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Need to be valid to any order of perturbative calculations
Experiment needs to keep sensitivity to perturbative infinities
Jet algorithms must be infrared safe!
Stable for multi-jet final states

Clearly a problem for classic (seeded) cone algorithms
Tevatron: modifications to algorithms and optimization of algorithm configurations
Mid-point seeded cone: put seed between two particles
Split & merge fraction: adjust between 0.5 — 0.75 for best “resolution”
LHC: need more stable approaches
Multi-jet context important for QCD measurements
Extractions of inclusive and exclusive cross-sections, PDFs
Signal-to-background enhancements in searches
Event selection/filtering based on topology
Other kinematic parameters relevant for discovery

Among consequences of IR unsafety:

Last meaningful order
JetClu, ATLAS | MidPoint | CMS it. cone | Known at
cone [IC-sMm] [(ICmp-SM] [IC-PR]

Inclusive jets LO NLO NLO NLO (— NNLO)
W/Z + 1 jet LO NLO NLO NLO

3 jets none LO LO NLO [nlojet++]
W/Z + 2 jets none LO LO NLO [MCFV]

@Q@ Miex In 2 + X none none none LO

NB: $30 — 50M investment in NLO
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Need to be valid to any order of perturbative calculations

Experiment needs to keep sensitivity to perturbative infinities
Jet algorithms must be infrared safe!
Stable for multi-jet final states

Clearly a problem for classic (seeded) cone algorithms
Tevatron: modifications to algorithms and optimization of algorithm configurations
Mid-point seeded cone: put seed between two particles
Split & merge fraction: adjust between 0.5 — 0.75 for best “resolution”
LHC: need more stable approaches
Multi-jet context important for QCD measurements
Extractions of inclusive and exclusive cross-sections, PDFs
Signal-to-background enhancements in searches Starts to miss cones
Event selection/filtering based on topology

Other kinematic parameters relevant for discovery at next order!
Among consequences of IR unsafety: /

Last meaningful order
JetClu, ATLAS [ MidPoint | CMS it. cone | Known at
cone [IC-sMm] [(ICmp-SM] [IC-PR]

Inclusive jets LO NLO NLO NLO (— NNLO)
W/Z + 1 jet LO NLO NLO NLO

3 jets none LO LO NLO [nlojet++]
W/Z + 2 jets none LO LO NLO [MCFV]

f@@ Miex In 2 + X none none none LO

NB: $30 — 50M investment in NLO
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Attempt to increase infrared
safety for seeded cone

Midpoint algorithm starts with
seeded cone

Seed threshold may be 0 to
increase collinear safety
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Attempt to increase infrared  Find midpoints for stable cones within
safety for seeded cone

Midpoint algorithm starts with
seeded cone

AR =+JAy* + Ag? <2R

cone

Seed threshold may be 0 to
increase collinear safety

Place new seeds between two
close stable cones

Also center of three stable
cones possible
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Attempt to increase infrared  Find midpoints for stable cones within
safety for seeded cone

Midpoint algorithm starts with
seeded cone

AR =+JAy* + Ag? <2R

cone

Seed threshold may be 0 to
increase collinear safety

Place new seeds between two
close stable cones

Also center of three stable
cones possible
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Attempt to increase infrared
safety for seeded cone

Midpoint algorithm starts with
seeded cone

Seed threshold may be 0 to
increase collinear safety

Place new seeds between two
close stable cones

Also center of three stable
cones possible

Re-iterate using midpoint seeds

Isolated stable cones are
unchanged

P. Loch
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Find midpoints for stable cones within

AR :\/Ay2 +A@p® <2R

cone
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Attempt to increase infrared

safety for seeded cone
Midpoint algorithm starts with
seeded cone

Seed threshold may be 0 to
increase collinear safety

Place new seeds between two
close stable cones

Also center of three stable
cones possible

Re-iterate using midpoint seeds

Isolated stable cones are
unchanged

Still not completely safe!
Apply split & merge

Usually split/merge fraction
0.75

P. Loch

Midpoint Seeded Cone U of Arizona

March 19, 2010
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(from G. Salam & G. Soyez, JHEP 0705:086,2007)
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Improvements to cone
algorithms: no seeds

All stable cones are considerec

Avoid collinear unsafety in
seeded cone algorithm

Avoid infrared safety issue

Adding infinitively soft
particle does not lead to new
(hard) cone
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Exact seedless cone for N particles:

Improvements to cone

. O(N -2") operations
algorithms: no seeds i

N # operations remark
All stable cones are considered 4 64 fixed order parton level
Avoid collinear unsafety in 10 10240 very low multiplicity final state
seeded cone algorithm 100 ~1.3-10% low multiplicity LHC final state
Avoid infrared safety issue 1,000 ~1.6-10"*  typical LHC final state
Adding infinitively soft 10,000 oo LHC high luminosity final state

particle does not lead to new
(hard) cone

Exact seedless cone finder

Problematic for larger
number of particles
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Exact seedless cone for N particles:

Improvements to cone

. O(N -2") operations
algorithms: no seeds (N-27)op

N # operations remark
All stable cones are considered 4 64 fixed order parton level
Avoid collinear unsafety in 10 10240 very low multiplicity final state
seeded cone algorithm 100 ~1.3-10% low multiplicity LHC final state
Avoid infrared safety issue 1,000 ~1.6-10"*  typical LHC final state
Adding infinitively soft 10,000 oo LHC high luminosity final state

particle does not lead to new

(hard) cone Note: 100 particles

Exact seedless cone finder

Problematic for larger need ~1017 Years 1'0
number of particles be clusfefoedl
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Improvements to cone
algorithms: no seeds

All stable cones are considered

Avoid collinear unsafety in
seeded cone algorithm

Avoid infrared safety issue

Adding infinitively soft
particle does not lead to new
(hard) cone

Exact seedless cone finder

Problematic for larger
number of particles

Approximate implementation

Pre-clustering in coarse
towers

Not necessarily appropriate
A for particles and even some
T calorimeter signals
JA
S

Seedless Fixed Cone

P. Loch
U of Arizona
March 19, 2010

Exact seedless cone for N particles:

O(N -2") operations

N # operations remark

4 64 fixed order parton level

10 10240 very low multiplicity final state
100 ~1.3-10% low multiplicity LHC final state
1,000 ~1.6-10"° typical LHC final state

10,000 o© LHC high luminosity final state

Approximate seedless cone (Ar7xAp=0.2x0.2):
N  # operations remark
40 ~4.4-10°

70 ~8.3-10%

surviving bins with two narrow jets

surving bins with two wide jets
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SISCone (Salam, Soyez 2007)

Exact seedless cone with geometrical (distance) ordering
Speeds up algorithm considerably!
Find all distinctive ways on how a segment can enclose a subset of the
particles
Instead of finding all stable segments!
Re-calculate the centroid of each segment
E.g., pT weighted re-calculation of direction
“E-scheme” works as well
Segments (cones) are stable if particle content does not change
Retain only one solution for each segment
Still needs split & merge to remove overlap
Recommended split/merge fraction is 0.75
Typical times
N?InN for particles in 2-dim plane

1-dim example:
See following slides!

A
EE (inspired by G. Salam & G. Soyez, JHEP 0705:086,2007)
A
S



U of Arizona
March 19, 2010

E
e
=
=
=
J
c
=
o
)
c
o
O
L
7

14 @THE UNIVERSITY
. OF ARIZONA.

Find all distinctive segments of size 2R____(O(N) operations in 1-dim)
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Reposition segments to centroids (green - unchanged, red - changed)
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Similar ordering and combinations in 2-dim

Use Clrcles |nstead Of ||near Segments (from G. Salam & G. Soyez, JHEP 0705:086,2007)
(a) ° (b) ° (c) ° (d)
[ ® [ [
® ® ®
® o ® o —

Figure 3: (a) Some initial circular enclosure; (b) moving the circle in a random direction
until some enclosed or external point touches the edge of the circle; (¢) pivoting the circle
around the edge point until a second point touches the edge; (d) all circles defined by pairs
of edge points leading to the same circular enclosure.

Still need split & merge
One additional parameter outside of jet/cone size
Not very satisfactory!

But at least a practical seedless cone algorithm

Very comparable performance to e.g. Midpoint!
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Infrared safety failure
rates

SISCone Performance

P. Loch
U of Arizona
March 19, 2010

Computing performance

(from G. Salam & G. Soyez, JHEP 0705:086,2007)

JetClu 50.1%
SearchCone 48.2%
MidPoint 16.4%
Midpoint-3 15.6%
PxCone 9.3%

Seedless [SM-p,] 1.6%
0.17% Seedless [SM-MIP]

<10° Seedless (SISCone)

107 107 1073 1072 107!

Fraction of hard events failing IR safety test

run time (s)

10 C

0.1

0.01 |

0.001
1

I === -- CDF midpoint (s=0 GeV) A
- % - CDF midpoint (s=1 GeV) : .

r —8— SISCone 'y

PxCone

—=— k, (fastjet) 2

00

10000
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Computing performance an LHC events (pp collisions):
ISsue N  #operations time [s]
Time for traditional kT is ~N3 10 10° 0.05
Very slow for LHC 6
) . 100 10 0.50
Fastlet implementations .
Use geometrical ordering to 1,000 10 5.00
find out which pairs of LHC events (heavy ion collisions):
particles have to be . - )
manipulated instead of N # operations time [s]
recalculating them all! 10 000 102 5.10°
Very acceptable performance in ' 1 c
this case! 50,000 1.25-10 6.25-10

"on a modern computer (3 GHz clock)
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Computing performance an Fastlet implementations:
issue kT & Cambridge/Aachen ~NInN
Time for traditional kT is ~N3 N # operations  time [s]
Very slow for LHC 10 52 0.1.10°¢
Fastlet implementations ' Py
Use geometrical ordering to 100 460 2-10
find out which pairs of 1,000 6,900 35.10°°
particles have to be 5
manipulated instead of 10,000 92,000 0.5-10
recalculating them all! 50,000 541,000 3.10°3
[ Time vs Input size |
" Anti-kT ~+/N?
- kT (standard)
05 ATLAS Cone k . N # operations time [s]’
we W | o 10 32 0.2-10°
= 1 %O vy 3
400;_ m Q:‘ K \s&a(\da‘i%ooo‘;:f’ ﬁ - - 100 1 ’ 000 5-10 °
300 ]| = - 3
- Vi fﬁw ’ j Wy ] 1,000 32,000  0.2-10
s Gl -] 10,000 1,000,000 5107

o

WA ; oo |
"‘«%’f)% 2040 ew w0 dwome W0 50,000 11,200,000 56-107°
S)
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Address the search approach Find minimum for N particles in standard kT:
Need to find minimum in {dij =min(d,,d,)AR, /R,d, ZP%;}r i,j=1,..,N

standard kT

Order N3 operations
Consider geometrically nearest
neighbours in Fastlet kT dy=min A pr; <pr,

Replace full search by search =R, <R,V k#]j,ie. (7,) geometrical
over (jet, jet neighbours)

Need to find nearest neighbours

O(N?) searches, repeated N times — O(N?)

Fastlet kT uses nearest neighbours search:

nearest neighboursin (y,) plane

for each proto-jet fast Proof:
Several different approaches: Assume an additional particle k exists with
ATLAS (Delsart 2006) uses geometrical distance R, to particle /:
simple geometrical model, .
Salam & Cacciari (2006) d, =min(d,,d)R, /R<d,R, /R
suggest Voronoi cells >min=d, =d, R,-,-/R

Both based on same fact
relating d; and geometrical
distance in AR

Both use geometrically
ordered lists of proto-jets

works only for R, >R,
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Possible implementation

(P.A. Delsart, 2006)

Nearest neighbour search

Idea is to only limit recalculation of

distances to nearest neighbours
Try to find all proto-jets having
proto-jet k as nearest neighbour

Center pseudo-rapdity (or

rapdity)/azimuth plane on k

Take first proto-jet j closest to k in

pseudo-rapidity

Compute middle line L; between k

andj

All proto-jets below L, are closer to
jthan k = kis not nearest
neighbour of those

Take next closest proto-jetiin
pseudo-rapidity
Proceed as above with exclusion of
all proto-jets above L

Search stops when point below
intersection of L, and L, is
A reached, no more points have k as
v nearest neighbour
A
S|

P. Loch
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' — phi —

«— Eiap —
Complexity estimate:
Assume N proto-jets are uniformly distributed in (77,(0) plane
(rectangular with fintie size, area A)
Average number of proto-jets in circle with radius R:

7R?

N=N
If R is mean distance between two proto-jets:
_ / A
Nx=1l=R=,|—
N
Computation of proto-jet k's nearest neighbours is restricted to

N
77“[77k —R,n, +R]HzN'2ROC—= N operations for k

N

= N+/N total complexity (estimate)
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Apply geometrical methods
to nearest neighbour
searches

Voronoi cell around proto-jet k
defines area of nearest
neighbours
No point inside area is closer
to any other protojet
Apply to protojets in pseudo-
rapdity/azimuth plane
Useful tool to limit nearest
neighbour search

Determines region of re-
calculation of distances in kT

Allows quick updates without
manipulating too many long Complexity estimate (Monte Carlo experiment):

(source http://en.wikipedia.org/wiki/Voronoi_diagram)

lists NInN total complexity
Complex algorithm!

B A Read G. Salam & M. Cacciari,
; Phys.Lett.B641:57-61 (2006)
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Various jet algorithms produce different jets from the same collision event

Clearly driven by the different sensitivities of the individual algorithms
Cannot expect completely identical picture of event from jets
Different topology/number of jets

Differences in kinematics and shape for jets found at the same direction
Choice of algorithm motivated by physics analysis goal

E.g., IR safe algorithms for jet counting in W + n jets and others
Narrow jets for W mass spectroscopy

Small area jets to suppress pile-up contribution

Measure of jet algorithm performance depends on final state
Cone preferred for resonances
E.g., 2-3...n prong heavy particle decays like top, Z’, etc.
Boosted resonances may require jet substructure analysis — need kT algorithm!
Recursive recombination algorithms preferred for QCD cross-sections
High level of IR safety makes jet counting more stable
Pile-up suppression easiest for regularly shaped jets
E.g., Anti-kT most cone-like, can calculate jet area analytically even after split and merge
Measures of jet performance
Particle level measures prefer observables from final state
Di-jet mass spectra etc.
Quality of spectrum important
Deviation from Gaussian etc.
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‘AntiKt4 (0,n,P_(GeVic)) | |AtlasCone4 (0,n,P_(GeVic)) ‘

18000 18000
16000 16000
14000 14000
12000 12000
10000 10000
8000 8000
6000 6000
4000 4000
2000 2000
0= 0

2 &

A -

? .

%& (from P.A. Delsart)
S]
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T -
am Al TRLET
b

A [g:% (from G. Salam’s talk at the ATLAS Hadronic Calibration Workshop Tucson 2008)
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Quality estimator for distributions
Best reconstruction: narrow Gaussian 0.08

qq, M = 2000 GeV

—
|k, R=07

We understand the error on the mean! Q¥ .. =27 4 GeV E
. . : o~ 006 [ 02740 2
Observed distributions often deviate from Gaussian . IE
Need estimators on size of deviations! S 004 -
Should be least biased measures z
= 002 - &

Best performance gives closest to Gaussian distributions
List of variables describing shape of distribution on next slide
Focus on unbiased estimators
E.g., distribution quantile describes the narrowest range of values
containing a requested fraction of all events
Kurtosis and skewness harder to understand, but
clear message in case of Gaussian distribution!

1900 2000 2100
dijet mass [GeV]

(from Salam ,Cacciari, Soyez,
http://quality.fastjet.fr)

002 T T T T T 002 T T T T
qq 100 GeV Cam/Aachen (R=0.3) =—— qq 100 GeV Cam/Aachen (R=0.7) —
Gaussian fit ———- Gaussian fit ———-
_ 0.015 + . _ 0.015
S S
i) ()]
9, 9,
1E2 0.01 . g 0.01
b4 pd
el o
< <
© 0005 T 0005

JA
E 60 80 100 120 140 60 80 100 120 140
% dijet mass [GeV] dijet mass [GeV]


http://quality.fastjet.fr/�
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Estimator

(R)

R

median

mop
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Quantity Expectation for Gaussian

statistical mean M= <R> =R 0p = Rinegian

median

most probable value

standard deviation o =RMS

skewness/left-right asymmetry 0

kurtosis/"peakedness" 0

. w -
quantile Qo9 =20

34.1%| 34.1%
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Quality of mass reconstruction for various jet finders and
configurations
Standard model — top quark hadronic decay
Left plot — various jet finders and distance parameters
BSM -2 (2 TeV) hadronic decay
Right plot — various jet finders with best configuration

55 1 I I I 1 1 ML Lk f 55 'l'll I ¥ I ! I ' 1 'k I
(Ryp=04) —— , / VA Mz =2TeV s .
) - ) R — | o | camha
SsCon K503 - . / | SisCare -~ /
* I COF midpoint (R*=03) - / - 45 |- CDF midpoint
S 40 : 4 S " |
& 2 4
5%
o o 3
R ]
25 [ 90
. .._;-_-,._h___.._ . ,, i 25
top reconstruction .
q ‘ A 15 1 1 1 1 1 1 1 1 20 1 . 1 . 1 . 1 . 1
f&%’@? 01 02 03 04 05 06 07 08 09 1 0.4 06 08 1 1.2
N% L
N 4 R R
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T L L L I — 71 T T T T *t Tt T T
A/~ - - - - - _
= 005 Kk, R=1.0 ~ k. R=05 " SISCone, R=0.5, =0.75
> 0.04 | Qreo.12=13.0GeV 1 [ ofpip=83Gev 1 [ Q¥.,=74Gev 2
I
£ 1 - N
= T 003 . . o
= L - S
2| Zow : ®
' 2
=7 0.01 . <
g ”é 0 _ P I N R P PR I S S P R PR R S PR
= 80 100 120 80 100 120 80 100 120
Q| O
g Eb dijet mass [GeV] dijet mass [GeV] dijet mass [GeV]
9k
? - 005 L L ] T ] L L
g E ' ki, R=1.0 ki, R=0.5 SISCone, R=0.5, f=0.75
= L _ L _ L -
S 004 L Qu=125m =86 1 L Qu=12sm =63 1 L Qu=12sm =58 e
= c | | —
e —
r B 0.03 [ . . o
z | - S
~— Z 002 - : -0
IH:: I D
= 0.01 - . 1 <
= !
<) 0 Ll Ll s L A Miralien . . . T
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JAY
T
%& (from Cacciari, Rojo, Salam, Soyez, JHEP 0812:032,2008)
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o 0.04 - k, R=0.5 1 [ k,R=1.0 1 [ SISCone, R=1.0,=0.75
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I @
E z N
5|8 S 002 | : —
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Z .-,j 0 ! | ! ! | L N ! | ! ! | L ! ! | ! ! | ! ! | L ! ! | !
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8|5 1900 2000 2100 1900 2000 2100 1900 2000 2100
fg & dijet mass [GeV] dijet mass [GeV] dijet mass [GeV]
=1
; i:h L e L e L N
a4 0.04 - Kk, R=05 1 [ k,R=10 1 [ SlISCone, R=1.0,=0.75
= H 1/f - i L 1/f - _ L 1/ - _
8 Qw=1.25\|"l\f1 =15.9 Qw=1.25\|"l\f1 =9.5 Qw=1.25w"l\f1 =79
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JAY
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%& (from Cacciari, Rojo, Salam, Soyez, JHEP 0812:032,2008)
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Interactive Tool

Web-based jet performance evaluation available
http://www.lpthe.jussieu.fr/~salam/jet-quality

) Testing jet definit =10l x|
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Testing jet definitions. qq & gg cases

by M. Caccian, J. Rojo, G.F. Salam and G. Soyez, arxiv.0810. 1304
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mass reconstruction af LHC.
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