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Calorimeter Response

What is response?
Reconstructed calorimeter signal

Based on the direct measurement –
the raw signal
May include noise suppression

Has the concept of signal (or energy) 
scale

Mostly understood as the basic signal 
before final calibrations

Does not explicitly include particle or 
jet hypothesis

Uses only calorimeter signal 
amplitudes, spatial distributions, etc.
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Calorimeter Signal in ATLAS

Slow signal collection in 
liquid argon calorimeters

~450 ns @ 1 kV/mm drift 
time versus 40 MHz/25 ns 
bunch crossing time

Measure only I0 = I(t0) 
(integrate <25 ns)

Applying a fast bi-polar 
signal shaping

Shaping time ~15 ns
With well known shape

Shaped pulse integral = 0
Net average signal 
contribution from pile-up 
= 0
Need to measure the 
pulse shape (time sampled 
readout)

Total integration ~25 bunch 
crossings

23 before signal, 1 signal, 1 
after signal

reading out (digitize) 5 
samples sufficient!
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ATLAS Digital Filtering

What is digital filtering
Unfolds the expected (theoretical) pulse 
shape from a measured pulse shape

Determines signal amplitude and timing
Minimizes noise contributions

Noise reduced by ~1.4 compared to 
single reading 
Note: noise depends on the luminosity 

Requires explicit knowledge of pulse 
shape 

Folds triangular pulse with transmission 
line characteristics and active electronic 
signal shaping
Characterized by signal transfer functions 
depending on R, L, C of readout 
electronics, transmission lines

Filter coefficients from calibration 
system

Pulse “ramps” for response
Inject known currents into electronic 
chain
Use output signal to constrain 
coefficients

Noise for auto-correlation
Signal history couples fluctuations in 
time sampled readings
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ATLAS Digital Filtering

What is digital filtering
Unfolds the expected (theoretical) pulse 
shape from a measured pulse shape

Determines signal amplitude and timing
Minimizes noise contributions

Noise reduced by ~1.4 compared to 
single reading 
Note: noise depends on the luminosity 

Requires explicit knowledge of pulse 
shape 

Folds triangular pulse with transmission 
line characteristics and active electronic 
signal shaping
Characterized by signal transfer functions 
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chain
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Calorimeter Response

What does signal or energy scale 
mean?

Indicates a certain level of signal 
reconstruction

Standard reconstruction often stops with 
a basic signal scale

Electromagnetic energy scale is a good 
reference

Uses direct signal  proportionality to 
electron/photon energy
Accessible in test beam experiments
Can be validated with isolated particles 
in collision environment
Provides good platform for data and 
simulation comparisons
Does not necessarily convert the 
electron signal to the true 
photon/electron energy!

Hadronic signals can also be calculated on 
this scale

Good platform for comparisons to 
simulations 
But does not return a good estimate for 
the deposited energy in non-
compensating calorimeters – see later 
discussion!

Is not a fundamental concept of physics!
Is a calorimeter feature
Definition varies from experiment to 
experiment
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Recall electrons/photons in sampling calorimeters:

Electron sampling fraction  relates signal and 
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D.Groom et al., NIM A338, 336-347 (1994)
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Hadronic Response (2)

Observable

provides experimental access to 
characteristic calorimeter variables in pion
test beams by fitting h/e, Ebase and m from 
the energy dependence of the pion signal 
on electromagnetic energy scale:   

Note that e/h is often constant, for 
example: in both H1 and ATLAS about 50% 
of the energy in the hadronic branch 
generates a signal independent of the 
energy itself
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Jet Response

Complex mixture of hadrons 
and photons

Not a single particle response
Carries initial electromagnetic 
energy 

Mainly photons

Very simple response model
Assume the hadronic jet content 
is represented by 1 particle only

Not realistic, but helpful to 
understand basic response 
features

More evolved model
Use fragmentation function in jet 
response

This has some practical 
considerations

E.g. jet calibration in CDF

Gets non-compensation effect 
Does not address acceptance 
effect due to shower overlaps
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Jet Response

Complex mixture of hadrons 
and photons

Not a single particle response
Carries initial electromagnetic 
energy 

Mainly photons

Very simple response model
Assume the hadronic jet content 
is represented by 1 particle only

Not realistic, but helpful to 
understand basic response 
features

More evolved model
Use fragmentation function in jet 
response

This has some practical 
considerations

E.g. jet calibration in CDF

Gets non-compensation effect 
Does not address acceptance 
effect due to shower overlaps
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Jet Response

Complex mixture of hadrons 
and photons

Not a single particle response
Carries initial electromagnetic 
energy 

Mainly photons

Very simple response model
Assume the hadronic jet content 
is represented by 1 particle only

Not realistic, but helpful to 
understand basic response 
features

More evolved model
Use fragmentation function in jet 
response

This has some practical 
considerations

E.g. jet calibration in CDF

Gets non-compensation effect 
Does not address acceptance 
effect due to shower overlaps
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Jet Response

Complex mixture of hadrons 
and photons

Not a single particle response
Carries initial electromagnetic 
energy 

Mainly photons

Very simple response model
Assume the hadronic jet content 
is represented by 1 particle only

Not realistic, but helpful to 
understand basic response 
features

More evolved model
Use fragmentation function in jet 
response

This has some practical 
considerations

E.g. jet calibration in CDF

Gets non-compensation effect 
Does not address acceptance 
effect due to shower overlaps
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Acceptance and Noise in Jet Response

Noise
Fluctuations of the “zero” or “empty” 
signal reading

Pedestal fluctuations
Independent of the signal from particles

At least to first order
Mostly incoherent

No noise correlations between readout 
channels

Noise in each channel is independent 
oscillator

Gaussian in nature
Pedestal fluctuations ideally follow 
normal distribution around 0
Width of distribution (1 σ) is noise value 

Signal significance
Noise can fake particle signals

Only signals exceeding noise can be 
reliably measured

Signals larger than 3 noise are very 
likely from particles

Gaussian interpretation of pedestal 
fluctuations 

Calorimeter signal reconstruction aims to 
suppress noise

Average contribution = 0, but adds to 
fluctuations!

Small signal:
Noise only
Signal on top of noise
Sum of noise and signal
Signal after noise suppression

noiseReading ( )σ

Spatial Coordinate/Calorimeter Cell
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Acceptance and Noise in Jet Response

Noise
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fluctuations!

Small signal:
Noise only
Signal on top of noise
Sum of noise and signal
Signal after noise suppression

noiseReading ( )σ

Spatial Coordinate/Calorimeter Cell



16
P. Loch

U of Arizona

February 18, 2010
Acceptance and Noise in Jet Response
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Acceptance and Noise in Jet Response

Noise
Fluctuations of the “zero” or “empty” 
signal reading
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reliably measured

Signals larger than 3 noise are very 
likely from particles

Gaussian interpretation of pedestal 
fluctuations 
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Acceptance and Noise in Jet Response

Noise
Fluctuations of the “zero” or “empty” 
signal reading

Pedestal fluctuations
Independent of the signal from particles

At least to first order
Mostly incoherent
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Noise in each channel is independent 
oscillator

Gaussian in nature
Pedestal fluctuations ideally follow 
normal distribution around 0
Width of distribution (1 σ) is noise value 

Signal significance
Noise can fake particle signals

Only signals exceeding noise can be 
reliably measured

Signals larger than 3 noise are very 
likely from particles

Gaussian interpretation of pedestal 
fluctuations 

Calorimeter signal reconstruction aims to 
suppress noise

Average contribution = 0, but adds to 
fluctuations!

Large signal:
Noise only
Signal on top of noise
Sum of noise and signal
Signal after noise suppression

noiseReading ( )σ

Spatial Coordinate/Calorimeter Cell
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Acceptance and Noise in Jet Response

Noise
Fluctuations of the “zero” or “empty” 
signal reading
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Signals larger than 3 noise are very 
likely from particles

Gaussian interpretation of pedestal 
fluctuations 

Calorimeter signal reconstruction aims to 
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Noise only
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Sum of noise and signal
Signal after noise suppression

noiseReading ( )σ

Spatial Coordinate/Calorimeter Cell



20
P. Loch

U of Arizona

February 18, 2010
Acceptance and Noise in Jet Response

Noise
Fluctuations of the “zero” or “empty” 
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Pedestal fluctuations
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At least to first order
Mostly incoherent

No noise correlations between readout 
channels

Noise in each channel is independent 
oscillator

Gaussian in nature
Pedestal fluctuations ideally follow 
normal distribution around 0
Width of distribution (1 σ) is noise value 
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fluctuations!

Large signal:
Noise only
Signal on top of noise
Sum of noise and signal
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Acceptance and Noise in Jet Response

Noise
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Gaussian interpretation of pedestal 
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Average contribution = 0, but adds to 
fluctuations!

Large signal:
Noise only
Signal on top of noise
Sum of noise and signal
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Acceptance and Noise in Jet Response

Noise
Fluctuations of the “zero” or “empty” 
signal reading

Pedestal fluctuations
Independent of the signal from particles

At least to first order
Mostly incoherent

No noise correlations between readout 
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Noise in each channel is independent 
oscillator
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normal distribution around 0
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Only signals exceeding noise can be 
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Signals larger than 3 noise are very 
likely from particles

Gaussian interpretation of pedestal 
fluctuations 
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suppress noise

Average contribution = 0, but adds to 
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Large signal:
Noise only
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Sum of noise and signal
Signal after noise suppression

noiseReading ( )σ

Spatial Coordinate/Calorimeter Cell

calorimeter response 
< true signal!
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Acceptance and Noise in Jet Response

Noise
Fluctuations of the “zero” or “empty” 
signal reading

Pedestal fluctuations
Independent of the signal from particles

At least to first order
Mostly incoherent

No noise correlations between readout 
channels

Noise in each channel is independent 
oscillator

Gaussian in nature
Pedestal fluctuations ideally follow 
normal distribution around 0
Width of distribution (1 σ) is noise value 

Signal significance
Noise can fake particle signals

Only signals exceeding noise can be 
reliably measured

Signals larger than 3 noise are very 
likely from particles

Gaussian interpretation of pedestal 
fluctuations 

Calorimeter signal reconstruction aims to 
suppress noise

Average contribution = 0, but adds to 
fluctuations!

Small signal, two particles:
Noise only
Signal on top of noise
Sum of noise and signal
Signal after noise suppression

noiseReading ( )σ

Spatial Coordinate/Calorimeter Cell
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Acceptance and Noise in Jet Response

Noise
Fluctuations of the “zero” or “empty” 
signal reading

Pedestal fluctuations
Independent of the signal from particles

At least to first order
Mostly incoherent

No noise correlations between readout 
channels

Noise in each channel is independent 
oscillator

Gaussian in nature
Pedestal fluctuations ideally follow 
normal distribution around 0
Width of distribution (1 σ) is noise value 

Signal significance
Noise can fake particle signals

Only signals exceeding noise can be 
reliably measured

Signals larger than 3 noise are very 
likely from particles

Gaussian interpretation of pedestal 
fluctuations 

Calorimeter signal reconstruction aims to 
suppress noise

Average contribution = 0, but adds to 
fluctuations!

Small signal, first particle:
Noise only
Signal on top of noise
Sum of noise and signal
Signal after noise suppression

noiseReading ( )σ

Spatial Coordinate/Calorimeter Cell
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Acceptance and Noise in Jet Response

Noise
Fluctuations of the “zero” or “empty” 
signal reading

Pedestal fluctuations
Independent of the signal from particles

At least to first order
Mostly incoherent

No noise correlations between readout 
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Noise in each channel is independent 
oscillator

Gaussian in nature
Pedestal fluctuations ideally follow 
normal distribution around 0
Width of distribution (1 σ) is noise value 

Signal significance
Noise can fake particle signals

Only signals exceeding noise can be 
reliably measured

Signals larger than 3 noise are very 
likely from particles

Gaussian interpretation of pedestal 
fluctuations 

Calorimeter signal reconstruction aims to 
suppress noise

Average contribution = 0, but adds to 
fluctuations!

Small signal, first and second particle:
Noise only
Signal on top of noise
Sum of noise and signal
Signal after noise suppression

noiseReading ( )σ

Spatial Coordinate/Calorimeter Cell
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Acceptance and Noise in Jet Response

Noise
Fluctuations of the “zero” or “empty” 
signal reading

Pedestal fluctuations
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No noise correlations between readout 
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Signal significance
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Only signals exceeding noise can be 
reliably measured

Signals larger than 3 noise are very 
likely from particles

Gaussian interpretation of pedestal 
fluctuations 

Calorimeter signal reconstruction aims to 
suppress noise

Average contribution = 0, but adds to 
fluctuations!

Small signal, two particle, sum:
Noise only
Signal on top of noise
Sum of noise and signal
Signal after noise suppression

noiseReading ( )σ

Spatial Coordinate/Calorimeter Cell
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Noise
Fluctuations of the “zero” or “empty” 
signal reading

Pedestal fluctuations
Independent of the signal from particles

At least to first order
Mostly incoherent

No noise correlations between readout 
channels

Noise in each channel is independent 
oscillator

Gaussian in nature
Pedestal fluctuations ideally follow 
normal distribution around 0
Width of distribution (1 σ) is noise value 

Signal significance
Noise can fake particle signals
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Acceptance and Noise in Jet Response
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Acceptance and Noise in Jet Response
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Mostly incoherent

No noise correlations between readout 
channels

Noise in each channel is independent 
oscillator

Gaussian in nature
Pedestal fluctuations ideally follow 
normal distribution around 0
Width of distribution (1 σ) is noise value 

Signal significance
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calorimeter response 
< true signal!
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