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Brief reminder on the recommendation

A subtlety in the bands for small numbers of events

Some observations about the power-constraint
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Recall, what we mean by 95% upper-limit
‣ increase s until tail probability is 5%
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To address the sensitivity problem, CLs was introduced
‣ common (misused) nomenclature: CLs = CLs+b/CLb

‣ idea: only exclude if CLs<5%  (if CLb is small, CLs gets bigger)
CLs is known to be “conservative” (over-cover): expected limit covers with 97.5%

● amount by which CLs over-covers is not transparent to the reader
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“The CLs ... methods combine size and power in a very ad hoc way and are 
unlikely to have satisfactory statistical properties.” -- D. Cox & N. Reid
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The power-constraint approach uses the same information as CLs, but keeps 
the two pieces of information separate
‣ CLs+b is used for the limit
‣ CLb is used to define a “sensitivity” 

Two pieces of information with well-defined properties (instead of one without)
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PCL and the bands
The recommended plot looks like the one below
‣ We have been using the -1σ band as the power-constraint

● yes, it’s a 16% is a convention... just like 95% is a convention
Focus here is on the importance of the bands
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b-only expectation

-2σ background 
fluctuation

Observed limit is 
“too lucky” for 
comfort, impose 
“power constraint”

-2σ band must go 
to 0 by simple 
logical argument, 
so remove it
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Start

Asymptotics are 
valid

Want to use q_μ 
or ~q_μ

Is your model arranged so 
that constraint terms on 

auxiliary measurements are 
RooRealVars with ranges (as 

opposed to RooConstVars 
that cannot fluctuate)

Check if distribution of 
test statistic follows 

asymptotic distribution
or

Compare results from 
asymptotics and ToyMC

Asymptotics are χ²

95% threshold on q_μ is 2.7

Note, the bands can also be 
generated with asymptotic 
formulae in recomendation.

Can use 
ProfileBands_qmu.C with 

choice=3

Asymptotics are NOT χ²

95% threhsold on ~q_μ is a function of μ

Note, the bands can also be generated with 
asymptotic formulae in recomendation.

Can use ProfileBands_qmu.C with choice=4

yes

don't know

q_μ

~q_μ

Use ~q_μ because there is no advantage to use 
q_μ

 
95% threhsold on q_μ to be determined 

numerically.

Can use 
OneSidedFrequentistUpperLimitWithBands.C

no

Recommended
This will produce an 

unconditional ensemble.  
Distributions will 
converge to the 

asymptotic formulae.

Not Recommended
This will produce a 

conditional ensemble.  
Distributions will deviate from 

the asymptotic formulae.

Did you make sure these 
parameters are either in the 
dataset or in ModelConfig's 
list of GlobalObservables

no

yes

yes

no / huh?

Do it.  
or

If you don't understand how, write 
atlas-phys-stat-root@cern.ch

decide not to 

Flow Chart of ATLAS Stat Forum recommendation on upper limits 
version 2, Feb. 2, 2011

Flow chart outlines recommendations.  Specific scripts are available 
that implement the recommendations with RooStats tools.

Same workspace can be used with other statistical methods.
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These asymptotic properties are basis for much of the logic:
1.the value of the test statistic qµ for some given data is independent of 

the value of the nuisance parameter θ
2.the distribution f(qµ | µ, θ) is independent of the value of the nuisance 

parameter θ and has an analytic form
3.the distribution of f(qµ | 0, θ) depends on the value of the nuisance 

parameter θ 
Thus:

‣ In the asymptotic regime, the distributions have a known form
‣ In an intermediate regime, we need to use toy MC to calibrate the 

distributions, but we can assume they are still roughly independent of θ
‣ In the low-count regime, we can’t rely on this assumption

● this is where we will update the recommendation
Note, this 3. means that even asymptotically, CLs depends on the 
treatment of the nuisance parameters, while CLs+b does not.
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The confidence interval (upper-limit) is based on a Neyman-Construction.
‣ can’t deal with space of all nuisance parameters, so we only perform 

construction along profiled path (called “Hybrid resampling” by statisticians)
‣ For each value of µ, we find threshold T(µ) that holds 95%.  
‣ Exclude when qµ>T(µ),  
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Each colored curve represents qµ for a single b-only pseudo-experiment
‣ Find upper-limit for each, build distribution of upper-limits
‣ use this to define bands, power-constraint
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Study on H→WW at 160GeV

Extracting the upper limits
• The colored curves stand for values of evaluating Toy-Data

with different µ points

Haoshuang Ji First attempt on Higgs combination

µ
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CERN Academic Training, Statistics, April 2011

The subtlety we found with few events
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Reminder on Discrete Problems
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In discrete problems (eg. number counting analysis with counts described by a 
Poisson) one sees:

‣ discontinuities in the coverage (as a function of parameter)
‣ over-coverage (in some regions)

When there are systematics, the Poisson discreteness is broken
‣ For N=0 and b≪1, the familiar limit of s95=3 changes to s95=2.3
‣ In some cases this 2.3 has exact coverage for all values, worst case is 90%
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In order to study the low-count situation with systematics, consider a 
simple extension to Pois(n | s+b) with systematic δ on signal and 
background rate, constrained by auxiliary measurement m
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RULES OF THUMB FOR LIMITS WITH b ! 1 AND THE

UNCONDITIONAL ENSEMBLE

KYLE CRANMER

Physicists are familiar with a rule-of-thumb that says when one observes no candidate
events, that one sets a limit at 3 events. This familiar result can be seen by looking at the
Poisson distribution

(1) Pois(n|µ) =
µne−µ

n!
plugging in n = 0 and solving Pois(n = 0|µ) = 5% for µ, which gives µ = ln(0.05) = 2.99.

When we have systematics and we include constraint terms based on auxiliary measure-
ments m, then things change. Now our ensemble includes both variations in n and m. Let’s
write an example model where the expected number of events looks like µ = s + b, and
immediately go one step further by letting there be efficiency or luminosity uncertainties
on s and b of magnitude ηs and ηb,

(2) P (n,m|s, δ) = Pois(n|(1 + ηsδ)s + (1 + ηbδ)b)Gaus(m|δ, 1).

For the plots below, we choose ηs = 10% for a 10% luminosity and or signal efficiency
uncertainty, ηb = 0 to neglect any systematic on the background, and b = 0.01 for a very
small background rate. We explicitly sample n,m from this distribution and calculate the
one-sided profile likelihood ratio which gives − lnλ(s) if ŝ < s and 0 otherwise. These
numerical studies confirm the new rule of thumb:

• median expected limit comes from solving the same calculation as before, with only
half the n = 0 bin’s probability. So we get ln(5%/0.5) ∼ 2.3

• +1σ band of expected limit comes from solving the same calculation as before, with
only 84% of the n = 0 bin’s probability. So we get ln(5%/0.84) ∼ 2.82 (close to the
familiar µ = 3 result)

• −1σ expected limit comes from solving the same calculation as before, with only
16% of the n = 0 bin’s probability. So we get ln(5%/0.16) ∼ 1.16

Date: March 3, 2011.

1

Where one would have previously 
had delta functions at N=0,1,2,...

Now we get small mountains 
corresponding to fluctuations in 
the auxiliary measurement m
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Physicists are familiar with a rule-of-thumb that says when one observes no candidate
events, that one sets a limit at 3 events. This familiar result can be seen by looking at the
Poisson distribution

(1) Pois(n|µ) =
µne−µ

n!
plugging in n = 0 and solving Pois(n = 0|µ) = 5% for µ, which gives µ = ln(0.05) = 2.99.

When we have systematics and we include constraint terms based on auxiliary measure-
ments m, then things change. Now our ensemble includes both variations in n and m. Let’s
write an example model where the expected number of events looks like µ = s + b, and
immediately go one step further by letting there be efficiency or luminosity uncertainties
on s and b of magnitude ηs and ηb,

(2) P (n,m|s, δ) = Pois(n|(1 + ηsδ)s + (1 + ηbδ)b)Gaus(m|δ, 1).

For the plots below, we choose ηs = 10% for a 10% luminosity and or signal efficiency
uncertainty, ηb = 0 to neglect any systematic on the background, and b = 0.01 for a very
small background rate. We explicitly sample n,m from this distribution and calculate the
one-sided profile likelihood ratio which gives − lnλ(s) if ŝ < s and 0 otherwise. These
numerical studies confirm the new rule of thumb:

• median expected limit comes from solving the same calculation as before, with only
half the n = 0 bin’s probability. So we get ln(5%/0.5) ∼ 2.3

• +1σ band of expected limit comes from solving the same calculation as before, with
only 84% of the n = 0 bin’s probability. So we get ln(5%/0.84) ∼ 2.82 (close to the
familiar µ = 3 result)

• −1σ expected limit comes from solving the same calculation as before, with only
16% of the n = 0 bin’s probability. So we get ln(5%/0.16) ∼ 1.16

Date: March 3, 2011.
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Where one would have previously 
had delta functions at N=0,1,2,...

Now we get small mountains 
corresponding to fluctuations in 
the auxiliary measurement m

5 2 sided vs 1 sided

Repeating the test for s = 2.3 and releasing the one sided condition qs = 0 for ŝ > s we find

a p-value 0f 6.4%. To understand where it comes from we show in Figure 4 the pdf for the

2 sided version of the test statistics, where one can see that the additional 1.4 % came from

very high values of n >> 3.
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Figure 4: Testing the signal hypothesis with s = 2.3 using a two sided test statistic (qs is not
set to zero when ŝ > s). The green line is the observation n = 0. The p-value is 6.4%. 5%

from the n ≤ 3 toy exeriments and another 1.4% from the n > 3 toy experiments.

6 ”Better than zero?” or ”New thumb rule?”

We investigate now how the upper limit varies had the true value of the efficiency deviates

from the assumed one δ = 0 by δ · ηs, i.e. δ times standard deviations. We also investigate

the dependence on the systematics itself ηs. Figure 5 show the upper limit sup (at the 95%

CL) had the true value of the efficiency deviates from its nominal assumed one by δ · ηs. We

see that for a systematics of 20% the upper limit reaches a maximum at about 0.5 standard

deviation and is about sup = 2.4. For a systematics of 10% the maximal upper limit occurs

at around 1-1.2 standard deviation and is about sup = 2.5−2.6. Smaller uncertainties on the

efficiency drive the maximal upper limit closer to the classical sup = 3.

This result is in full agreement with Ofer’s note. There he shows (Figure 6) the upper limit

required in order to ensure a full coverage (at the 95% CL) as a function of the uncertainty

5

test statistic

Gross, Nativ
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In a recent analysis with N=0 and b≪1, the script that implements 
the recommendation was returning s95~2.3 as expected, but the 
-1σ band was about 1.2 events.
‣ much discussion with Henri, Haichen, Ofer, Glen, myself
‣ In these cases, we expect N=0 background-only

Simply put, what type of fluctuation could lead to a limit that is 
almost twice as strong?
‣ If you repeat the argument of why one can get a limit of s95~2.3 

events for several b-only toys, you would expect the 
distribution of upper-limits from b-only to be very narrow 
around s95~2.3
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It’s a bit difficult to explain this, but essentially the point is that a 
fluctuations in the auxiliary measurement lead to small changes to the 
value of the test statistic.  

‣ the problem is that we are re-using the T(µ) thresholds built from 
profiling on the observed data, not this particular b-only toy

The problem
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Physicists are familiar with a rule-of-thumb that says when one observes no candidate
events, that one sets a limit at 3 events. This familiar result can be seen by looking at the
Poisson distribution

(1) Pois(n|µ) =
µne−µ

n!
plugging in n = 0 and solving Pois(n = 0|µ) = 5% for µ, which gives µ = ln(0.05) = 2.99.

When we have systematics and we include constraint terms based on auxiliary measure-
ments m, then things change. Now our ensemble includes both variations in n and m. Let’s
write an example model where the expected number of events looks like µ = s + b, and
immediately go one step further by letting there be efficiency or luminosity uncertainties
on s and b of magnitude ηs and ηb,

(2) P (n,m|s, δ) = Pois(n|(1 + ηsδ)s + (1 + ηbδ)b)Gaus(m|δ, 1).

For the plots below, we choose ηs = 10% for a 10% luminosity and or signal efficiency
uncertainty, ηb = 0 to neglect any systematic on the background, and b = 0.01 for a very
small background rate. We explicitly sample n,m from this distribution and calculate the
one-sided profile likelihood ratio which gives − lnλ(s) if ŝ < s and 0 otherwise. These
numerical studies confirm the new rule of thumb:

• median expected limit comes from solving the same calculation as before, with only
half the n = 0 bin’s probability. So we get ln(5%/0.5) ∼ 2.3

• +1σ band of expected limit comes from solving the same calculation as before, with
only 84% of the n = 0 bin’s probability. So we get ln(5%/0.84) ∼ 2.82 (close to the
familiar µ = 3 result)

• −1σ expected limit comes from solving the same calculation as before, with only
16% of the n = 0 bin’s probability. So we get ln(5%/0.16) ∼ 1.16

Date: March 3, 2011.
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Study on H→WW at 160GeV

Extracting the upper limits
• The colored curves stand for values of evaluating Toy-Data

with different µ points

Haoshuang Ji First attempt on Higgs combination
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In short the solution is that in the low-count regime we need to repeat the 
entire procedure for each b-only toy
‣ this means a new profile construction for each b-only toy
‣ this will put the nuisance parameters so that the auxiliary measurement 

is near the median 
Consequences: While this sounds like it would be computationally 
impractical, it’s not as bad as it sounds
‣ Currently we use N toys for each of the M µ points we test to find T(µ).  

Then we run B toys and observed data to find limits.  So we have 
~NxM+B+1 toy runs

‣ If we only wanted the observed limit, we can do cleaver tricks so that 
we only need ~2N toys near µ95

‣ So with about 2N*(B+1) toys we can get observed and build bands
‣ In very-low count, bands are narrow, so we may be able to use a 

smaller B
Practical: updated scripts in progress, another area we could use help
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Some observations
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The median would actually have been stable to this problem that 
we observed.

Some have pointed out that over-estimating systematics might 
widen the band, thus reducing the power constraint... “being 
optimistic by being conservative”.  But this not the case with the 
median.

Computational: It requires more b-only toys to estimate the 16% 
quantile than the median

Remember that CLs continues to have a sensitivity to the 
nuisance parameters even in the asymptotic regime

18

Some observations about 16 vs. 50%
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The CLs procedure purposefully over-covers (“conservative”)
‣ and it is not possible for the reader to determine by how much

The power-constrained approach has the specified coverage until the 
constraint is applied, at which point the coverage is 100%
‣ limits are not ‘aggressive’ in the sense that they under-cover
‣ arbitrary sensitivity estimate is explicit, coverage is explicit
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Figure 1: Plots of (a) several types of limits and (b) their coverage as a function of µ.

For the Gaussian problem, CLs coincides with the Bayesian limit obtained with a constant
prior for µ ≥ 0.

Flip-flopping is potentially an issue, but could be handled by always quoting an upper
limit. “Always” in this context could be taken to mean in all analyses that are carried
out in the search phase of the phenomenon, i.e., before the existence of the process is well
established.

4.2 Properties of PCL

The Power-Constrained Limits are shown in Fig. 1(a) for the Gaussian problem.

The unconstrained confidence interval is first constructed using a likelihood ratio with
respect to a one-sided alternative. Values of µ rejected by the test may then be re-included
in the interval if the power of the test with respect to the µ = 0 alternative is below the
power threshold Mmin.

The choice of Mmin is a matter of convention. Formally it should be large compared
to α, and initially the value Mmin = Φ(−1) = 0.16 was proposed. This choice could be
revisited. The PCL interval for Mmin = 0.50 is also shown in Fig. 1. This choice would
have the advantage that one would see fewer instances where the PCL and CLs limits differ
numerically by large amounts, reducing the amount of “surprise” in the community. The
ability to state easily in what regions PCL has 95% and 100% coverage is retained.

The coverage of PCL intervals is 100% for µ less than some value µmin. This corresponds
to the value for which the power is just equal to Mmin. For µ > µmin the coverage is
1 − α = 95%.

Because of the nature of the initial likelihood-ratio test, the point µ = 0 is never excluded.
Therefore, formally, even the unconstrained interval does not have negatively biased relevant
subsets.

After application of the power constraint, the region of µ values with 95% coverage, i.e.,
µ > µmin has negatively biased subsets, if this concept is adapted to allow conditioning on
the true value µ.
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For the Gaussian problem, CLs coincides with the Bayesian limit obtained with a constant
prior for µ ≥ 0.

Flip-flopping is potentially an issue, but could be handled by always quoting an upper
limit. “Always” in this context could be taken to mean in all analyses that are carried
out in the search phase of the phenomenon, i.e., before the existence of the process is well
established.

4.2 Properties of PCL

The Power-Constrained Limits are shown in Fig. 1(a) for the Gaussian problem.

The unconstrained confidence interval is first constructed using a likelihood ratio with
respect to a one-sided alternative. Values of µ rejected by the test may then be re-included
in the interval if the power of the test with respect to the µ = 0 alternative is below the
power threshold Mmin.

The choice of Mmin is a matter of convention. Formally it should be large compared
to α, and initially the value Mmin = Φ(−1) = 0.16 was proposed. This choice could be
revisited. The PCL interval for Mmin = 0.50 is also shown in Fig. 1. This choice would
have the advantage that one would see fewer instances where the PCL and CLs limits differ
numerically by large amounts, reducing the amount of “surprise” in the community. The
ability to state easily in what regions PCL has 95% and 100% coverage is retained.

The coverage of PCL intervals is 100% for µ less than some value µmin. This corresponds
to the value for which the power is just equal to Mmin. For µ > µmin the coverage is
1 − α = 95%.

Because of the nature of the initial likelihood-ratio test, the point µ = 0 is never excluded.
Therefore, formally, even the unconstrained interval does not have negatively biased relevant
subsets.

After application of the power constraint, the region of µ values with 95% coverage, i.e.,
µ > µmin has negatively biased subsets, if this concept is adapted to allow conditioning on
the true value µ.
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