Back to Basics

Simple Principle

$e^{-3} \sim 50 \%$

If you observe 0 events you can exclude a total yield of 3 @ 95% CL

What is so special about this statement?
If you observe 0 you know that you have observed 0 signal events
Firm statement about your signal, whatever the
background, or the auxiliary measurements

What happens when you observe $\mathrm{N}_{\text {obs }}$ events ?

You can still make a purely frequentist statement about your expected yield

This is a conservative limit on a signal whatever the background is.

$$
\text { Assuming: } \quad \begin{aligned}
& \text { means assume all observed } \\
& \text { events are signal. }
\end{aligned}
$$

Conservative, but only possible assumption if you don't know your background

What if we know what to expect for the background?

$$
b=7
$$

SPP

Simple Pragmatic Prescription (Mandelkern)
Still don't know if what we observe is background or signal, but let's assume that until we reach b, it's background!

Don't allow yourself to subtract more than what you have

$C L_{s+b}$

The so-called diagonal line is simply the subtraction of b.

$P \backsim 1$

Cowan, Cranmer, Gross, Vittels

Read
Neyman construction with modified frequencies

FC

Feldman and Cousins

Neyman construction with modified test statistic

Bayesian

O'Helene

Not a Neyman construction... Bayesian integral with flat prior!

Summary

Adding 50\% PCL constraint.

Varying background hypotheses

$b=0$

Varying background hypotheses

$b=0.5$

Varying background hypotheses

$b=1.0$

Varying background hypotheses

$b=1.5$

Varying background hypotheses

$b=2.0$

Varying background hypotheses

$b=2.5$

Varying background hypotheses

$b=3.0$

Varying background hypotheses

$b=3.5$

Varying background hypotheses

$b=4.0$

Varying background hypotheses

$b=4.5$

Varying background hypotheses

$b=5.0$

Varying background hypotheses

$b=5.5$

Varying background hypotheses

$b=6.0$

Varying background hypotheses

$b=6.5$

Varying background hypotheses

$b=7.0$

Varying background hypotheses

$b=7.5$

Varying background hypotheses

$b=8.0$

Varying background hypotheses

$b=8.5$

Varying background hypotheses

$b=9.0$

