding Jet Substructure, talk given at the 
Theoretical-experimental TeraScale workshop on event 

shapes, University of Oregon, February 23-27, 2009
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 main motivation is removing contaminations from e.g. 

   pile-up and underlying event, from a fully reconstructed 

   jet

 measures softness/hardness of contamination relative to

   whole j

Jet Trimming
•

•

sub

T, cu

et  no judgements at the clustering stage

 approach:

   (1) fully reconstruct jet from calorimeter signals

   (2) cluster narrow sub-jets, typically with 0.2

   (3) discard sub-jets  with i

R

i p f

−
•

=
< t hard

hard hard T,jet

   (4) rebuild jet from surviving sub-jets

 typical choice for  is p

Λ

• Λ Λ =

Observables and tools
Jet pruning

Enhancement of jet components 
to increase substructure resolution

Applied in kT-style jet clustering 
procedure

Jet trimming
Applies a filter by removing soft 
sub-jets in a jet

Soft pT cut-off evaluated 
dynamically jet by jet

D.Krohn, Jet Trimming, talk given at 
the Theoretical-experimental 

workshop on jet & jet substructure 
at LHC, University of Washington, 

January 10-15, 2010 (based on 
D.Krohn, J.Thaler, L.T. Wang, 

arXiv:0912.1342)
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D.Krohn, Jet Trimming, talk given at 
the Theoretical-experimental 

workshop on jet & jet substructure 
at LHC, University of Washington, 

January 10-15, 2010 (based on 
D.Krohn, J.Thaler, L.T. Wang, 

arXiv:0912.1342)
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D.Krohn, Jet Trimming, talk given at 
the Theoretical-experimental 

workshop on jet & jet substructure 
at LHC, University of Washington, 

January 10-15, 2010 (based on 
D.Krohn, J.Thaler, L.T. Wang, 

arXiv:0912.1342)
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D.Krohn, Jet Trimming, talk given at 
the Theoretical-experimental 

workshop on jet & jet substructure 
at LHC, University of Washington, 

January 10-15, 2010 (based on 
D.Krohn, J.Thaler, L.T. Wang, 

arXiv:0912.1342)

Trimmed and variable radius (VR) jets from

,

(for VR, see D. Krohn, J. Thaler, and L.-T. Wang, 

Jets with Variable , JHEP 06 (2009) 059) 

qq gg

R

φ →
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