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Cluster Calibration

General cluster features
Motivated by shower reconstruction

No bias in signal definition towards reconstruction of a certain, possibly very specific, physics signal object like a jet
Clusters have shapes and location information

Spatial cell energy distributions and their correlations drive longitudinal and lateral extensions 
Density and energy sharing measures
Signal center of gravity and (directional) barycenter

Shapes are sensitive to shower nature 
At least for a reasonable clustering algorithm

Local (cluster) calibration strategy
First reconstruct truly deposited energy at cluster location…

e/h, mostly
…then correct for other energy losses in the vicinity of signal cluster

Dead material energy losses and signal losses due to noise suppression

Calibration input
Reconstructed cluster shapes represent shower shapes

E.g., dense and compact clusters indicate electromagnetic shower activity anywhere in the calorimeter 
Can be intrinsic to a hadronic shower!

Calibration functions can exploit the cluster shapes to apply the corrections for e/h ≠ 1 dynamically
Location of cluster together with shape 

E.g., dense and compact clusters located in electromagnetic calorimeter indicate electron or photon as particle originating the 
signal

Cluster not (part of) hadronic shower signal!
Clusters can classified before calibration

Electron/photon clusters need different calibration than dense clusters from hadronic showers! 

Cluster calibration extensions
Shapes,  location and size also indicate  possible energy losses around the cluster

Some correlations between energy losses in inactive material in front or inside of clusters
Cluster size and signal neighbourhood sensitive to lost true signal in noise suppression algorithm 

Out-of-cluster corrections
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Cluster Classification (ATLAS)

Phase-space pion counting method
Classify clusters using the correlation of

Shower shape variables in single π MC events

Electromagnetic fraction estimator in bin of shower shape variables:

Implementation
keep F in bins of η, E, λ, ρ of clusters for a given cluster

If E < 0, then classify as unknown
Lookup F from the observables |η|, E, λ, ρ
Cluster is EM if F > 50%, hadronic otherwise

0

0

0,cluster cluster cluster
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Hadronic Cluster Calibration

Calibration with cell signal weights
Idea is to compensate for lack of pion response in each cell

Pioneered in CDHS and applied in H1
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Hadronic Cluster Calibration

Calibration with cell signal weights
Idea is to compensate for lack of pion response in each cell

Pioneered in CDHS and applied in H1

Uses deposited energies in cells
Deposit can be in active or passive medium of calorimeter!
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Hadronic Cluster Calibration

Calibration with cell signal weights
Idea is to compensate for lack of pion response in each cell

Pioneered in CDHS and applied in H1

Uses deposited energies in cells
Deposit can be in active or passive medium of calorimeter!
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Calibration with cell signal weights
Idea is to compensate for lack of pion response in each cell

Pioneered in CDHS and applied in H1

Uses deposited energies in cells
Deposit can be in active or passive medium of calorimeter!

Energy deposited in cell not available in experiment
Use of detector simulations

Deposited energy and signal available

Use “unit cell” volume concept to collect invisible energies

Shower model dependent!

Use single pion testbeam data
Develop model for weights in cells

Fit parameters of model using cells testbeam
Minimize resolution with beam energy constraint

Statistical – does not necessarily produce the correct weights!
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Cell Signal Weights

Basic idea
Use a dynamically self-adjusting calibration 
weight 

High cell signal density → 
electromagnetic deposit

Low cell signal density → hadronic
deposit

Principal weighting function characteristics
Depends on cell energy density

Depends on cell location

Accidental application to electron signals 
should yield correct energy as well

Extraction of weighting functions
Minimize resolution in (pion) testbeam data 

Fitting function model 

May not produce the correct weights –
may even be unphysical!

Use simulation 
Deterministic  approach relates signal to 
deposited energy within cell volume – no 
fitting!

May depend on details of (hadronic) 
shower modeling

rec,cell cell 0,cell deposited,cell( )E w E E= ⋅ =



13
P. Loch

U of Arizona

April 13, 2010
Cell Signal Weights

Basic idea
Use a dynamically self-adjusting calibration 
weight 

High cell signal density → 
electromagnetic deposit

Low cell signal density → hadronic
deposit

Principal weighting function characteristics
Depends on cell energy density

Depends on cell location

Accidental application to electron signals 
should yield correct energy as well

Extraction of weighting functions
Minimize resolution in (pion) testbeam data 

Fitting function model 

May not produce the correct weights –
may even be unphysical!

Use simulation 
Deterministic  approach relates signal to 
deposited energy within cell volume – no 
fitting!

May depend on details of (hadronic) 
shower modeling
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Cell Signal Weights

Basic idea
Use a dynamically self-adjusting calibration 
weight 

High cell signal density → 
electromagnetic deposit

Low cell signal density → hadronic
deposit

Principal weighting function characteristics
Depends on cell energy density

Depends on cell location

Accidental application to electron signals 
should yield correct energy as well

Extraction of weighting functions
Minimize resolution in (pion) testbeam data 

Fitting function model 

May not produce the correct weights –
may even be unphysical!

Use simulation 
Deterministic  approach relates signal to 
deposited energy within cell volume – no 
fitting!

May depend on details of (hadronic) 
shower modeling
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Basic idea
Use a dynamically self-adjusting calibration 
weight 

High cell signal density → 
electromagnetic deposit

Low cell signal density → hadronic
deposit

Principal weighting function characteristics
Depends on cell energy density

Depends on cell location

Accidental application to electron signals 
should yield correct energy as well

Extraction of weighting functions
Minimize resolution in (pion) testbeam data 

Fitting function model 

May not produce the correct weights –
may even be unphysical!

Use simulation 
Deterministic  approach relates signal to 
deposited energy within cell volume – no 
fitting!

May depend on details of (hadronic) 
shower modeling
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Cell Signal Weights

Basic idea
Use a dynamically self-adjusting calibration 
weight 

High cell signal density → 
electromagnetic deposit

Low cell signal density → hadronic
deposit

Principal weighting function characteristics
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should yield correct energy as well

Extraction of weighting functions
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Basic idea
Use a dynamically self-adjusting calibration 
weight 

High cell signal density → 
electromagnetic deposit

Low cell signal density → hadronic
deposit

Principal weighting function characteristics
Depends on cell energy density

Depends on cell location

Accidental application to electron signals 
should yield correct energy as well

Extraction of weighting functions
Minimize resolution in (pion) testbeam data 

Fitting function model 

May not produce the correct weights –
may even be unphysical!

Use simulation 
Deterministic  approach relates signal to 
deposited energy within cell volume – no 
fitting!

May depend on details of (hadronic) 
shower modeling

ATLAS cluster-based approach:
1. Use only cells in hadronic clusters

2. Cluster sets global energy scale as a 
reference for densities

3. Calculate Edeposited,cell/E0,cell from single 
pion simulations in bins of cluster 
energy, cell energy density, cluster 
direction, and calorimeter sampling layer

4. Store [Edeposited,cell/E0,cell]-1 in look-up 
tables

5. Retrieve weights for any cell in any 
cluster from look-up table to reconstruct 
cell and cluster energies
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Cell Signal Weights

Basic idea
Use a dynamically self-adjusting calibration 
weight 

High cell signal density → 
electromagnetic deposit

Low cell signal density → hadronic
deposit

Principal weighting function characteristics
Depends on cell energy density

Depends on cell location

Accidental application to electron signals 
should yield correct energy as well

Extraction of weighting functions
Minimize resolution in (pion) testbeam data 

Fitting function model 

May not produce the correct weights –
may even be unphysical!

Use simulation 
Deterministic  approach relates signal to 
deposited energy within cell volume – no 
fitting!

May depend on details of (hadronic) 
shower modeling

ATLAS cluster-based approach:
1. Use only cells in hadronic clusters

2. Cluster sets global energy scale as a 
reference for densities

3. Calculate Edeposited,cell/E0,cell from single 
pion simulations in bins of cluster 
energy, cell energy density, cluster 
direction, and calorimeter sampling layer

4. Store [Edeposited,cell/E0,cell]-1 in look-up 
tables

5. Retrieve weights for any cell in any 
cluster from look-up table to reconstruct 
cell and cluster energies
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Cluster Dead Material Corrections

Dead material
Energy losses not directly measurable

Signal distribution in vicinity can help
Introduces need for signal corrections up to 
O(10%)

Exclusive use of signal features
Corrections depend on electromagnetic or 
hadronic energy deposit

Major contributions
Upstream materials
Material between LArG and Tile (central)

Cracks
dominant sources for signal losses

|η|≈1.4-1.5
|η|≈3.2

Clearly affects detection efficiency for 
particles and jets

Already in trigger!
Hard to recover jet reconstruction 
inefficiencies 

Generate fake missing Et contribution
Topology dependence of missing Et 
reconstruction quality

Additive correction:
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Out-of-cluster Corrections

Compensate loss of true signal
Limited efficiency of noise 
suppression scheme

Discard cells with small true 
energy not close to a primary or 
secondary seed
Accidental acceptance of a pure 
noise cell

Can be significant for isolated pions
10% at low energy

Correction derived from single 
pions

Compensates the isolated particle 
loss
But in jets neighboring clusters can 
pick up lost energy

Use isolation moment to measure 
effective “free surface” of each 
cluster

Scale single pion correction with 
this moment (0…1)

Additive correction:

single pions

QCD jets
calib+DM+OOC
rec,cluster rec,cluster

calib+DM OOC
rec,cluster rec,cluster cluster isol 0,cluster( , , , )

E E

E E x m E

=

= +

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Local Calibration Features

Attempt to calibrate hadronic calorimeter signals 
in smallest possible signal context

Topological clustering implements noise 
suppression with least bias signal feature 
extraction

Residual concerns about infrared safety!
No bias towards a certain physics analysis

Calibration driven by calorimeter signal features 
without further assumption 

Good common signal base for all hadronic final 
state objects

Jets, missing Et, taus
Factorization of cluster calibration

Cluster classification largely avoids 
application of hadronic calibration to 
Electromagnetic signal objects

Low energy regime challenging
Signal weights for 
hadronic calibration are 
functions of cluster and 
cell parameters and 
variables

Cluster energy and 
direction
Cell signal density and 
location (sampling 
layer)

Dead material and out of 
cluster corrections are 
independently applicable

Factorized calibration 
scheme

Local calibration does not 
reproduce jet energy

Energy losses not correlated with 
cluster signals can not be corrected

Magnetic field losses
Dead material losses

Needs additional jet energy scale 
corrections

Use specific jet context to derive 
those

Only applicable to cluster jets!
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Global Calibration Techniques

Use jet context for cell calibration
Determine cell weights using jet energy constraints

Same principle idea as for local cell weighting, but 
different global energy scale
Needs jet truth reference

Jet context relevant
Supports assumption of hadronic signal activity
Has enhanced electromagnetic component 
contributing to the weighting function 
parameterizations of all cells – larger (volume/area) 
context than topological clustering
May be biased with respect to calorimeter signal 
definition and jet algorithms

Jet energy references for calorimeter jets
Simulation

Matching particle level jet (same jet definition) 
energy

Experiment
pT balance with electromagnetic system like photon 
or Z-boson
W mass spectroscopy 

Sampling energy based jet calibration
Coarser than cell signals but less numerical 
complexity

Fewer function parameters
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Truth Jet Matching

Simulated particle jets
Establish “true” energy reference to constrain calibration function fits for 
calorimeter jets

Attempt to reconstruct true jet energy

Need matching definition
Geometrical distance

Isolation and unique 1-to-1 jet matching

2 2
particle,jet rec,jet particle,jet rec,jet( ) ( )

R

η η ϕ ϕ

∆ =

− + −
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Global Calibration Fits Using Simulations

Select matched jet pair
Typically small matching radius

Rmatch = 0.2 – 0.3

Restrict jet directions to regions 
with good calorimeter response

No excessive dead material
Away from cracks and complex 
transition geometries

Calibration functions
Cell signal weighting

Large weights for low density 
signals
Small weights for high density 
signals

Sampling layer signal weighting
Weights determined by 
longitudinal energy sharing in 
calorimeter jet

Functions can be complex
Often highly non-linear systems

Example of calorimeter regions to be
considered for jet calibration fits in ATLAS

(tinted green). The red tinted regions indicate
calorimeter cracks and transitions. The points
show the simulated jet response on electro-
magnetic energy scale, as function of the jet
pseudorapidity.
(figure for illustration purposes only!)
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Global Calibration Fits Using Simulations

Select matched jet pair
Typically small matching radius

Rmatch = 0.2 – 0.3

Restrict jet directions to regions 
with good calorimeter response

No excessive dead material
Away from cracks and complex 
transition geometries

Calibration functions
Cell signal weighting

Large weights for low density 
signals
Small weights for high density 
signals

Sampling layer signal weighting
Weights determined by 
longitudinal energy sharing in 
calorimeter jet

Functions can be complex
Often highly non-linear systems

rec,cell cell cell 0,cell

cell c

cell

cel

ce

l cel

ll cell

l

e l

c

l

e

l

l

(avoid

(avoid boosting

 suppress

 noise

ing em

!)

 respo

m

min

( , )

 

( , )

 

  

Typical bou

ax( ( , )

ndary condi

) 1.5 3

for 

( ( ,

for

))

 

.0

1

io s:

.0

t n

w

w

E w E

w

ρ

ρ
ρ

ρ

ρ

ρ

= ⋅

≈

↓

−

↑

=













cell

cell

cell 1
cell cell cell

cell

cell ce

(similar in ATLAS)

 is a region descriptor for a given cell, 

lik

nse

e 

!)

log

Example for non-algebraic functional form: 

 for  
( ) log( ) log( )

( ,

,

) i i
ij

j

S

w

M

ρ ρ ρ
ρ ω +

ℜ

ℜ =

≤ <
ℜ =

ℜ ∈ ℜ



{ }ll

calorimeter module id,
sampling id



0 0

 cell signal weights , parameterized as function 

of the cell energy  and the clust

Exampl

er en

e

y

:

erg  



k clE E



26
P. Loch

U of Arizona

April 13, 2010
Global Calibration Fits Using Simulations

Select matched jet pair
Typically small matching radius

Rmatch = 0.2 – 0.3

Restrict jet directions to regions 
with good calorimeter response

No excessive dead material
Away from cracks and complex 
transition geometries

Calibration functions
Cell signal weighting

Large weights for low density 
signals
Small weights for high density 
signals

Sampling layer signal weighting
Weights determined by 
longitudinal energy sharing in 
calorimeter jet
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Often highly non-linear systems
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Global Calibration Fits Using Simulations

Select matched jet pair
Typically small matching radius

Rmatch = 0.2 – 0.3

Restrict jet directions to regions 
with good calorimeter response

No excessive dead material
Away from cracks and complex 
transition geometries

Calibration functions
Cell signal weighting

Large weights for low density 
signals
Small weights for high density 
signals

Sampling layer signal weighting
Weights determined by 
longitudinal energy sharing in 
calorimeter jet

Functions can be complex
Often highly non-linear systems
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Global Calibration Fits Using Simulations

Fitting

Possible constraints

Resolution optimization

Signal linearity

Combination of both

Regularization of calibration 

functions

Try to linearize function ansatz

Use polynomials 

Can reduce fits to solving system 

of linear equations

Non-linear function fitting

Use numerical approaches to 

find (local) minimum for multi-

dimensional test functions (e.g., 

software like MINUIT etc.)

{ }
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2
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2 2
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Global Calibration Fits Using Simulations

Attempted de-convolution of signal contributions
Normalization choice convolutes various jet response features

E.g., cell weights correct for dead material and magnetic field induced energy losses, etc.

Limited de-convolution
Fit corrections for energy losses in material between calorimeter modules with different functional form

Separation in terms, but still a correlated parameter fit
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2 2
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Attempted de-convolution of signal contributions
Normalization choice convolutes various jet response features

E.g., cell weights correct for dead material and magnetic field induced energy losses, etc.

Limited de-convolution
Fit corrections for energy losses in material between calorimeter modules with different functional form

Separation in terms, but still a correlated parameter fit

( )

rec,jet cell cell cell 0,cell DM,jet
cells in jet
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