

THE UNIVERSITY Theoretical Requirements For Jet Finders OF ARIZONA.

Very important at LHC

Often LO (or even NLO) not sufficient to understand final states

> Potentially significant K-factors can only be applied to jet driven spectra if jet finding follows theoretical rules

> > E.g., jet cross-section shapes

Need to be able to compare experiments and theory

Comparison at the level of distributions

ATLAS and CMS will unfold experimental effects and limitations independently – different detector systems

Theoretical guidelines

Infrared safety

Adding or removing soft particles should not change the result of jet clustering

Collinear safety

Splitting of large pT particle into two collinear particles should not affect the jet finding

infrared sensitivity (soft gluon radiation merges jets)

collinear sensitivity (1) (sensitive to E_{+} ordering of seeds)

collinear sensitivity (2) (signal split into two towers below threshold)

Find particle with largest pT above a seed threshold

Create an ordered list of particles descending in pT and pick first particle

Draw a cone of fixed size around this particle

Resolution parameter of algorithm

Collect all other particles in cone and re-calculate cone directions from those

Use four-momentum re-summation

Collect particles in new cone of same size and find new direction as above

Repeat until direction does not change → cone becomes stable

Take next particle from list if above pT seed threshold

Repeat procedure and find next proto-jet

Note that this is done with all particles, including the ones found in previous cones

Continue until no more proto-jets above threshold can be constructed

The same particle can be used by 2 or more jets Check for overlap between proto-jets

Add lower pT jet to higher pT jet if sum of particle pT in overlap is above a certain fraction of the lower pT jet (merge)

Else remove overlapping particles from higher pT jet and add to lower pT jet (split)

Find particle with largest pT above a seed threshold

Create an ordered list of particles descending in pT and pick first particle

Draw a cone of fixed size around this particle

Resolution parameter of algorithm

Collect all other particles in cone and re-calculate cone directions from those

Use four-momentum re-summation

Collect particles in new cone of same size and find new direction as above

Repeat until direction does not change \rightarrow cone becomes stable

Take next particle from list if above pT seed threshold

Repeat procedure and find next proto-jet

Note that this is done with all particles, including the ones found in previous cones

Continue until no more proto-jets above threshold can be constructed

The same particle can be used by 2 or more jets Check for overlap between proto-jets

Add lower pT jet to higher pT jet if sum of particle pT in overlap is above a certain fraction of the lower pT jet (merge)

Else remove overlapping particles from higher pT jet and add to lower pT jet (split)

Find particle with largest pT above a seed threshold

Create an ordered list of particles descending in pT and pick first particle

Draw a cone of fixed size around this particle

Resolution parameter of algorithm

Collect all other particles in cone and re-calculate cone directions from those

Use four-momentum re-summation

Collect particles in new cone of same size and find new direction as above

Repeat until direction does not change → cone becomes stable

Take next particle from list if above pT seed threshold

Repeat procedure and find next proto-jet

Note that this is done with all particles, including the ones found in previous cones

Continue until no more proto-jets above threshold can be constructed

The same particle can be used by 2 or more jets Check for overlap between proto-jets

Add lower pT jet to higher pT jet if sum of particle pT in overlap is above a certain fraction of the lower pT jet (merge)

Else remove overlapping particles from higher pT jet and add to lower pT jet (split)

Find particle with largest pT above a seed threshold

Create an ordered list of particles descending in pT and pick first particle

Draw a cone of fixed size around this particle

Resolution parameter of algorithm

Collect all other particles in cone and re-calculate cone directions from those

Use four-momentum re-summation

Collect particles in new cone of same size and find new direction as above

Repeat until direction does not change → cone becomes stable

Take next particle from list if above pT seed threshold

Repeat procedure and find next proto-jet

Note that this is done with all particles, including the ones found in previous cones

Continue until no more proto-jets above threshold can be constructed

The same particle can be used by 2 or more jets

Check for overlap between proto-jets

Add lower pT jet to higher pT jet if sum of particle pT in overlap is above a certain fraction of the lower pT jet (merge)

Else remove overlapping particles from higher pT jet and add to lower pT jet (split)

Iterative Seeded Fixed Cone

Use following jet finder rules:

Find particle with largest pT above a seed threshold

Create an ordered list of particles descending in pT and pick first particle

Draw a cone of fixed size around this particle

Resolution parameter of algorithm

Collect all other particles in cone and re-calculate cone directions from those

Use four-momentum re-summation

Collect particles in new cone of same size and find new direction as above

Repeat until direction does not change → cone becomes stable

Take next particle from list if above pT seed threshold

Repeat procedure and find next proto-jet

Note that this is done with all particles, including the ones found in previous cones

Continue until no more proto-jets above threshold can be constructed

The same particle can be used by 2 or more jets

Check for overlap between proto-jets

Add lower pT jet to higher pT jet if sum of particle pT in overlap is above a certain fraction of the lower pT jet (merge)

Else remove overlapping particles from higher pT jet and add to lower pT jet (split)

8

Iterative Seeded Fixed Cone

OF ARIZONA.

Use following jet finder rules:

Find particle with largest pT above a seed threshold

Create an ordered list of particles descending in pT and pick first particle

Draw a cone of fixed size around this particle

Resolution parameter of algorithm

Collect all other particles in cone and re-calculate cone directions from those

Use four-momentum re-summation

Collect particles in new cone of same size and find new direction as above

> Repeat until direction does not change → cone becomes stable

Take next particle from list if above pT seed threshold

Repeat procedure and find next proto-jet

Note that this is done with all particles, including the ones found in previous cones

Continue until no more proto-jets above threshold can be constructed

The same particle can be used by 2 or more jets

Check for overlap between proto-jets

Add lower pT jet to higher pT jet if sum of particle pT in overlap is above a certain fraction of the lower pT jet (merge)

Else remove overlapping particles from higher pT jet and add to lower pT jet (split)

Find particle with largest pT above a seed threshold

Create an ordered list of particles descending in pT and pick first particle

Draw a cone of fixed size around this particle

Resolution parameter of algorithm

Collect all other particles in cone and re-calculate cone directions from those

Use four-momentum re-summation

Collect particles in new cone of same size and find new direction as above

Repeat until direction does not change \rightarrow cone becomes stable

Take next particle from list if above pT seed threshold

Repeat procedure and find next proto-jet

Note that this is done with all particles, including the ones found in previous cones

Continue until no more proto-jets above threshold can be constructed

The same particle can be used by 2 or more jets Check for overlap between proto-jets

Add lower pT jet to higher pT jet if sum of particle pT in overlap is above a certain fraction of the lower pT jet (merge)

Else remove overlapping particles from higher pT jet and add to lower pT jet (split)

Find particle with largest pT above a seed threshold

Create an ordered list of particles descending in pT and pick first particle

Draw a cone of fixed size around this particle

Resolution parameter of algorithm

Collect all other particles in cone and re-calculate cone directions from those

Use four-momentum re-summation

Collect particles in new cone of same size and find new direction as above

Repeat until direction does not change \rightarrow cone becomes stable

Take next particle from list if above pT seed threshold

Repeat procedure and find next proto-jet

Note that this is done with all particles, including the ones found in previous cones

Continue until no more proto-jets above threshold can be constructed

The same particle can be used by 2 or more jets Check for overlap between proto-jets

Add lower pT jet to higher pT jet if sum of particle pT in overlap is above a certain fraction of the lower pT jet (merge)

Else remove overlapping particles from higher pT jet and add to lower pT jet (split)

Find particle with largest pT above a seed threshold

Create an ordered list of particles descending in pT and pick first particle

Draw a cone of fixed size around this particle

Resolution parameter of algorithm

Collect all other particles in cone and re-calculate cone directions from those

Use four-momentum re-summation

Collect particles in new cone of same size and find new direction as above

Repeat until direction does not change \rightarrow cone becomes stable

Take next particle from list if above pT seed threshold

Repeat procedure and find next proto-jet

Note that this is done with all particles, including the ones found in previous cones

Continue until no more proto-jets above threshold can be constructed

The same particle can be used by 2 or more jets Check for overlap between proto-jets

Add lower pT jet to higher pT jet if sum of particle pT in overlap is above a certain fraction of the lower pT jet (merge)

Else remove overlapping particles from higher pT jet and add to lower pT jet (split)

Find particle with largest pT above a seed threshold

Create an ordered list of particles descending in pT and pick first particle

Draw a cone of fixed size around this particle

Resolution parameter of algorithm

Collect all other particles in cone and re-calculate cone directions from those

Use four-momentum re-summation

Collect particles in new cone of same size and find new direction as above

Repeat until direction does not change → cone becomes stable

Take next particle from list if above pT seed threshold

Repeat procedure and find next proto-jet

Note that this is done with all particles, including the ones found in previous cones

Continue until no more proto-jets above threshold can be constructed

The same particle can be used by 2 or more jets Check for overlap between proto-jets

Add lower pT jet to higher pT jet if sum of particle pT in overlap is above a certain fraction of the lower pT jet (merge)

Else remove overlapping particles from higher pT jet and add to lower pT jet (split)

Find particle with largest pT above a seed threshold

Create an ordered list of particles descending in pT and pick first particle

Draw a cone of fixed size around this particle

Resolution parameter of algorithm

Collect all other particles in cone and re-calculate cone directions from those

Use four-momentum re-summation

Collect particles in new cone of same size and find new direction as above

Repeat until direction does not change → cone becomes stable

Take next particle from list if above pT seed threshold

Repeat procedure and find next proto-jet

Note that this is done with all particles, including the ones found in previous cones

Continue until no more proto-jets above threshold can be constructed

The same particle can be used by 2 or more jets

Check for overlap between proto-jets

Add lower pT jet to higher pT jet if sum of particle pT in overlap is above a certain fraction of the lower pT jet (merge)

Else remove overlapping particles from higher pT jet and add to lower pT jet (split)

Find particle with largest pT above a seed threshold

Create an ordered list of particles descending in pT and pick first particle

Draw a cone of fixed size around this particle

Resolution parameter of algorithm

Collect all other particles in cone and re-calculate cone directions from those

Use four-momentum re-summation

Collect particles in new cone of same size and find new direction as above

Repeat until direction does not change → cone becomes stable

Take next particle from list if above pT seed threshold

Repeat procedure and find next proto-jet

Note that this is done with all particles, including the ones found in previous cones

Continue until no more proto-jets above threshold can be constructed

The same particle can be used by 2 or more jets

Check for overlap between proto-jets

Add lower pT jet to higher pT jet if sum of particle pT in overlap is above a certain fraction of the lower pT jet (merge)

Else remove overlapping particles from higher pT jet and add to lower pT jet (split)

15

Iterative Seeded Fixed Cone

Use following jet finder rules:

Find particle with largest pT above a seed threshold

Create an ordered list of particles descending in pT and pick first particle

Draw a cone of fixed size around this particle

Resolution parameter of algorithm

Collect all other particles in cone and re-calculate cone directions from those

Use four-momentum re-summation

Collect particles in new cone of same size and find new direction as above

Repeat until direction does not change → cone becomes stable

Take next particle from list if above pT seed threshold

Repeat procedure and find next proto-jet

Note that this is done with all particles, including the ones found in previous cones

Continue until no more proto-jets above threshold can be constructed

The same particle can be used by 2 or more jets

Check for overlap between proto-jets

Add lower pT jet to higher pT jet if sum of particle pT in overlap is above a certain fraction of the lower pT jet (merge)

Else remove overlapping particles from higher pT jet and add to lower pT jet (split)

THE UNIVERSITY OF ARIZONA.

Iterative Seeded Fixed Cone

Use following jet finder rules:

Find particle with largest pT above a seed threshold

Create an ordered list of particles descending in pT and pick first particle

Draw a cone of fixed size around this particle

Resolution parameter of algorithm

Collect all other particles in cone and re-calculate cone directions from those

Use four-momentum re-summation

Collect particles in new cone of same size and find new direction as above

Repeat until direction does not change → cone becomes stable

Take next particle from list if above pT seed threshold

Repeat procedure and find next proto-jet

Note that this is done with all particles, including the ones found in previous cones

Continue until no more proto-jets above threshold can be constructed

The same particle can be used by 2 or more jets

Check for overlap between proto-jets

Add lower pT jet to higher pT jet if sum of particle pT in overlap is above a certain fraction of the lower pT jet (merge)

Else remove overlapping particles from higher pT jet and add to lower pT jet (split)

Find particle with largest pT above a seed threshold

Create an ordered list of particles descending in pT and pick first particle

Draw a cone of fixed size around this particle

Resolution parameter of algorithm

Collect all other particles in cone and re-calculate cone directions from those

Use four-momentum re-summation

Collect particles in new cone of same size and find new direction as above

Repeat until direction does not change → cone becomes stable

Take next particle from list if above pT seed threshold

Repeat procedure and find next proto-jet

Note that this is done with all particles, including the ones found in previous cones

Continue until no more proto-jets above threshold can be constructed

The same particle can be used by 2 or more jets

Check for overlap between proto-jets

Add lower pT jet to higher pT jet if sum of particle pT in overlap is above a certain fraction of the lower pT jet (merge)

Else remove overlapping particles from higher pT jet and add to lower pT jet (split)

THE UNIVERSITY OF ARIZONA.

Use following jet finder rules:

Find particle with largest pT above a seed threshold

Create an ordered list of particles descending in pT and pick first particle

Draw a cone of fixed size around this particle

Resolution parameter of algorithm

Collect all other particles in cone and re-calculate cone directions from those

Use four-momentum re-summation

Collect particles in new cone of same size and find new direction as above

> Repeat until direction does not change → cone becomes stable

Take next particle from list if above pT seed threshold

Repeat procedure and find next proto-jet

Note that this is done with all particles, including the ones found in previous cones

Continue until no more proto-jets above threshold can be constructed

The same particle can be used by 2 or more jets

Check for overlap between proto-jets

Add lower pT jet to higher pT jet if sum of particle pT in overlap is above a certain fraction of the lower pT jet (merge)

Else remove overlapping particles from higher pT jet and add to lower pT jet (split)

Find particle with largest pT above a seed threshold

Create an ordered list of particles descending in pT and pick first particle

Draw a cone of fixed size around this particle

Resolution parameter of algorithm

Collect all other particles in cone and re-calculate cone directions from those

Use four-momentum re-summation

Collect particles in new cone of same size and find new direction as above

> Repeat until direction does not change → cone becomes stable

Take next particle from list if above pT seed threshold

Repeat procedure and find next proto-jet

Note that this is done with all particles, including the ones found in previous cones

Continue until no more proto-jets above threshold can be constructed

The same particle can be used by 2 or more jets

Check for overlap between proto-jets

Add lower pT jet to higher pT jet if sum of particle pT in overlap is above a certain fraction of the lower pT jet (merge)

Else remove overlapping particles from higher pT jet and add to lower pT jet (split)

Find particle with largest pT above a seed threshold

Create an ordered list of particles descending in pT pick first particle

Draw work of fixed size around this particle

Resolution rameter of algorithm

Collect all other less in cone and re-calculate cone directions from hose

Use four-momentum remarks on Collect particles in new cone of large size and find new direction as above

> Repeat until direction does not day becomes stable

Take next particle from list if above pT see threshold

Repeat procedure and find next proto-jet

Note that this is done with all particles, including the ones found in previous cones

Continue until no more proto-jets above threshold can be constructed

The same particle can be used by 2 or more jets

Check for overlap between proto-jets

Add lower pT jet to higher pT jet if sum of particle pT in overlap is above a certain fraction of the lower pT jet (merge)

Else remove overlapping particles from higher pT iet and add to lower pT jet (split)

original seed lost for jets!

Other problems with iterative cone finders:

"Dark" tower problem

Original seed moves out of cone

Significant energy lost for jets

Other problems with iterative cone finders:

"Dark" tower problem

Original seed moves out of cone

Significant energy lost for jets

Advantages

Simple geometry based algorithm

Easy to implement

Fast algorithm

Ideal for online application in experiment

Disadvantages

Not infrared safe

Can partially be recovered by splitting & merging

Introduces split/merge pT fraction f (typically 0.50 - 0.75)

Kills "trace" of pertubative infinities in experiment

Hard to confirm higher order calculations in "real life" without infinities!

Not collinear safe

Used pT seeds (thresholds)

Jets not cone shaped

Splitting and merging potentially makes jets bigger than original cone size and changes jet boundaries

Motivated by gluon splitting function

QCD branching happens all the time

Attempt to undo parton fragmentation

Pair with strongest divergence likely belongs together

kT/Durham, first used in e⁺e⁻Catani, Dokshitzer, Olsson, Turnock & Webber 1991

Longitudinal invariant version for hadron colliders

Transverse momentum instead of energy

Catani, Dokshitzer, Seymour & Webber 1993

S.D. Ellis & D. Soper 1993

Valid at all orders!

$$\left[dk_{j}\right]\left|M_{g\to g_{i}g_{j}}^{2}(k_{j})\right|\simeq\frac{2\alpha_{s}C_{A}}{\pi}\frac{dE_{j}}{\min(E_{i},E_{j})}\frac{d\Theta_{ij}}{\Theta_{ij}}$$

$$(E_j \ll E_i, \Theta_{ij} \ll 1)$$

Distance between all particles *i* and *j*

$$y_{ij} = \frac{2\min(E_i^2, E_j^2)(1 - \cos\Theta_{ij})}{Q^2}$$

 $y_{ii} < y_{\text{cut}} \rightarrow \text{combine } i \text{ and } j$, else stop

Drop normalization to Q^2 (not fixed in pp

$$y_{ij} \rightarrow d_{ij} = \min(d_i, d_j) \Delta R_{ij}^2, d_{i,j} = p_{Ti,j}^2$$

$$\Delta R_{ij}^{2} = (y_{i} - y_{j})^{2} + (\varphi_{i} - \varphi_{j})^{2}$$

 $d_{ij} < d_{\text{cut}} \rightarrow \text{combine } i \text{ and } j$, else stop

(exclusive kT)

$$d_{ij} = \min(d_i, d_j) \Delta R_{ij}^2 / R$$

March 09, 2010

Motivated by gluon splitting function

QCD branching happens all the time

Attempt to undo parton fragmentation

Pair with strongest divergence likely belongs together

kT/Durham, first used in e⁺e⁻Catani, Dokshitzer, Olsson, Turnock & Webber 1991

Longitudinal invariant version for hadron colliders

Transverse momentum instead of energy

Catani, Dokshitzer, Seymour & Webber 1993

S.D. Ellis & D. Soper 1993

Valid at all orders!

$$\left[dk_{j}\right]\left|M_{g\to g_{i}g_{j}}^{2}(k_{j})\right|\simeq\frac{2\alpha_{s}C_{A}}{\pi}\frac{dE_{j}}{\min(E_{i},E_{j})}\frac{d\Theta_{ij}}{\Theta_{ij}}$$

$$(E_j \ll E_i, \Theta_{ij} \ll 1)$$

Distance between all particles *i* and *j*

$$y_{ij} = \frac{2\min(E_i^2, E_j^2)(1 - \cos\Theta_{ij})}{Q^2}$$

 $y_{ii} < y_{cut} \rightarrow \text{combine } i \text{ and } j$, else stop

Drop normalization to Q^2 (not fixed in pp

$$y_{ij} \rightarrow d_{ij} = \min(d_i, d_j) \Delta R_{ij}^2, d_{i,j} = p_{Ti,j}^2$$

$$\Delta R_{ij}^{2} = (y_{i} - y_{j})^{2} + (\varphi_{i} - \varphi_{j})^{2}$$

 $d_{ij} < d_{\text{cut}} \rightarrow \text{combine } i \text{ and } j$, else stop

(exclusive kT)

$$d_{ij} = \min(d_i, d_j) \Delta R_{ij}^2 / R$$

Motivated by gluon splitting function

QCD branching happens all the time

Attempt to undo parton fragmentation

Pair with strongest divergence likely belongs together

kT/Durham, first used in e⁺e⁻Catani, Dokshitzer, Olsson, Turnock & Webber 1991

Longitudinal invariant version for hadron colliders

Transverse momentum instead of energy

Catani, Dokshitzer, Seymour & Webber 1993

S.D. Ellis & D. Soper 1993

Valid at all orders!

$$\left[dk_{j}\right]\left|M_{g\to g_{i}g_{j}}^{2}(k_{j})\right| \simeq \frac{2\alpha_{s}C_{A}}{\pi} \frac{dE_{j}}{\min(E_{i},E_{j})} \frac{d\Theta_{ij}}{\Theta_{ij}}$$

$$(E_j \ll E_i, \Theta_{ij} \ll 1)$$

Distance between all particles *i* and *j*

$$y_{ij} = \frac{2\min(E_i^2, E_j^2)(1 - \cos\Theta_{ij})}{Q^2}$$

 $y_{ii} < y_{cut} \rightarrow \text{combine } i \text{ and } j, \text{ else stop}$

Drop normalization to Q^2 (not fixed in pp)

$$y_{ij} \rightarrow d_{ij} = \min(d_i, d_j) \Delta R_{ij}^2, d_{i,j} = p_{Ti,j}^2$$

$$\Delta R_{ij}^{2} = (y_{i} - y_{j})^{2} + (\varphi_{i} - \varphi_{j})^{2}$$

 $d_{ij} < d_{\text{cut}} \rightarrow \text{combine } i \text{ and } j$, else stop

(exclusive kT)

March 09, 2010

Motivated by gluon splitting function

QCD branching happens all the time

Attempt to undo parton fragmentation

Pair with strongest divergence likely belongs together

kT/Durham, first used in e⁺e⁻Catani, Dokshitzer, Olsson, Turnock & Webber 1991

Longitudinal invariant version for hadron colliders

Transverse momentum instead of energy

Catani, Dokshitzer, Seymour & Webber 1993

S.D. Ellis & D. Soper 1993

Valid at all orders!

$$\left[dk_{j}\right]\left|M_{g\to g_{i}g_{j}}^{2}(k_{j})\right| \simeq \frac{2\alpha_{s}C_{A}}{\pi} \frac{dE_{j}}{\min(E_{i},E_{j})} \frac{d\Theta_{ij}}{\Theta_{ij}}$$

$$(E_j \ll E_i, \Theta_{ij} \ll 1)$$

Distance between all particles *i* and *j*

$$y_{ij} = \frac{2\min(E_i^2, E_j^2)(1 - \cos\Theta_{ij})}{Q^2}$$

 $y_{ij} < y_{\text{cut}} \rightarrow \text{combine } i \text{ and } j$, else stop

Drop normalization to Q^2 (not fixed in pp)

$$y_{ij} \rightarrow d_{ij} = \min(d_i, d_j) \Delta R_{ij}^2, d_{i,j} = p_{Ti,j}^2$$

$$\Delta R_{ij}^{2} = (y_{i} - y_{j})^{2} + (\varphi_{i} - \varphi_{j})^{2}$$

 $d_{ij} < d_{\text{cut}} \rightarrow \text{combine } i \text{ and } j$, else stop

(exclusive kT)

$$d_{ij} = \min(d_i, d_j) \Delta R_{ij}^2 / R^2$$

Classic procedure

Calculate all distances d_{ji} for list of particles

Uses distance parameter

Calculate d_i for all particles Uses pT

If minimum of both lists is a d_{ij} , combine i and j and add to list

Remove i and j, of course

If minimum is a d_i , call i a jet and remove from list

Recalculate all distances and continue all particles are removed or called a jet

Features

Clustering sequence is ordered in kT

Follows jet structure

Inclusive longitudinal invariant clustering

$$d_{ij} = \min(d_i, d_j) \Delta R_{ij}^2 / R^2$$
$$d_i = p_{Ti}^2$$

Alternatives

Cambridge/Aachen clustering
Uses angular distances only
Clustering sequence follows jet
structure

Anti-kT clustering

No particular ordering, sequence not meaningful

Classic procedure

Calculate all distances d_{ji} for list of particles

Uses distance parameter

Calculate d_i for all particles Uses pT

If minimum of both lists is a d_{ij} , combine i and j and add to list

Remove i and j, of course

If minimum is a d_i , call i a jet and remove from list

Recalculate all distances and continue all particles are removed or called a jet

Features

Clustering sequence is ordered in kT

Follows jet structure

Inclusive longitudinal invariant clustering

$$d_{ij} = \min(d_i, d_j) \Delta R_{ij}^2 / R^2$$

$$d_i = p_{Ti}^{2n}$$

Cambridge/Aachen (n = 0)

cluster smallest d_{ij} first until $d_{ij} > 1$

Alternatives

Cambridge/Aachen clustering

Uses angular distances only Clustering sequence follows jet structure

Anti-kT clustering

No particular ordering, sequence not meaningful

Classic procedure

Calculate all distances d_{ji} for list of particles

Uses distance parameter

Calculate d_i for all particles

Uses pT

If minimum of both lists is a d_{ij} , combine i and j and add to list

Remove *i* and *j*, of course

If minimum is a d_i , call i a jet and remove from list

Recalculate all distances and continue all particles are removed or called a jet

Features

Clustering sequence is ordered in kT

Follows jet structure

Inclusive longitudinal invariant clustering

$$d_{ij} = \min(d_i, d_j) \Delta R_{ij}^2 / R^2$$

$$d_{i}=p_{Ti}^{2n}$$

Cambridge/Aachen (n = 0)

cluster smallest d_{ij} first until $d_{ij} > 1$

Anti-kT (n = -1)

follow classic algorithm

Alternatives

Cambridge/Aachen clustering

Uses angular distances only Clustering sequence follows jet structure

Anti-kT clustering

No particular ordering, sequence not meaningful

THE UNIVERSITY
OF ARIZONA

CTEQ-MCnet school 2008
Gavin Salam Lectures on Jets

Clustering Algorithms:

Define a distance d_{ij} between two objects i, j:

$$\Delta R_{ij}^2 = (y_i - y_j)^2 + (\phi_i - \phi_j)^2$$
 $d_{ij} = \min(k_{ti}^2, k_{tj}^2) \Delta R_{ij}^2 / R^2$

and a distance d_{iB} between one object

i and the beam direction B:

$$d_{iB}=k_{ti}^2$$

Find the smallest of d_{ij}, d_{iB}.

If \mathbf{d}_{ij} recombine \mathbf{i}, \mathbf{j} ;

If d_{iB} , i is a jet.

CTEQ-MCnet school 2008 Gavin Salam Lectures on Jets

Kt

(Catani/Dokshitzer/Seymour/Webber - S.Ellis/Soper)

AntiKt

(Cacciari/Salam/Sovez)

φorη

φorη

CTEQ-MCnet school 2008
Gavin Salam Lectures on Jets

AntiKt

(Cacciari/Salam/Soyez)

 φ or η

φorη

CTEQ-MCnet school 2008
Gavin Salam Lectures on Jets
Kt

Paolo Francavilla

Jet Algorithms

 φ or η

7

Paolo Francavilla

Clustering Algorithms

CTEQ-MCnet school 2008
Gavin Salam Lectures on Jets
Kt

(Catani/Dokshitzer/Seymour/Webber - S.Ellis/Soper) $\mathsf{E}_{\scriptscriptstyle op}$

(Cacciari/Salam/Soyez)

 φ or η

8

AntiKt

P. Loch

U of Arizona March 09, 2010

Jet Algorithms

CTEQ-MCnet school 2008
Gavin Salam Lectures on Jets
Kt

(Catani/Dokshitzer/Seymour/Webber - S.Ellis/Soper) $\mathsf{E}_{\scriptscriptstyle op}$

(Cacciari/Salam/Soyez)

AntiKt

Paolo Francavilla

 φ or η

CTEQ-MCnet school 2008 **Gavin Salam Lectures on Jets** Kt

(Catani/Dokshitzer/Seymour/Webber - S.Ellis/Soper) $\mathsf{E}_{\scriptscriptstyle op}$

 φ or η

Jet Algorithms

AntiKt

CTEQ-MCnet school 2008
Gavin Salam Lectures on Jets
Kt

(Catani/Dokshitzer/Seymour/Webber - S.Ellis/Soper) $\mathsf{E}_{\scriptscriptstyle op}$

AntiKt

Paolo Francavilla

Clustering Algorithms

CTEQ-MCnet school 2008
Gavin Salam Lectures on Jets

AntiKt

Jet Algorithms

 φ or η

12

CTEQ-MCnet school 2008 **Gavin Salam Lectures on Jets**

