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Essentially all statistical statements start with 
the basic probability density function 
‣ building a good model for the data is hard!

● this is where we use our understanding of physics

‣ there are several valid statistical methods
● different consumers of results want different things

‣ want to re-use same model for the data in 
many different ways Neyman Construction

One Model, Many Methods
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New ATLAS-only email list: atlas-phys-stat-root@cern.ch
‣ initial focus RooFit/RooStats, but open to general ROOT questions

Next ROOT production release mid Dec. (5.28)
‣ Main efforts: clean-up, validation, bug fixes, and requests
‣ Several fixes for coding problems identified by Coverity code checker 
‣ One more week devoted cleaning up tutorials and documentation

Aiming to have tutorial in Jan. to overlap with PhyStat
‣ ideal date: Fri., Jan 21 (but there is also a TMVA workshop)
‣ may also be able to do a tutorial on Fri., Jan 14

Citation: "The RooStats project", http://arxiv.org/abs/1009.1003 Proceedings of the 
ACAT2010 Conference

Will be able to support an expert (post-doc or advanced graduate student) 
to be at CERN in exchange for fraction of time spent in RooFit/RooStats 
development, validation, maintenance, and support within the 
collaboration.  Please contact me if you are interested.
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Announcements

mailto:atlas-phys-stat-root@cern.ch
mailto:atlas-phys-stat-root@cern.ch
http://arxiv.org/abs/1009.1003
http://arxiv.org/abs/1009.1003
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RooFit & RooStats
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RooStats provides tools for high-level statistics questions in ROOT
‣ it builds on RooFit which provides basic building blocks for statistical questions

I will start with an overview of RooFit and then move to RooStats

hypothesis prior

hypothesis tests

test statistic

RooStats

confidence intervals (limits)

sampling distribution

combinations

variables functions

probability density functions

integration

RooFit

minimization

binned & unbinned datasets

fitting toyMC generation

http://indico.in2p3.fr/materialDisplay.py?contribId=15&materialId=slides&confId=750
Note, excellent slides from Wouter Verkerke on RooFit at SoS ’08 (I will borrow from them)

http://indico.in2p3.fr/materialDisplay.py?contribId=15&materialId=slides&confId=750
http://indico.in2p3.fr/materialDisplay.py?contribId=15&materialId=slides&confId=750
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RooStats: Project info
Core developers

‣ K. Cranmer (ATLAS)
‣ Gregory Schott (CMS)
‣ Wouter Verkerke (RooFit)
‣ Lorenzo Moneta (ROOT)
‣ open project, you are welcome 

to join. Contributions from
● Max Baak, Kevin Belasco, Danilo 

Piparo, Giacinto Piacquadio, 
Maurizio Pierini, George H. Lewis, 
Alfio Lazzaro, Sven Kreiss, Mario 
Pelliccioni, Matthias Wolf

● Included since ROOT v5.22

‣ Example macros in
● $ROOTSYS/tutorials/roostats

Documentation
‣ code doc. via ROOT
‣ users manual currently 42 

pages, linked from Wiki page
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https://twiki.cern.ch/twiki/bin/view/RooStats/WebHome

http://www.youtube.com/RooStats
Screencast tutorials

User’s Guide
draft users guide

There is also a category in ROOT’s Savannah bug tracking system

https://twiki.cern.ch/twiki/bin/view/RooStats/WebHome
https://twiki.cern.ch/twiki/bin/view/RooStats/WebHome
http://www.youtube.com/RooStats
http://www.youtube.com/RooStats
http://root.cern.ch/viewcvs/branches/dev/roostats/roofit/roostats/doc/usersguide/RooStats_UsersGuide.pdf
http://root.cern.ch/viewcvs/branches/dev/roostats/roofit/roostats/doc/usersguide/RooStats_UsersGuide.pdf
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The User’s Guide
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1.1 Getting Started

Since December 2008, RooStats has been distributed in the ROOT release since version 5.22

(December 2008). To use RooStats, you need a version of ROOT greater than 5.22, but you

will probably want the most recent ROOT version since the project is developing quickly.

Option 1) Download the binaries for the latest ROOT release

You can download the most recent version of ROOT here: http://root.cern.ch/

Option 2) Check out and build the ROOT trunk

If you prefer to build ROOT from source,

svn co http://root.cern.ch/svn/root/trunk root

then build and install ROOT via (you may want different configure options)

configure --enable -roofit
make
make install

Option 3) Check out and build the RooStats branch

If you need a development or bug-fix that is not yet in a ROOT release, you can download

the most recent version of the code from ROOT’s subversion repository. To check it out, go

to some temporary directory and type:

svn co https://root.cern.ch/svn/root/branches/dev/roostats root

then build and install ROOT via (you may want different configure options)

configure --enable -roofit
make
make install

For more information about building ROOT from source, see the ROOT webpage:

http://root.cern.ch/drupal/content/installing-root-source.
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Major Goals and Status
Goal: Standardize interface for major statistical procedures so that they can work on 
an arbitrary RooFit model & dataset and handle many parameters of interest and 
nuisance parameters.

‣ Status: Done
● ConfIntervalCalculator & HypoTestCalculator interface for tools
● they return ConfidenceInterval and HypoTestResult

Goal: Implement most accepted techniques from Frequentist, Bayesian, and 
Likelihood-based approaches

‣ Status: Done / Ongoing
● ProfileLikelihoodCalculator: (Likelihood) the method of MINUIT/MINOS
● FeldmanCousins: (Frequentist) a specific version of Neyman Construction
● MCMCCalculator: (Bayesian) uses Metropolis-Hastings algorithm
● HybridCalculator: (Bayesian/Frequentist Hybrid) like what was used at LEP
● ...

Goal: Provide utilities to perform combined measurements 
‣ Status: Partially done / Ongoing

● RooWorkspace allows one to save arbitrary RooFit model (even with custom code) into a .root file.  
PDFs and DataSets have been extended to facilitate combinations.

● Next talk will show working Higgs & Top examples.  Working to increase automation.
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Additional Goals
Goal: Provide utilities for common tasks.
‣ Status: Ongoing

● BernsteinCorrection: prompted by work in our statistics 
forum, automate procedure of correcting nominal model to 
data.
• http://root.cern.ch/root/html/tutorials/roostats/rs_bernsteinCorrection.C.html

● SPlot: Working SPlot implementation that works for arbitrary 
models

• rewritten from original code from BaBar
• more general than TSPlot class
• http://root.cern.ch/root/html/tutorials/roostats/rs301_splot.C.html

● NumberCountingPdfFactory: builds PDFs that describe a 
combination of number counting experiments with background 
uncertainty

Goal: Provide utilities or examples requested by 
community

‣ Status: Ongoing 
● NumberCountingUtils: provides standalone utilities for simple 

number counting with background uncertainty
● Request: something similar for limits. (more later)
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http://root.cern.ch/root/html/tutorials/roostats/rs_bernsteinCorrection.C.html
http://root.cern.ch/root/html/tutorials/roostats/rs_bernsteinCorrection.C.html
http://root.cern.ch/root/html/tutorials/roostats/rs301_splot.C.html
http://root.cern.ch/root/html/tutorials/roostats/rs301_splot.C.html
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Example of Digital Publishing 

RooFit’s Workspace now provides the 
ability to save in a ROOT file the full 
likelihood model, any priors you might 
want, and the minimal data necessary 
to reproduce likelihood function.

Can also evaluate integrals over x 
necessary for Neyman construction!
Need this for combinations, great 
potential for publishing results.
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Examples of Published Likelihoods

You can find examples of 
published likelihoods in 1D

In 2-D you  just get the contours
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RooFit 
Introduction 
& Overview1

• Introduction
• Some basics statistics
• RooFit design philosophy
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Introduction – Relation to ROOT

C++ command line 
interface & macros

Data management &
 histogramming

Graphics interface

I/O support

MINUIT

ToyMC data
Generation

Data/Model
Fitting

Data Modeling

Model 
Visualization

Extension to ROOT – (Almost) no overlap with existing functionality
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RooFit core design philosophy

• Mathematical objects are represented as C++ objects

variable RooRealVar

function RooAbsReal

PDF RooAbsPdf

space point RooArgSet

list of space points RooAbsData

integral RooRealIntegral

RooFit classMathematical concept
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RooFit core design philosophy

• Represent relations between variables and functions
as client/server links between objects

f(x,y,z)

RooRealVar x RooRealVar y RooRealVar z

RooAbsReal f

RooRealVar x(“x”,”x”,5) ;
RooRealVar y(“y”,”y”,5) ;
RooRealVar z(“z”,”z”,5) ;
RooBogusFunction f(“f”,”f”,x,y,z) ;

Math

RooFit
diagram

RooFit
code
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RooFit core design philosophy

• Composite functions → Composite objects

g(x,y)

RooRealVar x RooRealVar y

f(w,z) f(g(x,y),z) = f(x,y,z)

RooRealVar x RooRealVar y

RooAbsReal g
RooAbsReal g RooRealVar z

RooAbsReal f

RooRealVar w RooRealVar z

RooAbsReal f

RooRealVar x(“x”,”x”,2) ;
RooRealVar y(“y”,”y”,3) ;
RooGooFunc g(“g”,”g”,x,y) ;

RooRealVar z(“z”,”z”,5) ;
RooFooFunc f(“f”,”f”,g,z) ;

RooRealVar x(“x”,”x”,2) ;
RooRealVar y(“y”,”y”,3) ;
RooGooFunc g(“g”,”g”,x,y) ;

RooRealVar w(“w”,”w”,0) ;
RooRealVar z(“z”,”z”,5) ;
RooFooFunc f(“f”,”f”,w,z) ;

Math

RooFit
diagram

RooFit
code
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RooFit core design philosophy
• Represent integral as an object, 

instead of representing integration as an action

g(x,m,s)

RooRealIntegral G

RooRealVar x

RooRealVar m

RooRealVar s

RooGaussian g
RooRealVar x

RooRealVar m

RooRealVar s

RooGaussian g

RooAbsReal *G = 
     g.createIntegral(x) ;

RooRealVar x(“x”,”x”,2,-10,10)
RooRealVar s(“s”,”s”,3) ;
RooRealVar m(“m”,”m”,0) ;
RooGaussian g(“g”,”g”,x,m,s) 

Math

RooFit
diagram

RooFit
code
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Object-oriented data modeling

• In RooFit every variable, data point, function, PDF 
represented in a C++ object
– Objects classified by data/function type they represent,

not by their role in a particular setup

– All objects are self documenting 
• Name - Unique identifier of object

• Title – More elaborate description of object 

RooRealVar mass(“mass”,”Invariant mass”,5.20,5.30) ;

RooRealVar width(“width”,”B0 mass width”,0.00027,”GeV”);

RooRealVar mb0(“mb0”,”B0 mass”,5.2794,”GeV”) ; 

RooGaussian b0sig(“b0sig”,”B0 sig PDF”,mass,mb0,width);

Objects 
representing
a ‘real’ value.

PDF object

Initial range

Initial value Optional unit

References to variables
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Basic
Functionality2
• Creating a p.d.f
• Basic fitting, plotting, event generation
• Some details on normalization, event generation
• Library of basic shapes (including non-parametric shapes)
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Basics – Creating and plotting a Gaussian p.d.f 

// Build Gaussian PDF
RooRealVar x("x","x",-10,10) ;
RooRealVar mean("mean","mean of gaussian",0,-10,10) ;
RooRealVar sigma("sigma","width of gaussian",3) ;

RooGaussian gauss("gauss","gaussian PDF",x,mean,sigma) ;  
  
// Plot PDF
RooPlot* xframe = x.frame() ;
gauss.plotOn(xframe) ;
xframe->Draw() ;
  

Plot range taken from limits of x

Axis label from gauss title

Unit 
normalization

Setup gaussian PDF and plot

A RooPlot is an empty frame
capable of holding anything
plotted versus it variable
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Basics – Generating toy MC events

// Generate a toy MC set
RooDataSet* data = gauss.generate(x,10000) ;  

// Plot PDF

RooPlot* xframe = x.frame() ;
data->plotOn(xframe) ;
xframe->Draw() ;

demo1.cc

Generate 10000 events from Gaussian p.d.f and show distribution

Returned dataset is unbinned
dataset (like a ROOT TTree with
a RooRealVar as branch buffer)

Binning into histogram is performed 
in data->plotOn() call
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Basics – ML fit of p.d.f to unbinned data

// ML fit of gauss to data
gauss.fitTo(*data) ;
(MINUIT printout omitted)

// Parameters if gauss now
// reflect fitted values
mean.Print()
RooRealVar::mean = 0.0172335 +/- 0.0299542 
sigma.Print()
RooRealVar::sigma = 2.98094  +/- 0.0217306

// Plot fitted PDF and toy data overlaid

RooPlot* xframe2 = x.frame() ;
data->plotOn(xframe2) ;
gauss.plotOn(xframe2) ;

xframe2->Draw() ;

demo1.cc

PDF
automatically
normalized
to dataset
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We now appreciate the role of the so-
called “Asimov” dataset for estimating 
the median p-value for a given model

RooFit can now generate an Asimov 
dataset via the keyword ExpectedData()

Asimov Datasets

22
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Basics – Observables and parameters of Gauss

• Class RooGaussian has no intrinsic notion or distinction 
between observables and parameters

• Distinction always implicit in use context with dataset
– x = observable (as it is a variable in the dataset)

– mean,sigma = parameters 

• Choice of observables (for unit normalization) always 
passed to gauss.getVal()

gauss.getVal() ;  // Not normalized (i.e. this is _not_ a pdf)
gauss.getVal(x) ; // Guarantees Int[xmin,xmax] Gauss(x,m,s)dx==1

gauss.getVal(s) ; // Guarantees Int[smin,smax] Gauss(x,m,s)ds==1
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How does it work – Normalization 

• Flexible choice of normalization facilitated by explicit 
normalization step in RooFit p.d.f.s

• Supporting class RooRealIntegral responsible for 
calculation of any

– Negotiation with p.d.f on which (partial) integrals it can internally perform 
analytically 

– Missing partes are supplemented with numerical integration 

– Class RooRealIntegral can in principle integrate everything.

gauss.getVal(x) gauss.getVal(s)
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How does it work – Normalization

• A peak in the code of class RooGaussian

// Raw (unnormalized value) of Gaussian

Double_t RooGaussian::evaluate() const {

  Double_t arg= x - mean;  

  return exp(-0.5*arg*arg/(sigma*sigma)) ;

}

// Advertise that x can be integrated internally 

Int_t RooGaussian::getAnalyticalIntegral(RooArgSet& allVars, 
      RooArgSet& analVars, const char* /*rangeName*/) const {

  if (matchArgs(allVars,analVars,x)) return 1 ;

  return 0 ;

}

// Implementation of analytical integral over x

Double_t RooGaussian::analyticalIntegral(Int_t code, 
                                         const char* rname) const {

  static const Double_t root2 = sqrt(2.) ;

  static const Double_t rootPiBy2 = sqrt(atan2(0.0,-1.0)/2.0); 

  Double_t xscale = root2*sigma;

  return rootPiBy2*sigma*(RooMath::erf((x.max(rname)-mean)/xscale)
                         -RooMath::erf((x.min(rname)-mean)/xscale));

}
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Basics – Integrals over p.d.f.s

• It is easy to create an object representing integral over 
a normalized p.d.f in a sub-range

• Similarly, one can also request 
the cumulative distribution function

x.setRange(“sig”,-3,7) ;
RooAbsReal* ig = g.createIntegral(x,NormSet(x),Range(“sig”)) ;

cout << ig.getVal() ;
0.832519
mean=-1

cout << ig.getVal() ;
0.743677

RooAbsReal* cdf = gauss.createCdf(x) ;
RooPlot* frame = x.frame() ;

cdf->plotOn(frame)->Draw() ;
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A bit more detail on RooFit datasets

• A dataset is a N-dimensional collection of points 
– With optional weights

– No limit on number of dimensions

– Observables continuous (RooRealVar) or discrete (RooCategory)

• Interface of each dataset is ‘current’ row
– Set of RooFit value objects that represent coordinate of current event

x Y wgt

1.0 6.6 1

3.5 11.1 1

2.7 2.2 1

5.2 1.1 1

RooRealVar x RooRealVar y

RooArgSet

Double_t wgt

Current coordinate return by RooAbsData::get()
Current weight returned by RooAbsData::weight()

Move current row with RooAbsData::get(index)

(Internal ROOT TTree)
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Importing data sets

• From ROOT trees
– RooRealVar variables are imported from /D /F /I tree branches 

– RooCategory variables are imported from /I /b tree branches

– Mapping between TTree branches and dataset variables by name: e.g. 
RooRealVar x(“x”,”x”,-10,10) imports TTree branch “x”  

• From ROOT THx histogram objects
–

RooRealVar x(“x”,”x”,-10,10) ;
RooRealVar c(“c”,”c”,0,30) ;
RooDataSet data(“data”,”data”,inputTree,RooArgSet(x,c));

RooDataHist bdata1(“bdata”,”bdata”,RooArgList(x),histo1d);
RooDataHist bdata2(“bdata”,”bdata”,RooArgList(x,y),histo2d);

x y z
1 3 5
2 4 6
1 3 5
2 4 6

RooDataSet RooDataHist

RooAbsData
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Quick review
Start with a model for the data, eg. a probability density function 
for   written                that is parametrized by
‣ parameters of interest:
‣ nuisance parameters:

The likelihood function is given by

I will often refer to the profile likelihood ratio:

Where    is the maximum likelihood estimator with    fixed

Remember,             is not a probability.
29

P (x|µ, ν)
µ : mH , σ, ...

ν : b, JES, �b, ...

λ(µ) =
L(µ, ˆ̂ν)
L(µ̂, ν̂)

x

L(µ, ν) =
�

i∈events

P (xi|µ, ν)

ˆ̂ν µ

L(µ, ν)
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figure by Wouter Verkerke, NIKHEF 

Relation between MINOS errors and profile likelihood

• MINOS error box and profile 
likelihood give same error
for multi-dimensional likelihood

• profiling widens likelihood function, 
resulting in larger errors than one 
would get keeping the nuisance 
parameters fixed

λ(µ) =
L(µ, ˆ̂ν)
L(µ̂, ν̂)

An early edition to 
RooFit for the RooStats 
project was the profile 
likelihood ratio

30
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It is hard to remember the names of functions and their arguments
‣ start a root terminal, type the name of the class, then ::, and hit <tab>.  

● that will shows you all of the methods of the class (often too many).

‣ If you remember part of the name, you can tab complete
‣ once you find the right method, add (, and hit <tab> again to see list of arguments

Note, RooFit methods usually start with a lower case letter, but ROOT coding 
convention is to start with an upper case letter

‣ expect upper case for methods inherited from core ROOT and all RooStats classes
‣ RooStats classes are in the namespace RooStats

● either add RooStats:: before class name or using namespace RooStats; to C++ file

Usage hints

31

root [1] RooStats::ConfInterval::IsInInterval( <tab>
Bool_t IsInInterval(const RooArgSet&) const

root [1] RooGaussian::fitTo(<tab>
RooFitResult* fitTo(RooAbsData& data, RooCmdArg arg1 ....
RooFitResult* fitTo(RooAbsData& data, const RooLinkedList& cmdList)
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Adding Custom PDFs
You may want to code up a more complicated PDF
‣ RooFit provides a utility to create a skeleton code:

‣ Put your code here (normalization is automatic)
● numeric normalization is automatic or you can add analytical integration
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root [0] RooClassFactory::makePdf("MyCustomPdf","observable,mH,parameter")

‣ Put your code here
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Fundamental Interfaces for RooStats

33
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Goal: Standardize interface for major statistical procedures so that they can work 
on an arbitrary RooFit model & dataset and handle many parameters of interest 
and nuisance parameters.
‣ RooFit already has an interface for PDFs of arbitrary complexity, but often one 

needs to specify some additional information to know how to use the PDF.
● this motivated the class ModelConfig, which specifies:

• what are the observables, 
• what are the parameters of interest,
• is there an additional prior on the parameters (for Bayesian analysis)
• is the model conditional on other observables (eg. event-by-event errors)

‣ We also need a way to package this information, the model, and all that it 
depends on so we can pass it too the tools.  Similar requirements for 
combining multiple measurements.
● this motivated the class RooWorkspace, which

• owns the model and all that it depends upon
• can read/write all information to a ROOT file
• (interfaces to low-level factory... more later)

34

Design Goals
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ModelConfig & RooWorkspace
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namespace RooStats { 
 class ModelConfig : public TNamed {
   /// specify meaning of variables: observable, parameter, etc.
   const RooArgSet * GetObservables() ; 
   const RooArgSet * GetParametersOfInterest() ; 
   const RooArgSet * GetNuisanceParameters() ; 
   const RooArgSet * GetConditionalObservables() ; 

   /// specify the objective pdf and the Bayesian prior separately
   RooAbsPdf * GetPdf() ;
   RooAbsPdf * GetPriorPdf() ; 

   /// specify value of parameters for a particular hypothesis
   const RooArgSet *" GetSnapshot () ;

   /// get the associated workspace 
   const RooWorkspace * GetWS() ;

   /// corresponding Set methods
   virtual void SetPdf(RooAbsPdf& pdf) ;
   ...

class RooWorkspace : public TNamed {
// import functions
Bool_t import(const RooAbsArg& arg, ....) ;

// use a low-level factory to create and edit objects in the workspace
RooAbsArg*           factory(const char* expr) ;

// Accessor functions
RooAbsPdf*           pdf(const char* name) ; 
RooAbsData*         data(const char* name) ;
RooRealVar*          var(const char* name) ; 
const RooArgSet*  set(const char* name) ;

// Write this workspace to a ROOT file
writeToFile(const char* fileName, Bool_t recreate=kTRUE) ;

// import class code for custom classes (eg. custom PDFs and functions)
autoImportClassCode(Bool_t flag) ;
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Two ways to create & import a model into the workspace
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In RooFit / RooStats code, one an construct this via:

// Make observable and parameters
RooRealVar x("x","x", 150 ,100 ,200);
RooRealVar mu("mu","#mu", 150 ,130 ,170);
RooRealVar sigma("sigma","#sigma", 5,0,20);

// make a simple model
RooGaussian G("G","G",x, mu, sigma);

// make graph to represent model (using GraphViz and latex formatting)
G.graphVizTree("GaussianModel.dot", ":",true , true);

or via

// use the workspace factory to do the same thing
RooWorkspace wspace("wspace");
wspace.factory("Gaussian ::G(x[150 ,100 ,200] ,mu[150 ,130 ,170] , sigma [5 ,0 ,20])");
wspace.pdf("G")->graphVizTree("GaussianModel_factory.dot", ":",true ,true);

which both produce a graphical representation (in the form of Bell labs “graphviz” format)

RooRealVar : µRooRealVar : x RooRealVar : σ

RooGaussian : G

Figure 1: test

9

2 Fundamental Interfaces in RooStats

One of the fundamental design philosophies behind RooFit and RooStats is a conceptually

clear mapping between mathematics and software. We have tried to identify fundamental

concepts in statistics and assign corresponding C++ classes or interfaces 3.

2.1 RooRealVar, RooArgSet, RooAbsReal, & RooAbsPdf

In RooFit even simple real-valued parameters and observables are treated as a C++ objects,

instead of just a simple floating point number. This allows the variable to carry around

a name, units, upper- and lower- values for fitting and integration, etc. For real-valued

variables, the class is RooRealVar, but there are equivalent classes for discrete categories

etc. They all inherit from an interface called RooAbsArg (for abstract argument).

In addition to real-valued variables, one can define real-valued functions, both of which

inherit from RooAbsReal (for abstract real-valued thingy). The most important methods

in the interface are listed below.

class RooAbsReal : public RooAbsArg {
// Return value and unit accessors
virtual Double_t getVal(const RooArgSet* set=0) const ;

// Analytical integration support
virtual Double_t analyticalIntegral(Int_t code ,const char* rangeName =0) const;

// create a function of fewer variables , eliminating others via profiling
virtual RooAbsReal* createProfile(const RooArgSet& paramsOfInterest) ;

// create a new RooAbsReal that is the integral of this function
RooAbsReal* createIntegral(const RooArgSet& iset ,

const RooCmdArg arg1 , ...) const;

// User entry point for plotting
virtual RooPlot* plotOn(RooPlot* frame , ...) const ;

// Create 1,2, and 3D histograms from and fill it
TH1 *createHistogram(const char *name , const RooAbsRealLValue& xvar ,

const RooCmdArg& arg1=RooCmdArg ::none(), ...) ;

// ...
};

One can create sets and lists of these abstract arguments called RooArgSet and RooAr-
gList, respectively. They are often used to represent a list of parameters or observables.

Let’s consider a basic example of a Gaussian distribution of x with mean µ and standard

deviation σ. The mathematical representation is

G(x|µ,σ)
3Interfaces is a term used in object-oriented programing for an abstract specification of a C++ class.

It defines what the class can/should/must do, but it does not provide an implementation. This is done
because often there are many possible implementations that can satisfy that interface. This is especially
true in statistics, where there seem to be several ways to do almost everything.

8
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An example with ModelConfig
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Create a new workspace
Create a the pdf G(x|mu,1) and the variables x, mu, 
sigma using the factory syntax

Define parameter sets 
for observables and 
parameters of interest

Create a new
ModelConfig

Specify workspace that holds pdf, parameters
 of interest, observables, ...

... and we generate a toy dataset with 100 measurements of the observables (x)
(note, the data is NOT part of the ModelConfig)

Here we show use of the Workspace factory to create a model, and use of 
ModelConfig to specify what we will need for the statistical tools
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Using the Workspace concept 

• Up to now, to share with colleagues need to distribute 
both a data file and a ROOT macro that builds the RooFit 
p.d.f

• Now add the Workspace – Persistent container for both 
data and functions
 

• Both data and p.d.f. are now stored in file!

RooAbsPdf& g ; // from preceding example
RooAbsData& d ; // from preceding example 

RooWorkspace w(“w”,”my workspace”) ;
w.import(g) ;
w.import(d) ;

w.writeToFile(“myresult.root”) ;

Create the 
workspace

container object

Use standard
ROOT I/O

to store wspace



Wouter Verkerke, NIKHEF 

A look at the workspace

• What is in the workspace?

w.Print() ;
RooWorkspace(w) my workspace contents

variables
---------
(x,m,s)

p.d.f.s
-------
RooGaussian::g[ x=x mean=m sigma=s ] = 0

datasets
--------
RooDataSet::d(x)

RooRealVar* x = w.get(“x”) ;

RooAbsPdf* g = w.pdf(“g”) ;

RooAbsData* d = w.data(“d”) ;
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Using persisted p.d.f.s.

• Using both model & p.d.f from file

– Note that above code is independent of actual p.d.f in file  e.g. 
full Higgs combination would work with identical code

  TFile f(“myresults.root”) ;
  RooWorkspace* w = f.Get(“w”) ;

  RooPlot* xframe = w->var(“x”)->frame() ;
  w->data(“d”)->plotOn(xframe) ;
  w->pdf(“g”)->plotOn(xframe) ;

  RooNLLVar nll(“nll”,”nll”,*w->pdf(“g”),*w->data(“d”)) ;
  RooProfileLL pll(“pll”,”pll”, nll,*w->var(“m”)) ;

  RooPlot* mframe = w->var(“m”)->frame(-1,1) ;
  pll.plotOn(mframe) ;
  mframe->Draw()

Make plot
of data

and p.d.f

Construct
likelihood

& profile LH

Draw
profile LH
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Interfaces for statistical tests & results
We try to keep a clean separation between the tools and the results

‣ results in general can be saved into a ROOT file
Two main classes of tools: Hypothesis Tests & Confidence Intervals

‣ each has an abstract interface for tools and results
Let’s think about the interfaces, 

‣ what do they need to know?
‣ what do they provide?

41
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Confidence Intervals
ConfInterval is the interface for confidence intervals in RooStats.

‣ Any tool inheriting from IntervalCalculator can return a ConfInterval. 
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2.3 ConfInterval & IntervalCalculator

ConfidenceInterval

IntervalCalculator

returns

HypoTestResult

HypoTestCalculator

re
tu
rn
s

CombinedCalculator

in
h
e
rits

in
h
e
ri
ts

Figure 2: An class diagram of the interfaces for hypothesis testing and confidence interval
calculations. The diagram shows the classes used to return the results of these statistical
tests as well.

ConfInterval is an interface class for a generic interval in the RooStats framework. Any
tool inheriting from IntervalCalculator can return a ConfInterval. There are many types of
intervals, they may be a simple range [a,b] in 1 dimension, or they may be disconnected
regions in multiple dimensions. So the common interface is simply to ask the interval if a
given point ”IsInInterval”. The Interval also knows what confidence level it was constructed
at and the space of parameters for which it was constructed. Note, one could use the same
class for a Bayesian ”credible interval”.

namespace RooStats {
class ConfInterval : public TNamed {

// check if given point is in the interval
virtual Bool_t IsInInterval(const RooArgSet &) const = 0;

// used to set confidence level. Keep pure virtual
virtual void SetConfidenceLevel(Double_t cl) = 0;

// return confidence level
virtual Double_t ConfidenceLevel () const = 0;

// return list of parameters of interest defining this interval (return a ←�
new cloned list)

virtual RooArgSet* GetParameters () const = 0;
}

}

IntervalCalculator is an interface class for a tools which produce RooStats ConfIntervals.
The interface currently assumes that any interval calculator can be configured by specifying:

• a model,

12
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Figure 1: The 2-dim relative probability density functions in the planes spanned by the CMSSM
parameters: m1/2, m0, A0 and tanβ for µ > 0. The pdf’s are normalized to unity at their peak.
The inner (outer) blue solid contours delimit regions encompassing 68% and 95% of the total
probability, respectively. All other basis parameters, both CMSSM and SM ones, in each plane
have been marginalized over.

blue (dark) solid contours delimit regions of 68% and 95% of the total probability, respec-

tively, and remain well within the assumed priors, except for m0. In all the 2-dim plots,

the MC samples have been divided into 70 × 70 bins, with a mild smoothing across adja-

cent bins to improve the quality of the presentation (this has not impact on our statistical

conclusions). Jagged contours are a result of a finite resolution of the MC chains.

In the case of µ > 0 (fig. 1) we can see a strong preference for large m0 ∼> 1 TeV. On

the other hand, the peak of probability for m1/2 is around 0.5 TeV, although the 68% range

of total probability is rather wide, increases with m0 and exceeds 1.5 TeV for m0 # 4 TeV.

Additionally, at smaller m0 ∼< 1 TeV there are a few confined 68% total probability regions.

The strong preference for large m0 $ m1/2 is primarily the result of the sizable shift

in the SM value of BR(B → Xsγ), as can be seen by comparing fig. 1 with fig. 2 in ref. [14]

(or fig. 8 of ref. [15]) where the previous value of BR(B → Xsγ) has been used. (While

the other CMSSM parameters also experience some shift in their most probable values, it

is not as dramatic as that of m0 towards larger values.) The underlying reason is that,

at fairly small m1/2 the charged Higgs mass remains relatively light, in the few hundred

– 9 –

‣ There are many types of intervals: from a simple 
range [a,b] in 1-D to a complicated, disconnected 
region in multiple dimensions. 
● So the common interface is simply to ask the interval if a given 

point IsInInterval. 
● The Interval also knows what ConfidenceLevel it was 

constructed at and the space of parameters for which it was 
constructed. 
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Tools that calculate confidence intervals
IntervalCalculator is the interface for a tools which produce ConfIntervals.
‣ After configuring the calculator, one only needs to ask GetInterval, which 

will return a ConfInterval pointer (the user takes ownership of new interval).
‣ assumes that any interval calculator can be configured by specifying the:
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● single model configuration (one model over a space of parameters of interest),
● data set, 
● confidence level

• a data set,

• a set of parameters of interest,

• a set of nuisance parameters (eg. parameters on which the model depends, but are
not of interest), and

• a confidence level or size of the test (eg. rate of Type I error).

The interface allows one to pass the model, data, and parameters via a workspace and
then specify them with names. The interface will be extended so that one does not need to
use a workspace.

After configuring the calculator, one only needs to ask GetInterval, which will return a
ConfInterval pointer.

The concrete implementations of this interface should deal with the details of how the
nuisance parameters are dealt with (eg. integration vs. profiling) and which test-statistic
is used (perhaps this should be added to the interface). The motivation for this interface
is that we hope to be able to specify the problem in a common way for several concrete
calculators.

namespace RooStats {
class IntervalCalculator {

// Main interface to get a ConfInterval , pure virtual
virtual ConfInterval* GetInterval () const = 0;

// Get the size of the test (eg. rate of Type I error)
virtual Double_t Size() const = 0;

// Get the Confidence level for the test
virtual Double_t ConfidenceLevel () const = 0;

// Set the DataSet ( add to the the workspace if not already there ?)
virtual void SetData(RooAbsData &) = 0;

// Set the Model
virtual void SetModel(const ModelConfig & /* model */) = 0;

// set the size of the test (rate of Type I error) ( e.g. 0.05 for a 95% ←�
Confidence Interval)

virtual void SetTestSize(Double_t size) = 0;

// set the confidence level for the interval (e.g. 0.95 for a 95% ←�
Confidence Interval)

virtual void SetConfidenceLevel(Double_t cl) = 0;

};
}

2.4 HypoTestResult & HypoTestCalculator

HypoTestResult is the class used to hold the results of a hypothesis test.

13
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Hypothesis Tests
HypoTestResult is the class that holds the result of a Hypothesis Test
‣ Very simple class:

● stores p-value for the null and alternate hypotheses as calculated by a HypoTestCalculator
● equivalently, Gaussian significance, CLb and CLs+b
● (note can calculate CLs = CLs+b / CLb, which is used within physics, but is not a probability)

‣ Note, HypoTestResult is a concrete class, not an interface.
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namespace RooStats {

class HypoTestResult : public TNamed {

// Return p-value for null hypothesis

virtual Double_t NullPValue () const {return fNullPValue ;}

// Return p-value for alternate hypothesis

virtual Double_t AlternatePValue () const {return fAlternatePValue ;}

// Convert NullPValue into a "confidence level"

virtual Double_t CLb() const {return 1.- NullPValue ();}

// Convert AlternatePValue into a "confidence level"

virtual Double_t CLsplusb () const {return AlternatePValue ();}

// CLs is simply CLs+b/CLb (not a method , but a quantity)

virtual Double_t CLs() const ;

// familiar name for the Null p-value in terms of 1-sided Gaussian ←�
significance

virtual Double_t Significance () const;

};

}

#endif

HypoTestCalculator is an interface class for a tools which produce RooStats Hy-

poTestResults. The interface currently assumes that any hypothesis test calculator can

be configured by specifying:

• a model,

• a data set,

• a set of parameters of which specify the null (including values and const/non-const

status), and

• a set of parameters of which specify the alternate (including values and const/non-

const status).

The interface allows one to pass the model, data, and parameters via a workspace and

then specify them with names. The interface will be extended so that one does not need to

use a workspace.

After configuring the calculator, one only needs to ask GetHypoTest, which will return a

HypoTestResult pointer.

The concrete implementations of this interface should deal with the details of how the

nuisance parameters are dealt with (eg. integration vs. profiling) and which test-statistic is

used (perhaps this should be added to the interface).

The motivation for this interface is that we hope to be able to specify the problem in a

common way for several concrete calculators.

14
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HypoTestCalculator
HypoTestCalculator is the interface tools that produce HypoTestResults
‣ The interface currently assumes that any interval calculator can be 

configured by specifying:
● a model configuration for the null,
● a model configuration for the alternate (often a totally different PDF),
● a data set, 

‣ After configuring the calculator, one simply calls GetHypoTest, which will 
return a HypoTestResult pointer (the user takes ownership of new object).
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namespace RooStats {

class HypoTestCalculator {

// main interface to get a HypoTestResult , pure virtual

virtual HypoTestResult* GetHypoTest () const = 0;

// Set the model for the null hypothesis

virtual void SetNullModel(const ModelConfig& model) = 0;

// Set the model for the alternate hypothesis

virtual void SetAlternateModel(const ModelConfig& model) = 0;

// Set the DataSet

virtual void SetData(RooAbsData& data) = 0;

// Set a common model for both the null and alternate

virtual void SetCommonModel(const ModelConfig& model) ;

}

}

2.5 Test Statistic, Sampling Distribution

See the section devoted to Test Statistic, Sampling Distribution.

3 Parameter Estimation

Parameter estimation, or ‘point estimation’ is the general class of statistical tests in which
one wishes to estimate the value of some parameter θ given some data x and a model P (x|θ).
In high energy physics, this is usually referred to as “fitting”, and the estimate that is given
is usually the “maximum likelihood estimate” (MLE). The most common tool for providing
maximum likelihood estimates in high energy physics is minuit.

In general an estimator for θ can be denoted θ̂(x) and it has an expected value E[θ̂]. If
the expectation value of the estimator is equal to the true value of the parameter, then the
estimator is called unbiased. The variance of the estimator is var[θ̂] = E[(θ̂ − E[θ̂])2].

Two naturally desirable properties of estimators are for them to be unbiased and have
minimal mean squared error (MSE). These cannot in general both be satisfied simultane-
ously: a biased estimator may have lower mean squared error (MSE) than any unbiased
estimator: despite having bias, the estimator variance may be sufficiently smaller than that
of any unbiased estimator, and it may be preferable to use, despite the bias; see estimator
bias [Wikipedia].

Among unbiased estimators, there often exists one with the lowest variance, called the
minimum variance unbiased estimator (MVUE). In some cases an unbiased efficient estimator
exists, which, in addition to having the lowest variance among unbiased estimators, satisfies
the Cramér-Rao bound, which is an absolute lower bound on variance for statistics of a
variable [Wikipedia].

RooFit provides a general interface to determine the MLE for all probability density
functions via: RooAbsPdf::fitTo(RooAbsData& data,...). It is possible to use other
minimization algorithms other than minuit, which is outlined in the RooFit documentation.

15
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CombinedCalculator
CombinedCalculator is the interface tools that can do both hypothesis tests 
and produce confidence intervals
‣ In this case, the null and alternate models share the same pdf, and are 

specified by specific settings for the parameters of interest
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High-level interfaces
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We have tried to unify the way that one specifies the statistical problem, with 
RooAbsData and ModelConfig
‣ any additional configuration of the tools should be seen as configuration of 

the method itself, and several of the tools are highly configurable
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Concrete Tools
HybridCalculator is an example of a HypoTestCalculator, it returns a HypoTestResult
ProfileLikelihoodCalculator is an example of a CombinedCalculator, it can return either a 
HypoTestResult or a ConfInterval
NeymanConstruction is an example of an IntervalCalculator, it returns a ConfInterval
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Concrete Intervals
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The ProfileLikelihoodCalculator returns a LikelihoodInterval, which is a concrete 
implementation of ConfInterval (based on contours of likelihood function)
The NeymanConstruction returns a PointSetInterval, which is a different concrete 
implementation (based on scanning points in the parameter space)

MCMCInterval
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Current list of calculator tools
HypoTestCalculators

‣ HybridCalculator
● hybrid Bayes-frequentist calculation (marginalize nuisance parameters)

‣ ProfileLikelihoodCalculator
● the method of MINUIT/MINOS, based on Wilks’s theorem

IntervalCalculators
‣ ProfileLikelihoodCalculator 

● the method of MINUIT/MINOS, based on Wilks’s theorem

‣ NeymanConstruction
● general purpose Neyman Construction class, highly configurable: choice of TestStatistic, TestStatSampler (defines 

ensemble/conditioning), integration boundary (upper, lower, central limits), and parameter points to scan

‣ FeldmanCousins
● specific configuration of NeymanConstruction for Feldman-Cousins (generalized for nuisance parameters)

‣ MCMCCalculator
● Bayesian Markov Chain Monte Carlo (Metropolis Hastings), proposal function is highly customizable

‣ BayesianCalculator
● Bayesian posterior calculated via numeric integration routines, currently only supports one parameter 

‣ HypoTestInverter
● adapter any HypoTestCalculator and forms an IntervalCalculator

50
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An Example Confidence Interval
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22 32. Statistics

where θ̂ and ν̂ are the ML estimators. The ratio λp can be used in place of the likelihood
ratio (32.49) for inference about θ. The resulting intervals for the parameters of interest
are not guaranteed to have the exact coverage probability for all values of the nuisance
parameters, but in cases of practical interest the approximation is found to be very good.
Further discussion on use of the profile likelihood can be found in, e.g., Refs.[33,34] and
other contributions to the PHYSTAT conferences [14].

32.3.2.4. Gaussian distributed measurements:
An important example of constructing a confidence interval is when the data consists

of a single random variable x that follows a Gaussian distribution; this is often the case
when x represents an estimator for a parameter and one has a sufficiently large data
sample. If there is more than one parameter being estimated, the multivariate Gaussian
is used. For the univariate case with known σ,

1 − α =
1√
2πσ

∫ µ+δ

µ−δ
e−(x−µ)2/2σ2

dx = erf
(

δ√
2 σ

)
(32.53)

is the probability that the measured value x will fall within ±δ of the true value µ. From
the symmetry of the Gaussian with respect to x and µ, this is also the probability for
the interval x ± δ to include µ. Fig. 32.4 shows a δ = 1.64σ confidence interval unshaded.
The choice δ = σ gives an interval called the standard error which has 1 − α = 68.27% if
σ is known. Values of α for other frequently used choices of δ are given in Table 32.1.

−3 −2 −1 0 1 2 3

f (x; µ,σ)

α /2α /2

(x−µ) /σ

1−α

Figure 32.4: Illustration of a symmetric 90% confidence interval (unshaded) for
a measurement of a single quantity with Gaussian errors. Integrated probabilities,
defined by α, are as shown.

We can set a one-sided (upper or lower) limit by excluding above x + δ (or below
x − δ). The values of α for such limits are half the values in Table 32.1.
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Let’s consider an example where we 
know the answer: 

‣ 95% CL interval on the mean of a 
Gaussian with sigma=1

‣ generate a toy dataset with N = 100 
‣ Look up in PDG what we should expect
‣

52
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Table 32.1: Area of the tails α outside ±δ from the mean of a Gaussian
distribution.

α δ α δ

0.3173 1σ 0.2 1.28σ

4.55 ×10−2 2σ 0.1 1.64σ

2.7 ×10−3 3σ 0.05 1.96σ

6.3×10−5 4σ 0.01 2.58σ

5.7×10−7 5σ 0.001 3.29σ

2.0×10−9 6σ 10−4 3.89σ

The relation (32.53) can be re-expressed using the cumulative distribution function for
the χ2 distribution as

α = 1 − F (χ2; n) , (32.54)

for χ2 = (δ/σ)2 and n = 1 degree of freedom. This can be obtained from Fig. 32.1 on the
n = 1 curve or by using the CERNLIB routine PROB or the ROOT function TMath::Prob.

For multivariate measurements of, say, n parameter estimates θ̂ = (θ̂1, . . . , θ̂n), one
requires the full covariance matrix Vij = cov[θ̂i, θ̂j ], which can be estimated as described
in Sections 32.1.2 and 32.1.3. Under fairly general conditions with the methods of
maximum-likelihood or least-squares in the large sample limit, the estimators will be
distributed according to a multivariate Gaussian centered about the true (unknown)
values θ, and furthermore, the likelihood function itself takes on a Gaussian shape.

The standard error ellipse for the pair (θ̂i, θ̂j) is shown in Fig. 32.5, corresponding
to a contour χ2 = χ2

min + 1 or ln L = lnLmax − 1/2. The ellipse is centered about the
estimated values θ̂, and the tangents to the ellipse give the standard deviations of the
estimators, σi and σj . The angle of the major axis of the ellipse is given by

tan 2φ =
2ρijσiσj

σ2
j − σ2

i

, (32.55)

where ρij = cov[θ̂i, θ̂j ]/σiσj is the correlation coefficient.
The correlation coefficient can be visualized as the fraction of the distance σi from the

ellipse’s horizontal centerline at which the ellipse becomes tangent to vertical, i.e., at the
distance ρijσi below the centerline as shown. As ρij goes to +1 or −1, the ellipse thins
to a diagonal line.

It could happen that one of the parameters, say, θj , is known from previous
measurements to a precision much better than σj , so that the current measurement
contributes almost nothing to the knowledge of θj . However, the current measurement of
θi and its dependence on θj may still be important. In this case, instead of quoting both
parameter estimates and their correlation, one sometimes reports the value of θi, which

January 28, 2010 12:02

σ = 1, δ = 1.96, N = 100

�
x̄− δ√

N
, x̄ +

δ√
N

�
[−0.23, 0.16]

x̄ = −0.035

expected interval
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Creating the model
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Create a new workspace
Create a the pdf G(x|mu,1) and the variables x, mu, 
sigma using the factory syntax

Define parameter sets 
for observables and 
parameters of interest

Create a new
ModelConfig

Specify workspace that holds pdf, parameters
 of interest, observables, ...

... and we generate a toy dataset with 100 measurements of the observables (x)

Here we show use of the Workspace factory to create a model, and use of 
ModelConfig to specify what we will need for the statistical tools
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Example using the ProfileLikelihoodCalculator
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expected interval is [-0.231277, 0.160716]
plc interval is      [-0.231277, 0.160716]
is mu=0 in the interval? 1

Want a 95% CL

Create a ProfileLikelihoodCalculator, 
constructor needs data and the model config

Obtain the resulting interval
(Note, here we know the return type is a LikelihoodInterval, in general one could 
use the interface ConfInterval.  Note, you take ownership of plInt. )

Use the interval

!

Once one has the model and the data, creating the interval is quite easy!
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Example using Feldman-Cousins
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expected interval is [-0.231277, 0.160716]
plc interval is      [-0.231277, 0.160716]
fc interval is       [-0.215   , 0.165   ]
Real time 0:00:36, CP time 34.900

By default, the FeldmanCousins 
calculator only samples 10 points 
per parameter, (pretty fast)
‣ modify this with SetNBins

The default number of samples is 
50/(type I error rate)
‣ For 95% CL, 1000 toys/point
‣ for 200 parameter points, that’s 

200,000 generations of 
datasets and MINUIT 
minimizations! About 15 min.

The AdaptiveSampling algorithm 
will use fewer toys for obvious 
points and more near boundary
‣ reduces it to 2 min!
‣ will explain algorithm later on

Note F-C interval is consistent within step-size for the upper limit, off 
by one step in lower limit... likely a statistical fluctuation in ToyMC.
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Example using BayesianCalculator
The BayesianCalculator requires an 
additional ingredient beyond what is 
currently in our ModelConfig
‣ it needs a prior for mu

Once that is specified in the 
ModelConfig, use of the 
BayesianCalculator is the same as 
the other tools

‣ currently this tool is restricted to 
one parameter, waiting for some 
additional support in underlying 
RooFit integration infrastructure.

56

expected interval is [-0.231277, 0.160716]
plc interval is      [-0.231277, 0.160716]
fc interval is       [-0.215   , 0.165   ]
bc interval is       [-0.232274, 0.159713]

Note bayesian interval is based on numerical integration instead of ToyMC.  Accuracy 
of answer depends on accuracy specified in numerical integration, can be configured.
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Example using MCMCCalculator
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expected interval is [-0.231277, 0.160716]
plc interval is      [-0.231277, 0.160716]
fc interval is       [-0.215   , 0.165   ]
bc interval is       [-0.232274, 0.159713]
mc interval is       [-0.227   , 0.157   ]

The MCMCCalculator requires the 
same ingredients as the Bayesian 
Calculator, but uses Markov Chain 
Monte Carlo to calculate the 
posterior

This class works is very 
configurable, and will be described 
in more detail later.

‣ here we set the binning 
resolution for the parameter of 
interest, the number of “burn in” 
steps, the number of iterations 
to run the MCMC
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Visualizing the Results
(under development)
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Plotting Classes
We are making progress on visualization

‣ Different ways of visualizing in 1,2,3-Dim. 
‣ natural axis is different for different objects 

(likelihood, posterior, etc)
‣ visualization tools are separated from results 

classes
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An Example Hypothesis Test
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Let’s consider an example that has been studied recently: the “on/off” problem
‣ it consists of two number counting measurements:

● a “main measurement” N that are signal candidates
● a sideband measurement, where one observes best events and expects that to be 

Poisson-distributed around the true, unknown b (our nuisance parameter)

61

The example problem

Z_Bi significance estimation: 2.75905

P (N, best|s, b) = Pois(N |s + b) Pois(best|b)

sidebandmain measurementtotal model

This problem has a known frequentist solution based on the Binomial distribution
● The resulting significance is called ZBi and it is known analytically 
● RooStats has a little utility for this problem called NumberCountingUtils
● In this toy example, let’s say that best = 100 and N = 144
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Creating the null & alternate model

62

Here we could choose a dummy variable x with a 
uniform distribution for signal and background to 
model the number counting problem

‣ strange for number counting, but more obvious 
to generalize if sig, bkg have different shapes

Here we both the alternate & null 
need a ModelConfig instance
‣ only difference is the value of 

the parameter S
‣ these are saved as “parameter 

snapshots”
‣ both ModelConfigs will be 

imported into workspace

In contrast, we imagine a sideband 
measurement for the background 
done by your colleague estimated 
best=100
‣ Total model is product of the two
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Example using ProfileLikelihoodCalculator
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Z_Bi significance estimation: 2.75905
profile significance estimation: 2.82453

Setting up the ProfileLikelihoodCalculator 
is the same as before, except

‣ we must specify the parameter 
values for null and alternate

‣ ToDo: automatically set via 
ModelConfig

Using the calulator as a 
HypoTestCalculator is easy!

The profile likelihood is an approximation and a different method, not 
expected to give the same result

Here we imagine a new ROOT session, 
where we open a file with the workspace in it, 
and retrieve everything we need from inside
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http://root.cern.ch/root/html/tutorials/roostats/HybridInstructional.C.html

http://root.cern.ch/root/html/tutorials/roostats/HybridInstructional.C.html
http://root.cern.ch/root/html/tutorials/roostats/HybridInstructional.C.html
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Other Fundamental Interfaces
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The case for a new interface & result class

66

Most of the hard-work for the Neyman-Construction is going to be in 
generating the sampling distribution for the test statistic

‣ Same is true for several of our tools: coverage studies, the current 
HybridCalculator

Therefore we are adding a TestStatSampler interface that returns a 
SamplingDistribution

‣ SamplingDistribution (should support merging for use on clusters)

ToyMCSampler will be used also by 
HybridCalculator

‣ avoid duplicating code
‣ progress towards PROOF, batch, 

and MPI parallelization

ToyMC is not the only approach
‣ eg. analytic approach with FFTs 

and importance sampling ToyMCSampler ImportanceSampler

TestStatSampler

in
h
e
ri
ts

in
h
e
rits

Model

re
qu
ire
s

SamplingDistribution

returns

FFTSampler

in
h
e
rits
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How to plug in your own Test-Statistic

67

Most of the hard-work for the Neyman-Construction is going to be in 
generating the sampling distribution for the test statistic

‣ Same is true for several of our tools: coverage studies, the current 
HybridCalculator

Therefore we are adding a TestStatSampler interface that returns a 
SamplingDistribution

‣ How do you define a new test statistic?

Make it easy for user to extend:
make a new class that inherits 
from TestStatistic and implement 
this method:

First example test statistic is 
ProfileLikelihood

ToyMCSampler

TestStatSampler

in
h
e
ri
ts

Model

re
qu
ire
s

SamplingDistribution

returns

TestStatistic

re
q
u
ire
s

ProfileLikelihoodTestStat

in
h
e
ri
ts

User-defined

inherits

NumEventsTestStat

inh
er
its
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Three common test statistics
We express cross-section as                       for convenience.
Effect of systematics is parametrized by one or more “nuisance 
parameters” denoted    .  

● best fit point is:
● best fit of nuisance parameters with µ fixed is     (aka “profiled”)

In principle, s+b and b-only models can have different parametrizations

RooStats has the three common test statistics used in the field (and more)
● simple likelihood ratio (used at LEP, nuisance parameters fixed)

● ratio of profiled likelihoods (used commonly at Tevatron)

● profile likelihood ratio (related to Wilks’s theorem)
λ(µ) = Ls+b(µ, ˆ̂ν)/Ls+b(µ̂, ν̂)

QLEP = Ls+b(µ = 1)/Lb(µ = 0)

QTEV = Ls+b(µ = 1, ˆ̂ν)/Lb(µ = 0, ˆ̂ν�)

µ = σ/σSM

ν

µ̂, ν̂
ˆ̂ν

QLEP

Pr
ob

ab
ili

ty
 D

en
si

ty

signal + background background-only

QLEP
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More about the Neyman Construction Calculator
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Neyman Construction Review

70

‣ Treat each point in parameter space    independently
‣ For each point, need distribution of some test statistic
‣ Choose an ordering rule that selects a specific          region  
‣ Confidence Interval is set of parameter points where data in 
acceptance region (eg. intersects confidence belt)

x

θ

θ0

θ1

θ2

f(x|θ)

θ
x

1− α
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Feldman-Cousins: a special case
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NeymanConstruction Implementation

72

It uses a TestStatSampler 
to generate a 
SamplingDistribution for 
each parameter point.

Find thresholds on test 
statistic that define 
acceptance region (switch 
for upper/lower/central 
limits)

Check if data is in 
acceptance region (eg. 
between thresholds).  If so,    
add point to the 
PointSetInterval result

FeldmanCousins is an 
additional class that 
enforces a particular 
configuration of test 
statistic, distribution 
creator, limit type, etc.

LimitType 
(switch)

TestStatistic / 
Ordering Rule

SamplingDistribution

PointSetInterval

NeymanConstruction

returns

in
h

e
ri
ts

ConfidenceInterval

in
h

e
ri
ts

IntervalCalculator

TestStatSampler

re
tu

rn
s

re
quire

s

re
q
u
ir
e
s

re
qu

ire
s

returns

Model

requires

re
q
u
ir
e
s

re
q
u
ire

s
Data

requires
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Counting experiment with known background

Model is simply

where b is known
‣ Consider b=3

Generated data has 
‣ x=7

Usage of FeldmanCousins 
utility is very easy

‣ same interface as Profile 
Likelihood interval 
calculator

73

Pois(x|µ + b)

Consider a simple and well studied example. Intervals are 
tabulated in Feldman & Cousins original paper

http://root.cern.ch/root/html/tutorials/roostats/rs401c_FeldmanCousins.C.html

http://root.cern.ch/root/html/tutorials/roostats/rs401c_FeldmanCousins.C.html
http://root.cern.ch/root/html/tutorials/roostats/rs401c_FeldmanCousins.C.html
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Comparison 90% Confidence

FeldmanCousins utility gives for x=7, b=3 gives an interval:
‣                         with default settings (step size of 0.15)
‣ takes ~19 seconds to test 100 points at 90% confidence
‣ compare to original paper

74

TABLE IV. 90% C.L. intervals for the Poisson signal mean µ, for total events observed n0, for

known mean background b ranging from 0 to 5.

n0\b 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 5.0
0 0.00, 2.44 0.00, 1.94 0.00, 1.61 0.00, 1.33 0.00, 1.26 0.00, 1.18 0.00, 1.08 0.00, 1.06 0.00, 1.01 0.00, 0.98

1 0.11, 4.36 0.00, 3.86 0.00, 3.36 0.00, 2.91 0.00, 2.53 0.00, 2.19 0.00, 1.88 0.00, 1.59 0.00, 1.39 0.00, 1.22
2 0.53, 5.91 0.03, 5.41 0.00, 4.91 0.00, 4.41 0.00, 3.91 0.00, 3.45 0.00, 3.04 0.00, 2.67 0.00, 2.33 0.00, 1.73
3 1.10, 7.42 0.60, 6.92 0.10, 6.42 0.00, 5.92 0.00, 5.42 0.00, 4.92 0.00, 4.42 0.00, 3.95 0.00, 3.53 0.00, 2.78
4 1.47, 8.60 1.17, 8.10 0.74, 7.60 0.24, 7.10 0.00, 6.60 0.00, 6.10 0.00, 5.60 0.00, 5.10 0.00, 4.60 0.00, 3.60
5 1.84, 9.99 1.53, 9.49 1.25, 8.99 0.93, 8.49 0.43, 7.99 0.00, 7.49 0.00, 6.99 0.00, 6.49 0.00, 5.99 0.00, 4.99
6 2.21,11.47 1.90,10.97 1.61,10.47 1.33, 9.97 1.08, 9.47 0.65, 8.97 0.15, 8.47 0.00, 7.97 0.00, 7.47 0.00, 6.47
7 3.56,12.53 3.06,12.03 2.56,11.53 2.09,11.03 1.59,10.53 1.18,10.03 0.89, 9.53 0.39, 9.03 0.00, 8.53 0.00, 7.53
8 3.96,13.99 3.46,13.49 2.96,12.99 2.51,12.49 2.14,11.99 1.81,11.49 1.51,10.99 1.06,10.49 0.66, 9.99 0.00, 8.99
9 4.36,15.30 3.86,14.80 3.36,14.30 2.91,13.80 2.53,13.30 2.19,12.80 1.88,12.30 1.59,11.80 1.33,11.30 0.43,10.30

10 5.50,16.50 5.00,16.00 4.50,15.50 4.00,15.00 3.50,14.50 3.04,14.00 2.63,13.50 2.27,13.00 1.94,12.50 1.19,11.50
11 5.91,17.81 5.41,17.31 4.91,16.81 4.41,16.31 3.91,15.81 3.45,15.31 3.04,14.81 2.67,14.31 2.33,13.81 1.73,12.81
12 7.01,19.00 6.51,18.50 6.01,18.00 5.51,17.50 5.01,17.00 4.51,16.50 4.01,16.00 3.54,15.50 3.12,15.00 2.38,14.00
13 7.42,20.05 6.92,19.55 6.42,19.05 5.92,18.55 5.42,18.05 4.92,17.55 4.42,17.05 3.95,16.55 3.53,16.05 2.78,15.05
14 8.50,21.50 8.00,21.00 7.50,20.50 7.00,20.00 6.50,19.50 6.00,19.00 5.50,18.50 5.00,18.00 4.50,17.50 3.59,16.50
15 9.48,22.52 8.98,22.02 8.48,21.52 7.98,21.02 7.48,20.52 6.98,20.02 6.48,19.52 5.98,19.02 5.48,18.52 4.48,17.52
16 9.99,23.99 9.49,23.49 8.99,22.99 8.49,22.49 7.99,21.99 7.49,21.49 6.99,20.99 6.49,20.49 5.99,19.99 4.99,18.99
17 11.04,25.02 10.54,24.52 10.04,24.02 9.54,23.52 9.04,23.02 8.54,22.52 8.04,22.02 7.54,21.52 7.04,21.02 6.04,20.02
18 11.47,26.16 10.97,25.66 10.47,25.16 9.97,24.66 9.47,24.16 8.97,23.66 8.47,23.16 7.97,22.66 7.47,22.16 6.47,21.16
19 12.51,27.51 12.01,27.01 11.51,26.51 11.01,26.01 10.51,25.51 10.01,25.01 9.51,24.51 9.01,24.01 8.51,23.51 7.51,22.51
20 13.55,28.52 13.05,28.02 12.55,27.52 12.05,27.02 11.55,26.52 11.05,26.02 10.55,25.52 10.05,25.02 9.55,24.52 8.55,23.52

TABLE V. 90% C.L. intervals for the Poisson signal mean µ, for total events observed n0, for
known mean background b ranging from 6 to 15.

n0\b 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0
0 0.00, 0.97 0.00, 0.95 0.00, 0.94 0.00, 0.94 0.00, 0.93 0.00, 0.93 0.00, 0.92 0.00, 0.92 0.00, 0.92 0.00, 0.92

1 0.00, 1.14 0.00, 1.10 0.00, 1.07 0.00, 1.05 0.00, 1.03 0.00, 1.01 0.00, 1.00 0.00, 0.99 0.00, 0.99 0.00, 0.98

2 0.00, 1.57 0.00, 1.38 0.00, 1.27 0.00, 1.21 0.00, 1.15 0.00, 1.11 0.00, 1.09 0.00, 1.08 0.00, 1.06 0.00, 1.05

3 0.00, 2.14 0.00, 1.75 0.00, 1.49 0.00, 1.37 0.00, 1.29 0.00, 1.24 0.00, 1.21 0.00, 1.18 0.00, 1.15 0.00, 1.14

4 0.00, 2.83 0.00, 2.56 0.00, 1.98 0.00, 1.82 0.00, 1.57 0.00, 1.45 0.00, 1.37 0.00, 1.31 0.00, 1.27 0.00, 1.24

5 0.00, 4.07 0.00, 3.28 0.00, 2.60 0.00, 2.38 0.00, 1.85 0.00, 1.70 0.00, 1.58 0.00, 1.48 0.00, 1.39 0.00, 1.32

6 0.00, 5.47 0.00, 4.54 0.00, 3.73 0.00, 3.02 0.00, 2.40 0.00, 2.21 0.00, 1.86 0.00, 1.67 0.00, 1.55 0.00, 1.47

7 0.00, 6.53 0.00, 5.53 0.00, 4.58 0.00, 3.77 0.00, 3.26 0.00, 2.81 0.00, 2.23 0.00, 2.07 0.00, 1.86 0.00, 1.69
8 0.00, 7.99 0.00, 6.99 0.00, 5.99 0.00, 5.05 0.00, 4.22 0.00, 3.49 0.00, 2.83 0.00, 2.62 0.00, 2.11 0.00, 1.95
9 0.00, 9.30 0.00, 8.30 0.00, 7.30 0.00, 6.30 0.00, 5.30 0.00, 4.30 0.00, 3.93 0.00, 3.25 0.00, 2.64 0.00, 2.45

10 0.22,10.50 0.00, 9.50 0.00, 8.50 0.00, 7.50 0.00, 6.50 0.00, 5.56 0.00, 4.71 0.00, 3.95 0.00, 3.27 0.00, 3.00
11 1.01,11.81 0.02,10.81 0.00, 9.81 0.00, 8.81 0.00, 7.81 0.00, 6.81 0.00, 5.81 0.00, 4.81 0.00, 4.39 0.00, 3.69
12 1.57,13.00 0.83,12.00 0.00,11.00 0.00,10.00 0.00, 9.00 0.00, 8.00 0.00, 7.00 0.00, 6.05 0.00, 5.19 0.00, 4.42
13 2.14,14.05 1.50,13.05 0.65,12.05 0.00,11.05 0.00,10.05 0.00, 9.05 0.00, 8.05 0.00, 7.05 0.00, 6.08 0.00, 5.22
14 2.83,15.50 2.13,14.50 1.39,13.50 0.47,12.50 0.00,11.50 0.00,10.50 0.00, 9.50 0.00, 8.50 0.00, 7.50 0.00, 6.55
15 3.48,16.52 2.56,15.52 1.98,14.52 1.26,13.52 0.30,12.52 0.00,11.52 0.00,10.52 0.00, 9.52 0.00, 8.52 0.00, 7.52
16 4.07,17.99 3.28,16.99 2.60,15.99 1.82,14.99 1.13,13.99 0.14,12.99 0.00,11.99 0.00,10.99 0.00, 9.99 0.00, 8.99
17 5.04,19.02 4.11,18.02 3.32,17.02 2.38,16.02 1.81,15.02 0.98,14.02 0.00,13.02 0.00,12.02 0.00,11.02 0.00,10.02
18 5.47,20.16 4.54,19.16 3.73,18.16 3.02,17.16 2.40,16.16 1.70,15.16 0.82,14.16 0.00,13.16 0.00,12.16 0.00,11.16
19 6.51,21.51 5.51,20.51 4.58,19.51 3.77,18.51 3.05,17.51 2.21,16.51 1.58,15.51 0.67,14.51 0.00,13.51 0.00,12.51
20 7.55,22.52 6.55,21.52 5.55,20.52 4.55,19.52 3.55,18.52 2.81,17.52 2.23,16.52 1.48,15.52 0.53,14.52 0.00,13.52
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FeldmanCousins utility gives for x=7, b=3 gives an interval:
‣                         with default settings (step size of 0.15)
‣ takes ~30 seconds to test 100 points at 95% confidence
‣ compare to original paper

Comparison 95% Confidence
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TABLE VI. 95% C.L. intervals for the Poisson signal mean µ, for total events observed n0, for

known mean background b ranging from 0 to 5.

n0\b 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 5.0
0 0.00, 3.09 0.00, 2.63 0.00, 2.33 0.00, 2.05 0.00, 1.78 0.00, 1.78 0.00, 1.63 0.00, 1.63 0.00, 1.57 0.00, 1.54

1 0.05, 5.14 0.00, 4.64 0.00, 4.14 0.00, 3.69 0.00, 3.30 0.00, 2.95 0.00, 2.63 0.00, 2.33 0.00, 2.08 0.00, 1.88
2 0.36, 6.72 0.00, 6.22 0.00, 5.72 0.00, 5.22 0.00, 4.72 0.00, 4.25 0.00, 3.84 0.00, 3.46 0.00, 3.11 0.00, 2.49
3 0.82, 8.25 0.32, 7.75 0.00, 7.25 0.00, 6.75 0.00, 6.25 0.00, 5.75 0.00, 5.25 0.00, 4.78 0.00, 4.35 0.00, 3.58
4 1.37, 9.76 0.87, 9.26 0.37, 8.76 0.00, 8.26 0.00, 7.76 0.00, 7.26 0.00, 6.76 0.00, 6.26 0.00, 5.76 0.00, 4.84
5 1.84,11.26 1.47,10.76 0.97,10.26 0.47, 9.76 0.00, 9.26 0.00, 8.76 0.00, 8.26 0.00, 7.76 0.00, 7.26 0.00, 6.26
6 2.21,12.75 1.90,12.25 1.61,11.75 1.11,11.25 0.61,10.75 0.11,10.25 0.00, 9.75 0.00, 9.25 0.00, 8.75 0.00, 7.75
7 2.58,13.81 2.27,13.31 1.97,12.81 1.69,12.31 1.29,11.81 0.79,11.31 0.29,10.81 0.00,10.31 0.00, 9.81 0.00, 8.81
8 2.94,15.29 2.63,14.79 2.33,14.29 2.05,13.79 1.78,13.29 1.48,12.79 0.98,12.29 0.48,11.79 0.00,11.29 0.00,10.29
9 4.36,16.77 3.86,16.27 3.36,15.77 2.91,15.27 2.46,14.77 1.96,14.27 1.62,13.77 1.20,13.27 0.70,12.77 0.00,11.77

10 4.75,17.82 4.25,17.32 3.75,16.82 3.30,16.32 2.92,15.82 2.57,15.32 2.25,14.82 1.82,14.32 1.43,13.82 0.43,12.82
11 5.14,19.29 4.64,18.79 4.14,18.29 3.69,17.79 3.30,17.29 2.95,16.79 2.63,16.29 2.33,15.79 2.04,15.29 1.17,14.29
12 6.32,20.34 5.82,19.84 5.32,19.34 4.82,18.84 4.32,18.34 3.85,17.84 3.44,17.34 3.06,16.84 2.69,16.34 1.88,15.34
13 6.72,21.80 6.22,21.30 5.72,20.80 5.22,20.30 4.72,19.80 4.25,19.30 3.84,18.80 3.46,18.30 3.11,17.80 2.47,16.80
14 7.84,22.94 7.34,22.44 6.84,21.94 6.34,21.44 5.84,20.94 5.34,20.44 4.84,19.94 4.37,19.44 3.94,18.94 3.10,17.94
15 8.25,24.31 7.75,23.81 7.25,23.31 6.75,22.81 6.25,22.31 5.75,21.81 5.25,21.31 4.78,20.81 4.35,20.31 3.58,19.31
16 9.34,25.40 8.84,24.90 8.34,24.40 7.84,23.90 7.34,23.40 6.84,22.90 6.34,22.40 5.84,21.90 5.34,21.40 4.43,20.40
17 9.76,26.81 9.26,26.31 8.76,25.81 8.26,25.31 7.76,24.81 7.26,24.31 6.76,23.81 6.26,23.31 5.76,22.81 4.84,21.81
18 10.84,27.84 10.34,27.34 9.84,26.84 9.34,26.34 8.84,25.84 8.34,25.34 7.84,24.84 7.34,24.34 6.84,23.84 5.84,22.84
19 11.26,29.31 10.76,28.81 10.26,28.31 9.76,27.81 9.26,27.31 8.76,26.81 8.26,26.31 7.76,25.81 7.26,25.31 6.26,24.31
20 12.33,30.33 11.83,29.83 11.33,29.33 10.83,28.83 10.33,28.33 9.83,27.83 9.33,27.33 8.83,26.83 8.33,26.33 7.33,25.33

TABLE VII. 95% C.L. intervals for the Poisson signal mean µ, for total events observed n0,
for known mean background b ranging from 6 to 15.

n0\b 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0
0 0.00, 1.52 0.00, 1.51 0.00, 1.50 0.00, 1.49 0.00, 1.49 0.00, 1.48 0.00, 1.48 0.00, 1.48 0.00, 1.47 0.00, 1.47

1 0.00, 1.78 0.00, 1.73 0.00, 1.69 0.00, 1.66 0.00, 1.64 0.00, 1.61 0.00, 1.60 0.00, 1.59 0.00, 1.58 0.00, 1.56

2 0.00, 2.28 0.00, 2.11 0.00, 1.98 0.00, 1.86 0.00, 1.81 0.00, 1.77 0.00, 1.74 0.00, 1.72 0.00, 1.70 0.00, 1.67

3 0.00, 2.91 0.00, 2.69 0.00, 2.37 0.00, 2.17 0.00, 2.06 0.00, 1.98 0.00, 1.93 0.00, 1.89 0.00, 1.82 0.00, 1.80

4 0.00, 4.05 0.00, 3.35 0.00, 3.01 0.00, 2.54 0.00, 2.37 0.00, 2.23 0.00, 2.11 0.00, 2.04 0.00, 1.99 0.00, 1.95

5 0.00, 5.33 0.00, 4.52 0.00, 3.79 0.00, 3.15 0.00, 2.94 0.00, 2.65 0.00, 2.43 0.00, 2.30 0.00, 2.20 0.00, 2.13

6 0.00, 6.75 0.00, 5.82 0.00, 4.99 0.00, 4.24 0.00, 3.57 0.00, 3.14 0.00, 2.78 0.00, 2.62 0.00, 2.48 0.00, 2.35

7 0.00, 7.81 0.00, 6.81 0.00, 5.87 0.00, 5.03 0.00, 4.28 0.00, 4.00 0.00, 3.37 0.00, 3.15 0.00, 2.79 0.00, 2.59
8 0.00, 9.29 0.00, 8.29 0.00, 7.29 0.00, 6.35 0.00, 5.50 0.00, 4.73 0.00, 4.03 0.00, 3.79 0.00, 3.20 0.00, 3.02
9 0.00,10.77 0.00, 9.77 0.00, 8.77 0.00, 7.77 0.00, 6.82 0.00, 5.96 0.00, 5.18 0.00, 4.47 0.00, 3.81 0.00, 3.60

10 0.00,11.82 0.00,10.82 0.00, 9.82 0.00, 8.82 0.00, 7.82 0.00, 6.87 0.00, 6.00 0.00, 5.21 0.00, 4.59 0.00, 4.24
11 0.17,13.29 0.00,12.29 0.00,11.29 0.00,10.29 0.00, 9.29 0.00, 8.29 0.00, 7.34 0.00, 6.47 0.00, 5.67 0.00, 4.93
12 0.92,14.34 0.00,13.34 0.00,12.34 0.00,11.34 0.00,10.34 0.00, 9.34 0.00, 8.34 0.00, 7.37 0.00, 6.50 0.00, 5.70
13 1.68,15.80 0.69,14.80 0.00,13.80 0.00,12.80 0.00,11.80 0.00,10.80 0.00, 9.80 0.00, 8.80 0.00, 7.85 0.00, 6.96
14 2.28,16.94 1.46,15.94 0.46,14.94 0.00,13.94 0.00,12.94 0.00,11.94 0.00,10.94 0.00, 9.94 0.00, 8.94 0.00, 7.94
15 2.91,18.31 2.11,17.31 1.25,16.31 0.25,15.31 0.00,14.31 0.00,13.31 0.00,12.31 0.00,11.31 0.00,10.31 0.00, 9.31
16 3.60,19.40 2.69,18.40 1.98,17.40 1.04,16.40 0.04,15.40 0.00,14.40 0.00,13.40 0.00,12.40 0.00,11.40 0.00,10.40
17 4.05,20.81 3.35,19.81 2.63,18.81 1.83,17.81 0.83,16.81 0.00,15.81 0.00,14.81 0.00,13.81 0.00,12.81 0.00,11.81
18 4.91,21.84 4.11,20.84 3.18,19.84 2.53,18.84 1.63,17.84 0.63,16.84 0.00,15.84 0.00,14.84 0.00,13.84 0.00,12.84
19 5.33,23.31 4.52,22.31 3.79,21.31 3.15,20.31 2.37,19.31 1.44,18.31 0.44,17.31 0.00,16.31 0.00,15.31 0.00,14.31
20 6.33,24.33 5.39,23.33 4.57,22.33 3.82,21.33 2.94,20.33 2.23,19.33 1.25,18.33 0.25,17.33 0.00,16.33 0.00,15.33
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µ ∈ [0.4, 10.7]

µ ∈ [0.3, 10.8]
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Feldman Cousins Progress Printouts
The NeymanConstruction provides printouts as it scans the parameter space
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NeymanConstruction: Prog: 70/200 total MC = 78 this test stat = 3.63743
 mu=-0.305 [-1e+30, 2.14545]  in interval = 0

...

NeymanConstruction: Prog: 78/200 total MC = 702 this test stat = 1.79968
 mu=-0.225 [-1e+30, 1.99669]  in interval = 1

...

NeymanConstruction: Prog: 80/200 total MC = 78 this test stat = 1.44024
 mu=-0.205 [-1e+30, 2.01067]  in interval = 1

On point 70 of 200 points in the 
parameter scan Total number of toy MC pseudo-experiments to construct 

the acceptance region for this parameter point

value of test statistic
for the observed
data at this point

name and value of 
parameters at this point

Limits of test statistic defining  
acceptance region (1e+30 = infinity)

Is point in interval
1 = yes
0 = no

Note, the test stat was close to the boundary of 
the acceptance region for this point, so the 
adaptive sampling algorithm used many more 
toy MC experiments to refine the boundary

Note, the test stat was well inside the 
acceptance region for this point, so the 
adaptive sampling algorithm used very few toy 
MC experiments to decide
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, but some overcoverage may just be a natural

µµ
min

µ
max

(x0,e0)

ideal shape of conf. region

Neyman Construction with Nuisance Parameters
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Figure 1: The Neyman construction for a test statistic x,
an auxiliary measurement M , and a nuisance parameter
b. Vertical planes represent acceptance regions Wb for H0

given b. The condition for discovery corresponds to data
(x0, M0) that do not intersect any acceptance region.
The contours of L(x, M |H0, b) are in color.

where b̂ conditionally maximizes L(x, M |H1, b) and ˆ̂b
conditionally maximizes L(x, M |H0, b).

Now let us take s = 50 and ∆ = 5%, both of which
could be determined from Monte Carlo. In our toy ex-
ample, we collect data M0 = 100. Let α = 2.85 ·10−7,
which corresponds to 5σ. The question now is how
many events x must we observe to claim a discovery?1

The condition for discovery is that (x0, M0) do not lie
in any acceptance region Wb. In Fig. 1 a sample of
acceptance regions are displayed. One can imagine a
horizontal plane at M0 = 100 slicing through the var-
ious acceptance regions. The condition for discovery
is that x0 > xmax where xmax is the maximal x in the
intersection.

There is one subtlety which arises from the or-
dering rule in Eq. 5. The acceptance region Wb =
{(x, M) | l > lα} is bounded by a contour of the
likelihood ratio and must satisfy the constraint of size:∫

Wb
L(x, M |H0, b) = (1 − α). While it is true that

the likelihood is independent of b, the constraint on
size is dependent upon b. Similar tests are achieved
when lα is independent of b. The contours of the like-
lihood ratio are shown in Fig. 2 together with con-
tours of L(x, M |H0, b). While tests are roughly sim-
ilar for b ≈ M , similarity is violated for M # b.
This violation should be irrelevant because clearly
b # M should not be accepted. This problem can
be avoided by clipping the acceptance region around
M = b ± N∆b, where N is sufficiently large (≈ 10)
to have negligible affect on the size of the acceptance

1In practice, one would measure x0 and M0 and then ask,
“have we made a discovery?”. For the sake of explanation, we
have broken this process into two pieces.
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Figure 2: Contours of the likelihood L(x, M |H0, b) are
shown as concentric ellipses for b = 32 and b = 80.
Contours of the likelihood ratio in Eq. 5 are shown as
diagonal lines. This figure schematically illustrates that if
one chooses acceptance regions based solely on contours
of the likelihood ratio, that similarity is badly violated.
For example, data M = 80, x = 130 would be considered
part of the acceptance region for b = 32, even though it
should clearly be ruled out.

region. Fig. 1 shows the acceptance region with this
slight modification.

In the case where s = 50, ∆ = 5%, and M0 = 100,
one must observe 167 events to claim a discovery.
While no figure is provided, the range of b consis-
tent with M0 = 100 (and no constraint on x) is
b ∈ [68, 200]. In this range, the tests are similar to
a very high degree.

7. THE COUSINS-HIGHLAND
TECHNIQUE

The Cousins-Highland approach to hypothesis test-
ing is quite popular [4] because it is a simple smear-
ing on the nuisance parameter [5]. In particular, the
background-only hypothesis L(x|H0, b) is transformed
from a compound hypothesis with nuisance parameter
b to a simple hypothesis L′(x|H0) by

L′(x|H0) =
∫

b
L(x|H0, b)L(b)db, (6)

where L(b) is typically a normal distribution. The
problem with this method is largely philosophical:
L(b) is meaningless in a frequentist formalism. In a
Bayesian formalism one can obtain L(b) by consider-
ing L(M |b) and inverting it with the use of Bayes’s
theorem and the a priori likelihood for b. Typically,
L(M |b) is normal and one assumes a flat prior on b.

In the case where s = 50, L(b) is a normal distribu-
tion with mean µ = M0 = 100 and standard deviation
σ = ∆M0 = 5, one must observe 161 events to claim a
discovery. Initially, one might think that 161 is quite
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How do you extend the Neyman Construction to include nuisance 
parameters?

‣ Bayesian hybrid approach
● eg. marginalize and only consider parameters of interest in 

construction (“FC2H”) -- requires a new test statistic (in progress)

‣ Frequentist approach
● generalize the ordering rule

• eg. use profile likelihood ratio, Cranmer, PhyStat03 & Punzi, PhyStat05

1. do the “full construction”: eg, construction over params of interest and 
nuisance parameters

• Projection of intervals can cause overcoverage

2. do the “profile construction”: eg. only consider sub-space of conditional M.L.E. of 
the nuisance parameters given data & parameters of interest (eg. the “hat hat” 
variables).

• Only approximate coverage, but good in practice

3. same as above, but calibrate the threshold on the ordering rule to ensure 
coverage

fig. by Punzi
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The Profile Construction
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Gary Feldman presented an approximate 
Neyman Construction, based on the same 
ordering rule, but only on a subspace of the 
parameters based on profiling

The profile construction means that one does 
not need to scan each nuisance parameter
‣ easier computationally

This approximation does not guarantee exact 
coverage, but
‣ tests indicate impressive performance

This is default implementation of FeldmanCousins 
calculator if the model has nuisance parameters
‣ Note that when using profile likelihood ratio, we 

are testing considering the same sub-space.
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Generalizing the ordering rule (Frequentist)
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To do for Neyman Construction class
Under development (as of May 2010):
‣ finalized ConfidenceBelt class 

● will support read/write, merging, refining, plotting, etc.

‣ general performance improvements & code optimization
‣ ability to run parameter points in parallel using PROOF
‣ improved visualization of the result
‣ easier control over parameter points being scanned

● scan within a range, logarithmic scanning for selected variables, ...

‣ additional choices for test statistic
● marginalized likeilihood ratio, mean of dataset, N events in cut, ...

‣ additional choices for test stat sampler
● importance sampling, analytic convolution via FFT (for some problems)
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More about the MCMC Calculator
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Markov Chain Monte Carlo
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Markov Chain Monte Carlo (MCMC) is a nice technique which will produce a 
sampling of a parameter space which is proportional to a posterior
‣ it works well in high dimensional problems
‣ Metropolis-Hastings Algorithm: generates a sequence of points 

● Given the likelihood function         & prior        , the posterior is 
proportional to 

● propose a point     to be added to the chain according to a proposal 
density            that depends only on current point 

● if posterior is higher at    than at   , then add new point to chain
● else: add     to the chain with probability 

● (appending original point      with complementary probability) 
‣ RooStats works with any         ,         
‣ Since last week: can use any RooFit PDF as proposal function   

Work done primarily by Kevin Belasco, a Princeton undergraduate I’m working with.
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Use of Markov Chain Monte Carlo

Markov Chain Monte Carlo is what is used to 
make these types of “weather forecasts” that scan 
SUSY parameter space based on existing 
measurements for WMAP, precision electroweak, 
etc.
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Figure 1: The 2-dim relative probability density functions in the planes spanned by the CMSSM
parameters: m1/2, m0, A0 and tanβ for µ > 0. The pdf’s are normalized to unity at their peak.
The inner (outer) blue solid contours delimit regions encompassing 68% and 95% of the total
probability, respectively. All other basis parameters, both CMSSM and SM ones, in each plane
have been marginalized over.

blue (dark) solid contours delimit regions of 68% and 95% of the total probability, respec-

tively, and remain well within the assumed priors, except for m0. In all the 2-dim plots,

the MC samples have been divided into 70 × 70 bins, with a mild smoothing across adja-

cent bins to improve the quality of the presentation (this has not impact on our statistical

conclusions). Jagged contours are a result of a finite resolution of the MC chains.

In the case of µ > 0 (fig. 1) we can see a strong preference for large m0 ∼> 1 TeV. On

the other hand, the peak of probability for m1/2 is around 0.5 TeV, although the 68% range

of total probability is rather wide, increases with m0 and exceeds 1.5 TeV for m0 # 4 TeV.

Additionally, at smaller m0 ∼< 1 TeV there are a few confined 68% total probability regions.

The strong preference for large m0 $ m1/2 is primarily the result of the sizable shift

in the SM value of BR(B → Xsγ), as can be seen by comparing fig. 1 with fig. 2 in ref. [14]

(or fig. 8 of ref. [15]) where the previous value of BR(B → Xsγ) has been used. (While

the other CMSSM parameters also experience some shift in their most probable values, it

is not as dramatic as that of m0 towards larger values.) The underlying reason is that,

at fairly small m1/2 the charged Higgs mass remains relatively light, in the few hundred

– 9 –

M. Rauch SFitter: From LHC data back to the MSSM Lagrangian

χ2 m0 m1/2 tan β A0 µ mt

0.09 102.0 254.0 11.5 -95.2 + 172.4
1.50 104.8 242.1 12.9 -174.4 − 172.3
73.2 108.1 266.4 14.6 742.4 + 173.7
139.5 112.1 261.0 18.0 632.6 − 173.0
. . .
errors 2.17 2.64 2.45 49.6 0.97

Table 1. SFitter output for the SPS1a point in MSUGRA.
List of the best-fitting parameter points with associated
log-likelihood. The last line denotes the corresponding er-
rors for the best-fitting point. All masses are in units of
GeV.
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Fig. 1. SFitter output for the SPS1a point in MSUGRA.
Two-dimensional likelihood maps of the m0-m1/2 plane.
Upper: Bayesian marginalised plots. Lower: Profile likeli-
hoods. All masses are given in GeV.

and a flipped sign of µ. Solution three shows a distinct
maximum, and the last one again differs from the pre-
vious one only by sgnµ. For these last two solutions
the trilinear parameter takes a large positive value to-
gether with a slight shift in the top-quark mass. If the
latter was kept fixed this distinct maximum would be
much less pronounced. In the last line of Table 1 the
corresponding errors on the parameters are printed.

Fig. 1 shows the corresponding plots of the likeli-
hood map projected onto the m0-m1/2 plane. The peak
is clearly at the right position in both the marginalised
plot and the profile likelihood. The resolution of the
plots is too coarse so the different maxima are merged
in a single bin and cannot be resolved here. From there
it extends in two branches, which reflect the fact that
extracting masses from kinematic endpoints involves
quadratic equations.
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Fig. 2. SFitter output for the SPS1a point in MSUGRA.
One-dimensional Bayesian marginalised plots for tanβ.
Upper: High-scale prior flat in B. Lower: Prior flat in tanβ.

Strictly speaking, the usual set of MSUGRA pa-
rameter is not purely high-scale, as it contains the
weak-scale quantity tanβ which explicitly assumes ra-
diative electroweak symmetry breaking. This can be
replaced by the mass parameters B and µ [18] which
appear as Bµ in front of mixed terms of the type
H0

1H0
2 . µ can then be eliminated by the requirement

that the correct low-energy Z-boson mass is repro-
duced. This distinction is important for the margin-
alised plots, where a prior as a measure in the pa-
rameter space must be specified. Fig. 2 shows the dif-
ferent results of the two choices. In the upper plot a
purely high-scale model is chosen as has been done in
the previous plots. The prior is taken to be flat in B.
This corresponds to a prior in tanβ, which falls of as
1/ tanβ2 in leading order. This behaviour is clearly
visible in the plot. It is dominated by noise and the
prior and as small values of tanβ as possible are pre-
ferred. In the lower plot a prior which is flat in tanβ
has been chosen. Here the plot still shows a significant
noise, but the maximum is in the correct place. For
profile-likelihood plots this choice does not making a
difference in the resulting likelihood. It does however
have an indirect influence via the Markov chain scan-
ning. For the PDF a measure in the parameter space
must be defined which influences the probability for
suggesting a point. A bad choice of the PDF can then
lead to a bad coverage of the parameter space.

[arXiv:0710.2822]
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The MCMC framework
MCMCCalculator implements the interface for IntervalCalculator
‣ it runs Metropolis-Hastings sampling, but that is of general use, so that 

is it’s own class.
‣ The MetropolisHastings sampler will return a MarkovChain
‣ The MetropolisHastings algorithm needs a ProposalFunction, which is 

an abstract interface
● We can support arbitrary RooFit PDFs as proposal functions
● Provide ProposerHelper tool to make it easier to make them

‣ The MCMCInterval will use the chain to make the smallest interval it 
can

‣ The MCMCIntervalPlot class for visualizing results
To do:
‣ run parallel chains and support merging
‣ provide convergence tests and auto-detect burn-in
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The MCMCCalculator
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6.6.1 MCMCCalculator

MCMCCalculator runs the Metropolis-Hastings algorithm (section 6.6.3) with the parameters

of your model, a −log(Likelihood) function constructed from the model and data set, and a

ProposalFunction (section 6.6.2). This generates a Markov chain posterior sampling, which

is used to create an MCMCInterval (section 6.6.4).

The most basic usage of an MCMCCalculator is automatically set up with the simplified

3-arg constructor (or 4-arg with RooWorkspace). This automatic configuration package

consists of a UniformProposal, 10,000 Metropolis-Hastings iterations, 40 burn-in steps, and

50 bins for each RooRealVar; it also determines the interval by kernel-estimation, turns on

sparse histogram mode, and finds a 95% confidence interval (see sections 6.6.3 and 6.6.4 to

learn about these options). These are reasonable settings designed to minimize configuration

steps and hassle for beginning users, making the code very simple:

// data is a RooAbsData , model is a RooAbsPdf ,
// and parametersOfInterest is a RooArgSet
MCMCCalculator mc(data , model , parametersOfInterest);
ConfInterval* mcmcInterval = mc.GetInterval ();

All other MCMCCalculator constructors are designed for maximum user control and thus

do not have any automatic settings. You can customize the configuration (and override any

automatic settings) through the mutator methods provided by MCMCCalculator. It may

be easiest to use the default no-args constructor and perform all configuration with these

methods.

// A simple ProposalFunction
ProposalFunction* pf = new UniformProposal ();

MCMCCalculator mc;
mc.SetData(data);
mc.SetPdf(model);
mc.SetParameters(parametersOfInterest);
mc.SetProposalFunction (*pf);
mc.SetNumIters (100000); // Metropolis -Hastings algorithm iterations
mc.SetNumBurnInSteps (50); // first N steps to be ignored as burn -in
mc.SetNumBins (50); // bins to use for RooRealVars in histograms
mc.SetTestSize (.1); // 90% confidence level
mc.SetUseKeys(true); // Use kernel estimation to determine interval
ConfInterval* mcmcInterval = mc.GetInterval ();

6.6.2 ProposalFunction

The ProposalFunction interface generalizes the task of proposing points in some distribution

for some set of variables, presumably for use with the Metropolis-Hastings algorithm.

PdfProposal is the most powerful and general ProposalFunction derived class. It proposes

points in the distribution of any RooAbsPdf you pass it to serve as its proposal density

function. It also provides a generalized means of updating PDF parameters based on the

current values of PDF observables. This is useful for centering the proposal density function
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6.6.1 MCMCCalculator
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of your model, a −log(Likelihood) function constructed from the model and data set, and a

ProposalFunction (section 6.6.2). This generates a Markov chain posterior sampling, which

is used to create an MCMCInterval (section 6.6.4).

The most basic usage of an MCMCCalculator is automatically set up with the simplified

3-arg constructor (or 4-arg with RooWorkspace). This automatic configuration package

consists of a UniformProposal, 10,000 Metropolis-Hastings iterations, 40 burn-in steps, and

50 bins for each RooRealVar; it also determines the interval by kernel-estimation, turns on

sparse histogram mode, and finds a 95% confidence interval (see sections 6.6.3 and 6.6.4 to

learn about these options). These are reasonable settings designed to minimize configuration

steps and hassle for beginning users, making the code very simple:

// data is a RooAbsData , model is a RooAbsPdf ,
// and parametersOfInterest is a RooArgSet
MCMCCalculator mc(data , model , parametersOfInterest);
ConfInterval* mcmcInterval = mc.GetInterval ();

All other MCMCCalculator constructors are designed for maximum user control and thus

do not have any automatic settings. You can customize the configuration (and override any

automatic settings) through the mutator methods provided by MCMCCalculator. It may

be easiest to use the default no-args constructor and perform all configuration with these

methods.

// A simple ProposalFunction
ProposalFunction* pf = new UniformProposal ();

MCMCCalculator mc;
mc.SetData(data);
mc.SetPdf(model);
mc.SetParameters(parametersOfInterest);
mc.SetProposalFunction (*pf);
mc.SetNumIters (100000); // Metropolis -Hastings algorithm iterations
mc.SetNumBurnInSteps (50); // first N steps to be ignored as burn -in
mc.SetNumBins (50); // bins to use for RooRealVars in histograms
mc.SetTestSize (.1); // 90% confidence level
mc.SetUseKeys(true); // Use kernel estimation to determine interval
ConfInterval* mcmcInterval = mc.GetInterval ();

6.6.2 ProposalFunction

The ProposalFunction interface generalizes the task of proposing points in some distribution

for some set of variables, presumably for use with the Metropolis-Hastings algorithm.

PdfProposal is the most powerful and general ProposalFunction derived class. It proposes

points in the distribution of any RooAbsPdf you pass it to serve as its proposal density

function. It also provides a generalized means of updating PDF parameters based on the

current values of PDF observables. This is useful for centering the proposal density function
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around the current point when proposing others or for advanced control over the widths of

peaks or anything else in the proposal function. It also has a cacheing mechanism (off by

default) which almost always significantly speeds up proposals.

Here’s a PdfProposal construction example that uses a covariance matrix from the

RooFitResult. Be careful that your RooArgLists have the same order of variables as the

covariance matrix uses:

// Assume we have x, y, and z as RooRealVar* parameters of our model

// Create clones to serve as mean variables
RooRealVar* mu_x = (RooRealVar *)x->clone("mu_x");
RooRealVar* mu_y = (RooRealVar *)y->clone("mu_y");
RooRealVar* mu_z = (RooRealVar *)z->clone("mu_z");

// Fit model to data to get a covariance matrix
// (you can also just construct your own custom covariance matrix)
TMatrixDSym covFit = model ->fitTo(*data)->covarianceMatrix ();

// Make a PDF to be our proposal density function
RooMultiVarGaussian mvg("mvg", "mvg", RooArgList (*x, *y, *z), // Careful!

RooArgList (*mu_x , *mu_y , *mu_z), covFit);
PdfProposal pf(mvg);

// Optional mappings to center the proposal function around the current point
pf.AddMapping (*mu_x , *x);
pf.AddMapping (*mu_y , *y);
pf.AddMapping (*mu_z , *z);

pf.SetCacheSize (100); // when we must generate proposal points , generate 100

Since PdfProposal functions are powerful but annoying to build, we created Proposal-

Helper to make it easier. It will build a multi-variate Gaussian proposal function and has

some handy options for doing so. Here’s how to create exactly the same proposal function as

in the example above. Note that using RooFitResult::floatParsFinal() to set the RooArgList

of variables ensures the right order.

RooFitResult* fit = model ->fitTo (*data);

// Easy ProposalFunction construction with ProposalHelper
ProposalHelper ph;
ph.SetVariables(fit ->floatParsFinal ());
ph.SetCovMatrix(fit ->covarianceMatrix ());
ph.SetUpdateProposalParameters(kTRUE); // auto -create mean vars and add mappings
ph.SetCacheSize (100);
ProposalFunction* pf = ph.GetProposalFunction ();

ProposalHelper can also create a PdfProposal with a ”Bank of Clues” (cite paper) com-

ponent. This will add a PDF with a kernel placed at each ”clue” point to the proposal

density function. This will increase the frequency of proposals in the clue regions which can

be especially useful for helping the Metropolis-Hastings algorithm find small and/or distant

regions of interest (no free lunch, of course, you need to know these regions beforehand to

pick the clue points). Just pass a RooDataSet with (possibly weighted) entries for each clue
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Helper to make it easier. It will build a multi-variate Gaussian proposal function and has

some handy options for doing so. Here’s how to create exactly the same proposal function as

in the example above. Note that using RooFitResult::floatParsFinal() to set the RooArgList

of variables ensures the right order.

RooFitResult* fit = model ->fitTo (*data);

// Easy ProposalFunction construction with ProposalHelper
ProposalHelper ph;
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ph.SetCovMatrix(fit ->covarianceMatrix ());
ph.SetUpdateProposalParameters(kTRUE); // auto -create mean vars and add mappings
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ProposalHelper can also create a PdfProposal with a ”Bank of Clues” (cite paper) com-

ponent. This will add a PDF with a kernel placed at each ”clue” point to the proposal

density function. This will increase the frequency of proposals in the clue regions which can

be especially useful for helping the Metropolis-Hastings algorithm find small and/or distant

regions of interest (no free lunch, of course, you need to know these regions beforehand to

pick the clue points). Just pass a RooDataSet with (possibly weighted) entries for each clue
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point. You can also choose what fraction of the total proposal function integral comes from

the bank of clues PDF.

// assume bankOfClues is a RooDataSet with weighted "clues" as entries

RooArgSet vars(x,y);

ProposalHelper ph;
ph.SetVariables(vars);
ph.SetClues(bankOfClues); // use bankOfClues to make a clues PDF
ph.SetCluesFraction (0.15); // clues PDF accounts for 15% of PDF integral
ph.SetUpdateProposalParameters(kTRUE); // auto -create mean vars and add mappings
ph.SetCacheSize (100);
ProposalFunction* pf = ph.GetProposalFunction ();

Using the covariance matrix from a RooFitResult is not required. If you do not set the

covariance matrix, ProposalHelper constructs a pretty good default for you – a diagonal

matrix with sigmas set to some fraction of the range of each corresponding RooRealVar.

You can set this fraction yourself (the default is 1/6th).

To help Metropolis-Hastings find small and/or distant regions of interest that you do not

know beforehand, you can set ProposalHelper to add a fraction of uniform proposal density

to the proposal function. Use the ProposalHelper::SetUniformFraction() method to choose

what fraction the uniform PDF makes up of the entire proposal function integral.

UniformProposal is a specialized implementation of a ProposalFunction that proposes

points in a uniform distribution over the range of the variables. Its low overhead as compared

to a PdfProposal using a RooUniform PDF and guaranteed symmetry makes it much faster

at proposing in a purely uniform distribution. UniformProposal does not need a cacheing

mechanism.

6.6.3 MetropolisHastings

A MetropolisHastings object runs the Metropolis-Hastings algorithm to construct a Markov

chain posterior sampling of a function. At each step in the algorithm, a new point is proposed

(section 6.6.2) and possibly ”visited” based on its likelihood relative to the current point.

Even when the proposal density function is not symmetric, MetropolisHastings maintains

detailed balance when constructing the Markov chain by counterbalancing the relative like-

lihood between the two points with the relative proposal density. That is, given the current

point x, proposed point x�
, likelihood function L, and proposal density function Q, we visit

x�
iff

L(x�)
L(x)

Q(x|x�)
Q(x�|x)

≥ Rand[0, 1]

MetropolisHastings supports ordinary and log-scale functions. This is particularly useful for

handling either regular likelihood or ±log-likelihood functions. You must tell MetropolisHast-

ings the type and sign of function the you have supplied (if you supply a regular function,

make sure that it is never 0). Then set a ProposalFunction, parameters to propose for, and

a number of algorithm iterations. Call ConstructChain() to get the Markov chain.
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around the current point when proposing others or for advanced control over the widths of

peaks or anything else in the proposal function. It also has a cacheing mechanism (off by

default) which almost always significantly speeds up proposals.

Here’s a PdfProposal construction example that uses a covariance matrix from the

RooFitResult. Be careful that your RooArgLists have the same order of variables as the

covariance matrix uses:

// Assume we have x, y, and z as RooRealVar* parameters of our model

// Create clones to serve as mean variables
RooRealVar* mu_x = (RooRealVar *)x->clone("mu_x");
RooRealVar* mu_y = (RooRealVar *)y->clone("mu_y");
RooRealVar* mu_z = (RooRealVar *)z->clone("mu_z");

// Fit model to data to get a covariance matrix
// (you can also just construct your own custom covariance matrix)
TMatrixDSym covFit = model ->fitTo(*data)->covarianceMatrix ();

// Make a PDF to be our proposal density function
RooMultiVarGaussian mvg("mvg", "mvg", RooArgList (*x, *y, *z), // Careful!

RooArgList (*mu_x , *mu_y , *mu_z), covFit);
PdfProposal pf(mvg);

// Optional mappings to center the proposal function around the current point
pf.AddMapping (*mu_x , *x);
pf.AddMapping (*mu_y , *y);
pf.AddMapping (*mu_z , *z);

pf.SetCacheSize (100); // when we must generate proposal points , generate 100

Since PdfProposal functions are powerful but annoying to build, we created Proposal-

Helper to make it easier. It will build a multi-variate Gaussian proposal function and has

some handy options for doing so. Here’s how to create exactly the same proposal function as

in the example above. Note that using RooFitResult::floatParsFinal() to set the RooArgList

of variables ensures the right order.

RooFitResult* fit = model ->fitTo (*data);

// Easy ProposalFunction construction with ProposalHelper
ProposalHelper ph;
ph.SetVariables(fit ->floatParsFinal ());
ph.SetCovMatrix(fit ->covarianceMatrix ());
ph.SetUpdateProposalParameters(kTRUE); // auto -create mean vars and add mappings
ph.SetCacheSize (100);
ProposalFunction* pf = ph.GetProposalFunction ();

ProposalHelper can also create a PdfProposal with a ”Bank of Clues” (cite paper) com-

ponent. This will add a PDF with a kernel placed at each ”clue” point to the proposal

density function. This will increase the frequency of proposals in the clue regions which can

be especially useful for helping the Metropolis-Hastings algorithm find small and/or distant

regions of interest (no free lunch, of course, you need to know these regions beforehand to

pick the clue points). Just pass a RooDataSet with (possibly weighted) entries for each clue
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RooAbsReal* function = new RooGaussian("gauss", "gauss" x, mu , sigma);

RooArgSet vars(x);

// make our MetropolisHastings object

MetropolisHastings mh;

mh.SetFunction (* function); // function to sample

mh.SetType(MetropolisHastings :: kRegular);

mh.SetSign(MetropolisHastings :: kPositive);

mh.SetProposalFunction(proposalFunction);

mh.SetParameters(vars);

mh.SetNumIters (10000);

MarkovChain* chain = mh.ConstructChain ();

Here’s how to do a similar task using a negative log-likelihood function instead:

RooAbsReal* nll = pdf ->createNLL (*data);

RooArgSet* vars = nll ->getParameters (*data);

RemoveConstantParameters(vars); // to be safe

MetropolisHastings mh;

mh.SetFunction (*nll); // function to sample

mh.SetType(MetropolisHastings ::kLog);

mh.SetSign(MetropolisHastings :: kNegative);

mh.SetProposalFunction(proposalFunction);

mh.SetParameters (*vars);

mh.SetNumIters (10000);

MarkovChain* chain = mh.ConstructChain ();

6.6.4 MCMCInterval

MCMCInterval is a ConfInterval that determines the confidence interval on your parameters

from a MarkovChain (section 6.6.6) generated by Monte Carlo. To determine the confidence

interval, MCMCInterval integrates the posterior where it is the tallest until it finds the correct

cutoff height C to give the target confidence level P . That is, to find

�

f(x)≥C

f(x) dnx = P

MCMCInterval has a few methods for representing the posterior to do this integration. The

default is simply as a histogram, so this integral turns into a summation of bin heights.

If you have no more than 3 parameters and 100 bins, a standard histogram will be fine.

However, for higher dimensions or bin numbers, it is faster and less memory intensive to use

a sparse histogram data structure (aside: in a regular histogram, 4 variables with 100 bins

each requires ∼4GB of contiguous memory, a tall order). By default, the histogram method

adds bins to the interval until at least the desired confidence level has been reached (use

MCMCInterval::SetHistStrict() to change this).

Another posterior representation option is kernel-estimation (often termed ”keys”) using

a RooNDKeysPdf, which has more theoretical validity because it takes the arbitrariness out

of choosing a histogram binning. The kernel-estimation method usually takes longer than the
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point. You can also choose what fraction of the total proposal function integral comes from

the bank of clues PDF.

// assume bankOfClues is a RooDataSet with weighted "clues" as entries

RooArgSet vars(x,y);

ProposalHelper ph;
ph.SetVariables(vars);
ph.SetClues(bankOfClues); // use bankOfClues to make a clues PDF
ph.SetCluesFraction (0.15); // clues PDF accounts for 15% of PDF integral
ph.SetUpdateProposalParameters(kTRUE); // auto -create mean vars and add mappings
ph.SetCacheSize (100);
ProposalFunction* pf = ph.GetProposalFunction ();

Using the covariance matrix from a RooFitResult is not required. If you do not set the

covariance matrix, ProposalHelper constructs a pretty good default for you – a diagonal

matrix with sigmas set to some fraction of the range of each corresponding RooRealVar.

You can set this fraction yourself (the default is 1/6th).

To help Metropolis-Hastings find small and/or distant regions of interest that you do not

know beforehand, you can set ProposalHelper to add a fraction of uniform proposal density

to the proposal function. Use the ProposalHelper::SetUniformFraction() method to choose

what fraction the uniform PDF makes up of the entire proposal function integral.

UniformProposal is a specialized implementation of a ProposalFunction that proposes

points in a uniform distribution over the range of the variables. Its low overhead as compared

to a PdfProposal using a RooUniform PDF and guaranteed symmetry makes it much faster

at proposing in a purely uniform distribution. UniformProposal does not need a cacheing

mechanism.

6.6.3 MetropolisHastings

A MetropolisHastings object runs the Metropolis-Hastings algorithm to construct a Markov

chain posterior sampling of a function. At each step in the algorithm, a new point is proposed

(section 6.6.2) and possibly ”visited” based on its likelihood relative to the current point.

Even when the proposal density function is not symmetric, MetropolisHastings maintains

detailed balance when constructing the Markov chain by counterbalancing the relative like-

lihood between the two points with the relative proposal density. That is, given the current

point x, proposed point x�
, likelihood function L, and proposal density function Q, we visit

x�
iff

L(x�)
L(x)

Q(x|x�)
Q(x�|x)

≥ Rand[0, 1]

MetropolisHastings supports ordinary and log-scale functions. This is particularly useful for

handling either regular likelihood or ±log-likelihood functions. You must tell MetropolisHast-

ings the type and sign of function the you have supplied (if you supply a regular function,

make sure that it is never 0). Then set a ProposalFunction, parameters to propose for, and

a number of algorithm iterations. Call ConstructChain() to get the Markov chain.
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point. You can also choose what fraction of the total proposal function integral comes from

the bank of clues PDF.

// assume bankOfClues is a RooDataSet with weighted "clues" as entries

RooArgSet vars(x,y);

ProposalHelper ph;
ph.SetVariables(vars);
ph.SetClues(bankOfClues); // use bankOfClues to make a clues PDF
ph.SetCluesFraction (0.15); // clues PDF accounts for 15% of PDF integral
ph.SetUpdateProposalParameters(kTRUE); // auto -create mean vars and add mappings
ph.SetCacheSize (100);
ProposalFunction* pf = ph.GetProposalFunction ();

Using the covariance matrix from a RooFitResult is not required. If you do not set the

covariance matrix, ProposalHelper constructs a pretty good default for you – a diagonal

matrix with sigmas set to some fraction of the range of each corresponding RooRealVar.

You can set this fraction yourself (the default is 1/6th).

To help Metropolis-Hastings find small and/or distant regions of interest that you do not

know beforehand, you can set ProposalHelper to add a fraction of uniform proposal density

to the proposal function. Use the ProposalHelper::SetUniformFraction() method to choose

what fraction the uniform PDF makes up of the entire proposal function integral.

UniformProposal is a specialized implementation of a ProposalFunction that proposes

points in a uniform distribution over the range of the variables. Its low overhead as compared

to a PdfProposal using a RooUniform PDF and guaranteed symmetry makes it much faster

at proposing in a purely uniform distribution. UniformProposal does not need a cacheing

mechanism.

6.6.3 MetropolisHastings

A MetropolisHastings object runs the Metropolis-Hastings algorithm to construct a Markov

chain posterior sampling of a function. At each step in the algorithm, a new point is proposed

(section 6.6.2) and possibly ”visited” based on its likelihood relative to the current point.

Even when the proposal density function is not symmetric, MetropolisHastings maintains

detailed balance when constructing the Markov chain by counterbalancing the relative like-

lihood between the two points with the relative proposal density. That is, given the current

point x, proposed point x�
, likelihood function L, and proposal density function Q, we visit

x�
iff

L(x�)
L(x)

Q(x|x�)
Q(x�|x)

≥ Rand[0, 1]

MetropolisHastings supports ordinary and log-scale functions. This is particularly useful for

handling either regular likelihood or ±log-likelihood functions. You must tell MetropolisHast-

ings the type and sign of function the you have supplied (if you supply a regular function,

make sure that it is never 0). Then set a ProposalFunction, parameters to propose for, and

a number of algorithm iterations. Call ConstructChain() to get the Markov chain.
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RooAbsReal* function = new RooGaussian("gauss", "gauss" x, mu , sigma);

RooArgSet vars(x);

// make our MetropolisHastings object

MetropolisHastings mh;

mh.SetFunction (* function); // function to sample

mh.SetType(MetropolisHastings :: kRegular);

mh.SetSign(MetropolisHastings :: kPositive);

mh.SetProposalFunction(proposalFunction);

mh.SetParameters(vars);

mh.SetNumIters (10000);

MarkovChain* chain = mh.ConstructChain ();

Here’s how to do a similar task using a negative log-likelihood function instead:

RooAbsReal* nll = pdf ->createNLL (*data);

RooArgSet* vars = nll ->getParameters (*data);

RemoveConstantParameters(vars); // to be safe

MetropolisHastings mh;

mh.SetFunction (*nll); // function to sample

mh.SetType(MetropolisHastings ::kLog);

mh.SetSign(MetropolisHastings :: kNegative);

mh.SetProposalFunction(proposalFunction);

mh.SetParameters (*vars);

mh.SetNumIters (10000);

MarkovChain* chain = mh.ConstructChain ();

6.6.4 MCMCInterval

MCMCInterval is a ConfInterval that determines the confidence interval on your parameters

from a MarkovChain (section 6.6.6) generated by Monte Carlo. To determine the confidence

interval, MCMCInterval integrates the posterior where it is the tallest until it finds the correct

cutoff height C to give the target confidence level P . That is, to find

�

f(x)≥C

f(x) dnx = P

MCMCInterval has a few methods for representing the posterior to do this integration. The

default is simply as a histogram, so this integral turns into a summation of bin heights.

If you have no more than 3 parameters and 100 bins, a standard histogram will be fine.

However, for higher dimensions or bin numbers, it is faster and less memory intensive to use

a sparse histogram data structure (aside: in a regular histogram, 4 variables with 100 bins

each requires ∼4GB of contiguous memory, a tall order). By default, the histogram method

adds bins to the interval until at least the desired confidence level has been reached (use

MCMCInterval::SetHistStrict() to change this).

Another posterior representation option is kernel-estimation (often termed ”keys”) using

a RooNDKeysPdf, which has more theoretical validity because it takes the arbitrariness out

of choosing a histogram binning. The kernel-estimation method usually takes longer than the

25

histogram method because it typically requires several integrations to find the right cutoff
such that |Pcalculated − Ptarget| < � (� = 0.01 by default).

To try to remove the arbitrariness of the starting point in the Markov chain, which was

rather random when it was generated by MetropolisHastings, a certain number of ”burn-in”

steps can be ignored from the beginning of the chain. Generally it is a good idea to use burn-

in, but the number of steps to discard depends on the function you are sampling and your

proposal function, so it is off by default. Usually you will tell the MCMCCalculator (section

6.6.1) the number of burn-in steps to use by calling MCMCCalculator::SetNumBurnInSteps(),

since it configures the MCMCInterval. For future versions, automatic burn-in step calcula-

tions are being considered.

6.6.5 MCMCIntervalPlot

The MCMCIntervalPlot class helps you to visualize the interval and Markov chain. The

function MCMCIntervalPlot::Draw() will draw the interval as determined by the type of

posterior representation the MCMCInterval was configured for (i.e. histogram or keys PDF).

To specifically ask for a certain interval determination to be drawn, use DrawHistInterval()

or DrawKeysPdfInterval().

MCMCInterval* interval = (MCMCInterval *) mcmcCalc.GetInterval (); // must cast

MCMCIntervalPlot mcPlot (* interval);

// Draw posterior

TCanvas* c = new TCanvas("c");

mcPlot.SetLineColor(kOrange); // optional

mcPlot.SetLineWidth (2); // optional

mcPlot.Draw();

6.6.6 MarkovChain

A MarkovChain stores a series of weighted steps through N-dimensional space in which each

step depended only on the one before it. Each step in the chain also has a −log(likelihood)
value associated with it. The class supplies some simple methods to access each step in the

chain in order:

MCMCInterval* interval = (MCMCInterval *) mcmcCalc.GetInterval (); // must cast

const MarkovChain* chain = interval ->GetChain ();

// Print the contents of the chain

for (Int_t i = 0; i < chain ->Size(); i++) {

cout << "Entry # " << i << endl;

const RooArgSet* entry = chain ->Get(i);

entry ->Print("v");

cout << "weight = " << chain ->Weight () << endl; // weight of current entry

cout << "NLL = " << chain ->NLL() << endl; // NLL value of current entry

}
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histogram method because it typically requires several integrations to find the right cutoff
such that |Pcalculated − Ptarget| < � (� = 0.01 by default).

To try to remove the arbitrariness of the starting point in the Markov chain, which was

rather random when it was generated by MetropolisHastings, a certain number of ”burn-in”

steps can be ignored from the beginning of the chain. Generally it is a good idea to use burn-

in, but the number of steps to discard depends on the function you are sampling and your

proposal function, so it is off by default. Usually you will tell the MCMCCalculator (section

6.6.1) the number of burn-in steps to use by calling MCMCCalculator::SetNumBurnInSteps(),

since it configures the MCMCInterval. For future versions, automatic burn-in step calcula-

tions are being considered.

6.6.5 MCMCIntervalPlot

The MCMCIntervalPlot class helps you to visualize the interval and Markov chain. The

function MCMCIntervalPlot::Draw() will draw the interval as determined by the type of

posterior representation the MCMCInterval was configured for (i.e. histogram or keys PDF).

To specifically ask for a certain interval determination to be drawn, use DrawHistInterval()

or DrawKeysPdfInterval().

MCMCInterval* interval = (MCMCInterval *) mcmcCalc.GetInterval (); // must cast

MCMCIntervalPlot mcPlot (* interval);

// Draw posterior

TCanvas* c = new TCanvas("c");

mcPlot.SetLineColor(kOrange); // optional

mcPlot.SetLineWidth (2); // optional

mcPlot.Draw();

6.6.6 MarkovChain

A MarkovChain stores a series of weighted steps through N-dimensional space in which each

step depended only on the one before it. Each step in the chain also has a −log(likelihood)
value associated with it. The class supplies some simple methods to access each step in the

chain in order:

MCMCInterval* interval = (MCMCInterval *) mcmcCalc.GetInterval (); // must cast

const MarkovChain* chain = interval ->GetChain ();

// Print the contents of the chain

for (Int_t i = 0; i < chain ->Size(); i++) {

cout << "Entry # " << i << endl;

const RooArgSet* entry = chain ->Get(i);

entry ->Print("v");

cout << "weight = " << chain ->Weight () << endl; // weight of current entry

cout << "NLL = " << chain ->NLL() << endl; // NLL value of current entry

}
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histogram method because it typically requires several integrations to find the right cutoff
such that |Pcalculated − Ptarget| < � (� = 0.01 by default).

To try to remove the arbitrariness of the starting point in the Markov chain, which was

rather random when it was generated by MetropolisHastings, a certain number of ”burn-in”

steps can be ignored from the beginning of the chain. Generally it is a good idea to use burn-

in, but the number of steps to discard depends on the function you are sampling and your

proposal function, so it is off by default. Usually you will tell the MCMCCalculator (section

6.6.1) the number of burn-in steps to use by calling MCMCCalculator::SetNumBurnInSteps(),

since it configures the MCMCInterval. For future versions, automatic burn-in step calcula-

tions are being considered.

6.6.5 MCMCIntervalPlot

The MCMCIntervalPlot class helps you to visualize the interval and Markov chain. The

function MCMCIntervalPlot::Draw() will draw the interval as determined by the type of

posterior representation the MCMCInterval was configured for (i.e. histogram or keys PDF).

To specifically ask for a certain interval determination to be drawn, use DrawHistInterval()

or DrawKeysPdfInterval().

MCMCInterval* interval = (MCMCInterval *) mcmcCalc.GetInterval (); // must cast

MCMCIntervalPlot mcPlot (* interval);

// Draw posterior

TCanvas* c = new TCanvas("c");

mcPlot.SetLineColor(kOrange); // optional

mcPlot.SetLineWidth (2); // optional

mcPlot.Draw();

6.6.6 MarkovChain

A MarkovChain stores a series of weighted steps through N-dimensional space in which each

step depended only on the one before it. Each step in the chain also has a −log(likelihood)
value associated with it. The class supplies some simple methods to access each step in the

chain in order:

MCMCInterval* interval = (MCMCInterval *) mcmcCalc.GetInterval (); // must cast

const MarkovChain* chain = interval ->GetChain ();

// Print the contents of the chain

for (Int_t i = 0; i < chain ->Size(); i++) {

cout << "Entry # " << i << endl;

const RooArgSet* entry = chain ->Get(i);

entry ->Print("v");

cout << "weight = " << chain ->Weight () << endl; // weight of current entry

cout << "NLL = " << chain ->NLL() << endl; // NLL value of current entry

}
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Relationship to BAT
We have a good relationship with developers of BAT which also implements 
the Metropolis-Hastings algorithm

Gregory Schott has developed an adaptor so that BAT can use a RooFit/RooStats 
model and data stored in a RooWorkspace.

‣ This is useful for cross-checks of the RooStats MCMC 
‣ Also developing interface so that BAT is implementation of a second MCMC tool

Given BAT, why have MCMC in RooStats at all?
‣ Primary goal of RooStats is to have Bayesian, Frequentist, and Likelihood-based 

statistical formalism working with a common interface.  
● ie. we need an MCMC algorithm that inherits from IntervalCalculator and 

returns a ConfidenceInterval.
‣ Also, we found several places that we can make optimizations or utilize other 

functionality within RooStats to improve our MCMC implementation
‣ Finally, good training and nice to have cross-checks
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http://www.mppmu.mpg.de/bat/

http://www.mppmu.mpg.de/bat/
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More about the Hybrid Calculator
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Hybrid Methods: “Cousins-Highland” 
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That’s why we call it the HybridCalculator, because of Bayesian ingredient
‣ More consistent to think of L(M|b) as part of the model and L(b) as a prior
‣ This Hybrid approach to nuisance parameters has been used in a 

NeymanConstruction before, but it is NOT the Feldman-Cousins technique
‣ See papers by G. Hill, Conrad et. al, Tegenfeldt & Conrad (they call it FHC2)

[12] R. D. Cousins, V. L. Highland, “Incorporating systematic uncertainties into an upper
limit,” Nucl. Instrum. Meth. A320, 331-335 (1992).

[13] K. S. Cranmer, B. Mellado, W. Quayle et al., “Challenges in moving the LEP Higgs
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Goal of Bayesian-frequentist hybrid solutions is to provide a frequentist 
treatment of the main measurement, while eliminating nuisance 
parameters (deal with systematics) with an intuitive Bayesian technique.

Principled version (eg. ZΓ):
‣ clearly state prior        ; identify control samples (sidebands) and use:

Ad-hoc version (eg. ZN):
‣ unable or unwilling to justify       , so go straight to some distribution 

● eg. a Gaussian, truncated Gaussian, log normal, Gamma, etc...
● often the case for real systematic uncertainty (eg. MC generators, different 

background estimation techniques, etc.)

Recommendation: Avoid ad hoc priors if possible.

If we were actually in a case described by the ‘on/off’ problem, then it would be better to
think of π(b) as the posterior resulting from the sideband measurement

π(b) = P (b|noff) =
P (noff |b)η(b)�
dbP (noff |b)η(b)

. (3)

By doing this it is clear that the term P (noff |b) is an objective probability density that can
be used in a frequentist context and that η(b) is the original Bayesian prior assigned to b.

Recommendation: Where possible, one should express uncertainty on a parameter as
statistical (eg. random) process (ie. Pois(noff |τb) in Eq. 1).

Recommendation: When using Bayesian techniques, one should explicitly express and
separate the prior from the objective part of the probability density function (as in Eq. 3).

Now let us consider some specific methods for addressing the on/off problem and their
generalizations.

2 The frequentist solution: ZBi

The goal for a frequentist solution to this problem is based on the notion of coverage (or
Type I error). One considers there to be some unknown true values for the parameters s, b
and attempts to construct a statistical test that will not incorrectly reject the true values
above some specified rate α.

A frequentist solution to the on/off problem, referred to as ZBi in Refs. [1, 2], is based on
re-writing Eq. 1 into a different form and using the standard frequentist binomial parameter
test, which dates back to the first construction of confidence intervals for a binomial parameter
by Clopper and Pearson in 1934 [3]. This does not lead to an obvious generalization for more
complex problems.

The general solution to this problem, which provides coverage “by construction” is the
Neyman Construction. However, the Neyman Construction is not uniquely determined; one
must also specify:

• the test statistic T (non, noff ; s, b), which depends on data and parameters

• a well-defined ensemble that defines the sampling distribution of T

• the limits of integration for the sampling distribution of T

• parameter points to scan (including the values of any nuisance parameters)

• how the final confidence intervals in the parameter of interest are established

The Feldman-Cousins technique is a well-specified Neyman Construction when there are
no nuisance parameters [6]: the test statistic is the likelihood ratio T (non; s) = L(s)/L(sbest),
the limits of integration are one-sided, there is no special conditioning done to the ensemble,
and there are no nuisance parameters to complicate the scanning of the parameter points or
the construction of the final intervals.

The original Feldman-Cousins paper did not specify a technique for dealing with nuisance
parameters, but several generalization have been proposed. The bulk of the variations come
from the choice of the test statistic to use.

2

ATLAS Statistics Forum

DRAFT
7 May, 2010

Comments and Recommendations for Statistical Techniques

We review a collection of statistical tests used for a prototype problem, characterize their

generalizations, and provide comments on these generalizations. Where possible, concrete

recommendations are made to aid in future comparisons and combinations with ATLAS and

CMS results.

1 Preliminaries

A simple ‘prototype problem’ has been considered as useful simplification of a common HEP

situation and its coverage properties have been studied in Ref. [1] and generalized by Ref. [2].

The problem consists of a number counting analysis, where one observes non events and

expects s + b events, b is uncertain, and one either wishes to perform a significance test

against the null hypothesis s = 0 or create a confidence interval on s. Here s is considered the

parameter of interest and b is referred to as a nuisance parameter (and should be generalized

accordingly in what follows). In the setup, the background rate b is uncertain, but can

be constrained by an auxiliary or sideband measurement where one expects τb events and

measures noff events. This simple situation (often referred to as the ‘on/off’ problem) can be

expressed by the following probability density function:

P (non, noff |s, b) = Pois(non|s + b) Pois(noff |τb). (1)

Note that in this situation the sideband measurement is also modeled as a Poisson process

and the expected number of counts due to background events can be related to the main

measurement by a perfectly known ratio τ . In many cases a more accurate relation between

the sideband measurement noff and the unknown background rate b may be a Gaussian with

either an absolute or relative uncertainty ∆b. These cases were also considered in Refs. [1, 2]

and are referred to as the ‘Gaussian mean problem’.

While the prototype problem is a simplification, it has been an instructive example. The

first, and perhaps, most important lesson is that the uncertainty on the background rate b
has been cast as a well-defined statistical uncertainty instead of a vaguely-defined systematic

uncertainty. To make this point more clearly, consider that it is common practice in HEP to

describe the problem as

P (non|s) =

�
db Pois(non|s + b)π(b), (2)

where π(b) is a distribution (usually Gaussian) for the uncertain parameter b, which is

then marginalized (ie. ‘smeared’, ‘randomized’, or ‘integrated out’ when creating pseudo-

experiments). But what is the nature of π(b)? The important fact which often evades serious

consideration is that π(b) is a Bayesian prior, which may or may-not be well-justified. It

often is justified by some previous measurements either based on Monte Carlo, sidebands, or

control samples. However, even in those cases one does not escape an underlying Bayesian

prior for b. The point here is not about the use of Bayesian inference, but about the clear ac-

counting of our knowledge and facilitating the ability to perform alternative statistical tests.

1

Hybrid Solutions

100

η(b)

π(b)

Common violations of the regularity conditions are:

• the value of a parameter under the null is on the border of a disallowed region (eg.
s > 0). Modifications to the chi-square distribution are now largely understood [7].

• the model has degenerate parameters under the null (eg. the mass of a hypothesized
particle is meaningless when s = 0.) This gives rise to the look-elsewhere effect (see
Ref. [11])

Recommendation: Present a result based on the profile likelihood ratio: it is often the
easiest method and the community is familiar with it.

Recommendation: The profile likelihood function should be presented for problems with
one parameter of interest. Contours of the profile likelihood function should be presented for
problems with two parameters of interest.

Note: It is not possible to perform a frequentist test with guaranteed coverage properties
(ie. Neyman Construction) based on the likelihood function alone, as that requires specifying
the probability density function for the observables for every point in the parameters.

3 The hybrid solutions

The goal of the Bayesian-frequentist hybrid approaches is to provide a frequentist treatment
for the main measurement, while eliminating nuisance parameters with an intuitive Bayesian
technique. As such one typically only specifies a prior for the nuisance parameters. This
often leads to an equation like Eq. 2, where the Bayesian prior on b is explicit. In hybrid
methods one uses the resulting model P (non|s) to calculate p-values,

p =
∞�

n∈nobs

P (n|s). (5)

One can interpret the resulting p-value as a Bayesian average of the frequentist p-values for
known values of the nuisance parameters, or as a p-value from a Bayesian-averaged model.

This approach has been used by the LEP Higgs and Tevatron Higgs working groups,
largely because alternative methods have only been developed recently. It is known that these
methods do not necessarily cover, and that ad-hoc solutions may over-state the significance
(undercover) significantly [1, 2].

3.1 The principled hybrid solution: ZΓ

In a principled version of the hybrid approach, one would attempt to identify a control
sample or sideband measurement that can help constrain the uncertain nuisance parameter
(as in Eq. 1), clearly specify a prior for it (eg. η(b) in Eq. 3), and then calculate the hybrid
p-value [12, 13].

In the on/off problem one might choose η(b) to be a flat prior, resulting in a Γ-prior for
π(b) in Eq. 2, and finally in the expression ZΓ for the significance. In this specific case there
is a coincidence that it coincides with the frequentist result (ie. ZΓ = ZBi), but that should
not be taken too seriously as the result does not generalize to more complicated situations.

3
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Refactoring the HybridCalculator
The HybridCalculator is undergoing a major redesign to use the 
same TestStatistic/TestStatSampler/SamplingDistribution design 
as the NeymanConstruction tools.
‣ target: end of summer 2010
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A Little about Combinations
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Basic formalism: one dataset
Start with a model for the data, eg. a probability density function 
for   written                that is parametrized by
‣ parameters of interest:
‣ nuisance parameters:

The likelihood function is given by

I will often refer to the profile likelihood ratio:

Where    is the maximum likelihood estimator with    fixed

103

P (x|µ, ν)
µ : mH , σ, ...

ν : b, JES, �b, ...

λ(µ) =
L(µ, ˆ̂ν)
L(µ̂, ν̂)

x

L(µ, ν) =
�

i∈events

P (xi|µ, ν)

ˆ̂ν µ

L(µ, ν)
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Basic formalism: one dataset
Start with a model for the data, eg. a probability density function 
for   written                that is parametrized by
‣ parameters of interest:
‣ nuisance parameters:

The likelihood function is given by

I will often refer to the profile likelihood ratio:

Where    is the maximum likelihood estimator with    fixed

Remember,             is not a probability.

103

P (x|µ, ν)
µ : mH , σ, ...

ν : b, JES, �b, ...

x

L(µ, ν) =
�

i∈events

P (xi|µ, ν)

ˆ̂ν µ

L(µ, ν)
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With two datasets, the observables may be different and one 
needs a model for each dataset.  
‣ models may have different nuisance parameters, but should 

share parameters of interst, eg. 

The likelihood function is given by

In RooFit/RooStats, this type of situation is represented by:
‣ a “combined dataset” for data1, data2 with a “category label” 
‣ a “simultaneous PDF” 

● keeps track of P1, P2 
● and associated category

Basic formalism: two datasets

104

P2(y|µ, α)P1(x|µ, ν)

L(µ, ν,α) =
�

i∈data1

P1(xi|µ, ν) ·
�

i∈data2

P2(yi|µ, α)

x y category
2.7 - 1
1.3 - 1
- 5.1 2
- 7.2 2

x
2.7
1.3

y
5.1
7.2

+ =
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Providing ingredients via the workspace
To perform the combination, we need these basic ingredients:

‣ we need the full model (eg. the simultaneous PDF) for each channel
‣ we need the combined dataset for each channel
‣ we need to know what the names of the parameters of interest are and what they 

correspond to for each channel
‣ we do NOT need to know and we don’t want to worry about:

● structure and complexity of PDF
● structure of the combined dataset
● anything about the nuisance parameters (unless we want to introduce 

correlations between them in the combination)

This can be achieved for an arbitrary model and dataset with these 5 lines:

105

‣ technically we need any custom code, but we don’t want to deal with it

This is exactly what is needed from each channel to perform combination
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One channel with control samples
An example search channel that already is a simultaneous pdf over a signal 
region, a Z+jets control sample, and a ttbar & W+jets control region 
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RooSimultaneous

simPdf

RooSuperCategory

fitCat

RooCategory

type

RooProdPdf

constrainedSum_{sig}

RooAddPdf

sum_{sig}

RooAddPdf

sigModel

AsymGauss

asymGauss1

RooAddition

mean

RooRealVar

offset

RooRealVar

mH

RooRealVar

sigma1

RooAddition

mllEdge

RooProduct

mlltemp

RooRealVar

mllEdgeSlope

RooRealVar

mllEdgeOffset

RooRealVar

mllWidth

RooRealVar

mTauTau

RooRealVar

fgauss1

AsymGauss

asymGauss2

RooProduct

sigma2

RooRealVar

rSigma12

RooRealVar

fgauss2

AsymGauss

asymGauss3

RooProduct

sigma3

RooRealVar

rSigma13

RooProduct

fsig_{sig}

RooRealVar

mu

RooRealVar

rho

RooRealVar

fsigExpected

RooRealVar

ratioSigEff_sig

RooAddPdf

sumBkg_{sig}

QCDShape

ttbarPoly

RooRealVar

a1

RooRealVar

a2

RooRealVar

a3

RooAddPdf

zjjAsymGauss

AsymGauss

asymGauss1_z

RooAddition

mean_z

RooRealVar

mZ

RooRealVar

sigma1_z

RooAddition

mllEdge_z

RooProduct

mlltemp_z

RooRealVar

mllWidth_z

AsymGauss

asymGauss2_z

RooProduct

sigma2_z

AsymGauss

asymGauss3_z

RooProduct

sigma3_z

RooRealVar

fqcd_sig

RooGaussian

nTrkConstraint_{sig}

RooRealVar

qcdFracNtrkConstraint

RooRealVar

nTrkSigma

RooProdPdf

constrainedSum_{zjj}

RooAddPdf

sum_{zjj}

RooProduct

fsig_{zjj}

RooRealVar

ratioSigEff_zjj

RooAddPdf

sumBkg_{zjj}

RooRealVar

fqcd_zjj

RooGaussian

nTrkConstraint_{zjj}

RooProdPdf

constrainedSum_{qcd}

RooAddPdf

sum_{qcd}

RooProduct

fsig_{qcd}

RooRealVar

ratioSigEff_qcd

RooAddPdf

sumBkg_{qcd}

RooRealVar

fqcd_qcd

RooGaussian

nTrkConstraint_{qcd}

Table 12: Expected signal significance for several masses based on number counting in a mass

window with 30 fb−1 of data. Results are shown neglecting uncertainty in the background rate

and incorporating it with two methods (see text). These results do not include the impact of

pileup, which is discussed in Section 4.7.

ll-channel lh-channel combined

mH Counting Fitted Yield Counting Fitted Yield Counting Fitted Yield

105 2.20 2.43 2.85 3.46 3.80 4.17

110 2.46 2.88 3.45 4.19 4.46 5.06

115 2.86 3.26 4.18 4.96 5.32 5.96

120 2.80 3.17 4.23 4.73 5.36 5.72

125 2.67 2.96 3.97 4.32 5.08 5.28

130 2.42 2.73 3.54 3.88 4.62 4.77

135 2.17 2.37 3.38 3.60 4.35 4.25

140 1.74 2.00 2.66 2.83 3.55 3.35

4.5 Incorporating control samples and shape uncertainty658

By fitting the m!! spectrum to a model that accurately describes the signal and various backgrounds659

it is possible to directly incorporate uncertainty in the background shape and take advantage of the660

shape of the signal within the mass window. In order to constrain the background rate and shape, we661

simultaneously fit the signal candidates and the background control samples outlined in Section 3. The fit662

is performed twice, once letting the signal parameters float (the maximum likelihood estimates denoted663

with a single ˆ ) and once constraining the signal normalization to be zero (the conditional maximum664

likelihood estimates denoted with a double ˆ̂ ). The ratio of these likelihoods is referred to as the profile665

likelihood ratio, " ,666

" (µ = 0) =
L(data|µ, ˆ̂b(µ), ˆ̂#(µ))

L(data|µ̂, b̂, #̂)
, (13)

where µ represents the signal strength in units of the Standard Model expectation and # represents the667

nuisance parameters needed to describe the shape. If the Higgs boson mass is specified, the distribution of668

−2log" ratio asymptotically approaches a $2 distribution with the number of degrees of freedom given669

by the number of parameters of interest4). The motivation for µ is that it enforces the relationship of670

the Standard Model branching ratios when combining the individual channels, maintaining the property671

that the distribution of −2log" is $2 with one degree of freedom. This improves the power compared672

to a method which lets the signal in each channel vary independently. If the Higgs boson mass is not673

fixed, then one must take into account the “look-elsewhere” effect, which is discussed in more detail in674

Section 6.675

The likelihood function used in the simultaneous fit is simply a product of the likelihoods from the676

individual measurements:677

L(data|µ,mH ,#) = Ltrack(track multiplicity|rQCD) (14)

× LZ(Z+ jets control|mZ,%Z)

× LQCD(QCD control|a1,a2,a3)
× Ls+b(signal candidates|µ,mH ,%H ,mZ,%Z,rQCD,a1,a2,a3),

4)When constraining µ ≥ 0, the distribution for the background-only hypothesis is modified such that −2log" (µ = 0) ∼
1/2& (0)+1/2$21 , and this is taken into account in computing the p-value.

26
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The actual combination code

107

These are the ~50 lines it took to perform combination of two complicated channels.  
‣ This is being abstracted into a RooStats combination utility



Kyle Cranmer (NYU)

Center for 
Cosmology and 
Particle Physics

SoS, Autrans, May 19 & 20, 2010

Resulting combined model
The resulting combined model combines 2 signal regions, 4 control 
regions, and 1 external measurement (track multiplicity of hadronic tau) 
that constrains QCD fraction in the lepton-hadron channel
‣ Since nuisance parameters are extracted from independent 

measurements, no additional terms were added to correlate the 
nuisance parameters between channels (14 nuisance in total)

‣ only shared parameters are mH and 
● all the complexity of the model is hidden to combination code

108

RooSimultaneous

combModel

RooProdPdf

constrainedSum_{sig}_lh_combModel

RooAddPdf

sum_{sig}_lh_combModel

RooAddPdf

sigModel_lh_combModel

AsymGauss

asymGauss1_lh_combModel

RooAddition

mean_lh_combModel

RooRealVar

offset_lh

RooRealVar

mH

RooAddition

mllEdge_lh_combModel

RooProduct

mlltemp_lh_combModel

RooRealVar

mllEdgeSlope_lh

RooRealVar

mllEdgeOffset_lh

RooRealVar

sigma1_lh

RooRealVar

mllWidth_lh

RooRealVar

mTauTau

AsymGauss

asymGauss2_lh_combModel

RooProduct

sigma2_lh

RooRealVar

rSigma12_lh

AsymGauss

asymGauss3_lh_combModel
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Adding Higgs to ZZ to 4 leptons to Combination
Extend previous example with H->4leptons
‣ working gorup quickly provided workspaces
‣ workspace included custom code for ZZ and Zbb background shapes
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RooAddPdf

dataAll

RooGaussian

signal

RooRealVar

mZZ

RooRealVar

sig0

RooRealVar

sig1

RooProduct

fsig

RooRealVar

fsigExpected

RooRealVar

mu

RooRealVar

ratioSigEff

RooRealVar

rho

RooAddPdf

bgAll

RooZZBg

zzBg

RooRealVar

zz0

RooRealVar

zz1

RooRealVar

zz2

RooRealVar

zz3

RooRealVar

zz4

RooRealVar

zz5

RooRealVar

zz6

RooRealVar

zz7

RooRealVar

zz8

RooRealVar

zz9

RooRealVar

fZZtobb

RooZbbBg

zbbBg

RooRealVar

zbb0

RooRealVar

zbb1

RooRealVar

zbb2

RooRealVar

zbb3

RooRealVar

zbb4

RooRealVar

zbb5
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Combining the inputs
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RooSimultaneous

combModel

RooAddPdf

sum_hinclusive_gg_combModel

RooAddPdf

pdf_mgg_signal_gg_combModel
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RooRealVar

mHiggs_gg

RooRealVar

mRes_gg

RooRealVar

tailAlpha_gg

RooRealVar

tailN_gg

RooRealVar

invmass

RooGaussian

tailPdf_gg_combModel

RooRealVar

mTail_gg

RooRealVar

sigTail_gg

RooRealVar

mggRelNorm_gg

RooExponential

bkg_hinclusive_gg_combModel

RooRealVar

c_hinclusive_gg

RooRealVar

nbkg_hinclusive_gg

RooFormulaVar
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RooRealVar

nsig_hinclusive_gg

RooRealVar
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RooProdPdf

constrainedSum_{sig}_lh_combModel

RooAddPdf

sum_{sig}_lh_combModel

RooAddPdf

sigModel_lh_combModel

AsymGauss

asymGauss1_lh_combModel

RooAddition

mean_lh_combModel

RooRealVar
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RooRealVar
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RooAddition
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RooRealVar
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RooRealVar

mllEdgeOffset_lh

RooRealVar
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RooRealVar
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RooAddPdf

sum_{qcd}_ll_combModel

RooProduct
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RooRealVar
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RooAddPdf
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RooGaussian
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RooRealVar

zz6_zz
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RooCategory

channel

RooSuperCategory

combModel_split_index

RooCategory

type

Using the same code as previous slide, with a few extra lines for the new 
channels, we arrive at the combined dataset & model
‣ here the only common parameter is mu, the master signal strength

● could easily make Higgs mass be the same for all three channels
‣ the combined model has 27 nuisance parameters
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Combining the inputs
Here with one workspace we can see the combination of 4 Higgs 
channels, together with their control samples, and plot of likelihood ratio

Color code:

Results:
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HistFactory
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Many analyses are based on template histograms (ROOT TH1)
‣ provide a tool that allows one to use RooStats statistical tools 

without knowing RooFit’s data modeling language
In this approach, user provides other templates corresponding to 
variations of individual systematics
‣ this is done for each source of systematic and for each signal 

and background individually
‣ It is straightforward to provide a combined model for several 

channels and to identify the same systematic in each channel
The user specifies all of these systematics via an XML file and a 
compiled command line executable parses the XML file to 
produce the combined model
‣ by default, it also runs a profile likelihood analysis on the 

parameters of interest 
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Goal of HistFactory
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The basic template
For each sig & bkg estimate, the expected number of events is modeled as

‣ For data-driven estimates, L=L0, the nominal luminosity
‣ For theory-driven estimates L is an nuisance parameter (constrained)
‣ f is an overall scaling factor that is left unconstrained

● these are typically things we measure, like µ=σ/σSM

● can also be a ratio of cross-sections r=σtt/σZ or r=σµµ/σeµ

‣ ε(α) is an efficiency or acceptance term assembled from the individual 
systematics, and there is an α for each source of systematic 

‣ σ(x;α) is a histogram for the variable x (in units of cross-section) that 
interpolates between different variational histograms

By using the same name for the systematic source or scale factor, one 
can assemble complex combined models that are very general
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Nexp = Lf �(α)σ(x;α)
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Example xml files
A 1-channel example, where signal histogram normalization multiplied by “SigXsecOverSM”, 
which is considered the parameter of interest.  

‣ Nuisance parameters αj: “Lumi”, “syst1” (sig only), “syst2” (bkg1 only), “syst3” (bkg2 only)
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Nexp = Lf �(α)σ(x;α)
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Command line: hist2workspace
ROOT now has a new executable in $ROOTSYS/bin called hist2workspace 

‣ command line:  hist2workspace myAnalysis.xml
‣ Can drive parameter settings, constraints, etc. via XML
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interpolating in 

direction of first type of 

histogram variation

interpolating in direction 

of second type of 

histogram variation

Given nominal histograms and +/- variations for each source of 
systematic     produce a family of predictions parametrized by     
with linear interpolation:

Now expectation is:

Then, constrain     with Normal 

Generalization for multiple bins and multiple channels: 

Parametrized templates (eg. systematics)
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introducing the nominal Ñ
exp
k , viz.498
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exp
k = L !k"

j

#̃ jk
# jk

#̃ jk
= Ñ

exp
k "

j

# jk

#̃ jk
. (11)

In that form, the likelihood function would be written499

L(!sig,L ,# jk) = Pois(Nobs|Nexp
tot )×Gaus(L̃ |L ,!L ) ×"

j

Gaus(#̃ jk|# jk,$ jk) , (12)

where $ jk represents the uncertainty on these efficiency terms.500

In practice, Eq. 12 is not useful because it does not incorporate correlations among the different501

sources of systematics and their correlated impact among different signal and background contributions.502

This is achieved in two steps. First, we group the sources of systematics, % , such that the corresponding503

variations in # are expected to be uncorrelated (e. g. jet energy scale, trigger efficiencies, etc.). Next, we504

vary the sources of the systematics by the ±1! variations and determine the # jk(%±
j ) for each signal and505

background. A change in the source of the jth systematic will cause a totally correlated variation among506

the contributions (indexed by k). Thus we describe # jk a piece-wise linear function of % j507
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Now the expected count can be written508
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Finally, the constraints on the % j are added to the likelihood function509

L(!sig,L ,% j) = Pois(Nobs|Nexp
tot )×Gaus(L̃ |L ,!L ) ×"

j

Gaus(%̃ j = 0|% j, $% j
= 1) . (15)
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Finally, the constraints on the % j are added to the likelihood function509

L(!sig,L ,% j) = Pois(Nobs|Nexp
tot )×Gaus(L̃ |L ,!L ) ×"

j

Gaus(%̃ j = 0|% j, $% j
= 1) . (15)
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introducing the nominal Ñ
exp
k , viz.498
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In that form, the likelihood function would be written499

L(!sig,L ,# jk) = Pois(Nobs|Nexp
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j

Gaus(#̃ jk|# jk,$ jk) , (12)

where $ jk represents the uncertainty on these efficiency terms.500

In practice, Eq. 12 is not useful because it does not incorporate correlations among the different501

sources of systematics and their correlated impact among different signal and background contributions.502
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variations in # are expected to be uncorrelated (e. g. jet energy scale, trigger efficiencies, etc.). Next, we504

vary the sources of the systematics by the ±1! variations and determine the # jk(%±
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5.1.3 Extending the Likelihood Function to include Multiple Bins or Channels510

One may wish to extend the likelihood function in Eq. 15 to include multiple channels (e. g. ee/µµ/eµ)511

or several jet multiplicity bins. Formally, the extension looks very similar for both cases. Let us first512

consider the case of multiple bins indexed by i. The expectation for the ith bin from the kth signal or513

background contribution is514

N
exp
ik = L !ik"

j

#̃i jk
#i jk($ j)

#̃i jk
= Ñ

exp
ik "

j

#i jk($ j)

#̃i jk
. (16)

Note, that we do not add the index to $ j, because we see this as a common source of systematics which515

is common for the different bins and the different signal and background contributions. The likelihood516

function is now a product over these bins517

L(!sig,L ,$ j) = "
i∈bins

[

Pois(Nobs
i |Nexp

i,tot)×Gaus(L̃ |L ,!L )"
j

Gaus($̃ j = 0|$ j, %$ j
= 1)

]

. (17)

The likelihood function for multiple channels is similar, with an additional product over the multiple518

channels. The only subtlety is that k now runs over the set of signal and backgrounds specific to that519

channel. Similarly, the sources of systematics might also be different for the different channels. Leaving520

the range of the indices implicit, we arrive at521

L(!sig,L ,$ j) = "
l∈{ee,µµ ,eµ}

{

"
i∈bins

[

Pois(Nobs
i |Nexp

i,tot)Gaus(L̃ |L ,!L ) "
j∈syst

Gaus(0|$ j,1)

]}

. (18)

5.2 Extracting Measurements from the Profile Likelihood Ratio522

Armed with the final likelihood function in Eq. 18 and the Asimov dataset, we can now derive the ex-523

pected uncertainty on the desired cross section measurement. The likelihood function can be maximized524

to determine the maximum likelihood estimate of all the parameters !̂sig,L̂ , $̂ j. One can then consider525

the likelihood ratio526

r(!sig) =
L(!sig,L̂ , $̂ j)

L(!̂sig,L̂ , $̂ j)
(19)

and the profile likelihood ratio:527

& (!sig) =
L(!sig,

ˆ̂
L , ˆ̂$ j)

L(!̂sig,L̂ , $̂ j)
(20)
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For large uncertainties, truncated Gaussian are a bad choice
‣ often lead to optimistic p-values, short tail, bad behavior at 0

Gamma (reasonable for systematics constrained from measurements)
‣ longer tail, good behavior near 0, natural choice if auxiliary is based on counting

Log-normal and Uniform are other popular choices: Now implemented
‣ Thanks to Dominique Tardif for helping with XML parsing!
‣ standard conventions relate parameters to physicists notion of “relative uncertainty”
‣ For small relative error, tool produces consistent results for Gaus, Gamma, LogNormal
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Support for different constraints

bkg scale factor

Green is Gamma distribution

Red is truncated GaussianPDF Prior Posterior
Gaussian uniform Gaussian
Poisson uniform Gamma
Log-normal reference Log-Normal
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SPlot technique
Documentation taken 
from M. Pivik’s TSPlot 
tool
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9.3 The Number Counting PDF Factory

9.4 SPlot

This initial description of RooStats::SPlot is taken directly from the documentation of
http://root.cern.ch/root/html/TSPlot.html. It mainly describes the method, which
is common to both the RooStats implementation and TSPlot. The main difference between
the implementations is that the RooStats implementation allows one to use arbitrary models
created with RooFit’s data modeling language.

A common method used in High Energy Physics to perform measurements is the maxi-
mum Likelihood method, exploiting discriminating variables to disentangle signal from back-
ground. The crucial point for such an analysis to be reliable is to use an exhaustive list
of sources of events combined with an accurate description of all the Probability Density
Functions (PDF).

To assess the validity of the fit, a convincing quality check is to explore further the
data sample by examining the distributions of control variables. A control variable can
be obtained for instance by removing one of the discriminating variables before performing
again the maximum Likelihood fit: this removed variable is a control variable. The expected
distribution of this control variable, for signal, is to be compared to the one extracted, for
signal, from the data sample. In order to be able to do so, one must be able to unfold from
the distribution of the whole data sample.

The TSPlot method allows to reconstruct the distributions for the control variable, in-
dependently for each of the various sources of events, without making use of any a priori
knowledge on this variable. The aim is thus to use the knowledge available for the discrimi-
nating variables to infer the behaviour of the individual sources of events with respect to the
control variable.

TSPlot is optimal if the control variable is uncorrelated with the discriminating variables.
A detail description of the formalism itself, called sPlot
M. Pivk and F. R. Le Diberder, Nucl. Inst. Meth. A (in press), physics/0402083

9.4.1 The method

The sPlot technique is developped in the above context of a maximum Likelihood method
making use of discriminating variables.

One considers a data sample in which are merged several species of events. These species
represent various signal components and background components which all together account
for the data sample. The different terms of the log-Likelihood are:

N the total number of events in the data sample,

Ns the number of species of events populating the data sample,

Ni the number of events expected on the average for the ith species,

fi(ye) the value of the PDFs of the discriminating variables y for the ith species and for event
e,

29
x the set of control variables which, by definition, do not appear in the expression of the

Likelihood function L

The extended log-Likelihood reads:

L =
N�

e=1

ln
� Ns�

i=1

Nifi(ye)
�
−

Ns�

i=1

Ni . (8)

From this expression, after maximization of L with respect to the Ni parameters, a
weight can be computed for every event and each species, in order to obtain later the true
distribution Mi(x) of variable x If n is one of the Ns species present in the data sample, the
weight for this species is defined by:

sPn(ye) =
�Ns

j=1 Vnjfj(ye)
�Ns

k=1 Nkfk(ye)
, (9)

where Vnj is the covariance matrix resulting from the Likelihood maximization. This
matrix can be used directly from the fit, but this is numerically less accurate than the direct
computation:

V−1
nj =

∂2(−L)
∂Nn∂Nj

=
N�

e=1

fn(ye)fj(ye)
(
�Ns

k=1 Nkfk(ye))2
. (10)

The distribution of the control variable x obtained by histogramming the weighted events
reproduces, on average, the true distribution Mn(x) .

The class TSPlot allows to reconstruct the true distribution Mn(x) of a control variable
x for each of the Ns species from the sole knowledge of the PDFs of the discriminating
variables fi(y) The plots obtained thanks to the TSPlot class are called sPlots

9.4.2 Some properties and checks

Beside reproducing the true distribution, sPlots bear remarkable properties:
Each x distribution is properly normalized:

N�

e=1

sPn(ye) = Nn . (11)

For any event:

Ns�

l=1

sP l(ye) = 1 . (12)

That is to say that, summing up the Ns sPlots one recovers the data sample distribution
in x and summing up the number of events entering in a sPlot for a given species, one
recovers the yield of the species, as provided by the fit.
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Additional Goals
SPlot: Working SPlot implementation that works for arbitrary models

‣ rewritten from original code from BaBar
‣ more general than TSPlot class
‣ http://root.cern.ch/root/html/tutorials/roostats/rs301_splot.C.html
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http://root.cern.ch/root/html/tutorials/roostats/rs301_splot.C.html
http://root.cern.ch/root/html/tutorials/roostats/rs301_splot.C.html
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Additional Goals
BernsteinCorrection: prompted by work in our statistics forum, automate procedure 
of correcting nominal model to data by including a correction factor based on a 
polynomial whose degree is chosen in a principled way

‣ http://root.cern.ch/root/html/tutorials/roostats/rs_bernsteinCorrection.C.html
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σ[Nn sM̃n(x)δx] =
��

e⊂δx

(sPn)2 . (13)

reproduces the statistical uncertainty on the yield Nn, as provided by the fit: σ[Nn] ≡
√

Vnn

Because of that and since the determination of the yields is optimal when obtained using

a Likelihood fit, one can conclude that the sPlot technique is itself an optimal method to

reconstruct distributions of control variables.

• A maximum Likelihood fit is performed to obtain the yields Ni of the various species.

The fit relies on discriminating variables y uncorrelated with a control variable x the

later is therefore totally absent from the fit.

• The weights sP are calculated using Eq. ?? where the covariance matrix is taken from

Minuit.

• Histograms of x are filled by weighting the events with sP

• Error bars per bin are given by Eq. ??.

The sPlots reproduce the true distributions of the species in the control variable x within

the above defined statistical uncertainties.

9.5 Bernstein Correction

BernsteinCorrection is a utility in RooStats to augment a nominal PDF with a polynomial cor-

rection term. This is useful for incorporating systematic variations to the nominal PDF. The

Bernstein basis polynomails are particularly appropriate because they are positive definite.

This tool was inspired by the work of Glen Cowan together with Stephan Horner, Sascha

Caron, Eilam Gross, and others. The initial implementation is independent work. The major

step forward in the approach was to provide a well defined algorithm that specifies the order

of polynomial to be included in the correction. This is an emperical algorithm, so in addition

to the nominal model it needs either a real data set or a simulated one. In the early work,

the nominal model was taken to be a histogram from Monte Carlo simulations, but in this

implementation it is generalized to an arbitrary PDF (which includes a RooHistPdf). The

algorithm basically consists of a hypothesis test of an nth-order correction (null) against

a n+1-th order correction (alternate). The quantity q = -2 log LR is used to determine

whether the n+1-th order correction is a major improvement to the n-th order correction.

The distribution of q is expected to be roughly χ2
with one degree of freedom if the n-th

order correction is a good model for the data. Thus, one only moves to the n+1-th order

correction of q is relatively large. The chance that one moves from the n-th to the n+1-th

order correction when the n-th order correction (eg. a type 1 error) is sufficient is given

by the Prob(χ2
1 > threshold). The constructor of this class allows you to directly set this

tolerance (in terms of probability that the n+1-th term is added unnecessarily).
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data

nominal model

corrected model

correction factor

http://root.cern.ch/root/html/tutorials/roostats/rs_bernsteinCorrection.C.html
http://root.cern.ch/root/html/tutorials/roostats/rs_bernsteinCorrection.C.html
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Jeffreys’s Prior
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  RooWorkspace w("w");
  w.factory("Uniform::u(x[0,1])");
  w.factory("mu[100,1,200]");
  w.factory("ExtendPdf::p(u,mu)");

  w.defineSet("poi","mu");
  w.defineSet("obs","x");
  //  w.defineSet("obs2","n");

  RooJeffreysPrior pi("jeffreys","jeffreys",*w.pdf("p"),*w.set("poi"),*w.set("obs"));

π(�θ) ∝
�

det I
�
�θ
�
. (I (θ))i,j = −E

�
∂2

∂θi ∂θj
ln f(X; θ)

���� θ
�
.

where the final equality above exploits the fact that the estimators for the parameters are
equal to their hypothesized values when the likelihood is evaluated with the Asimov data set.

A standard way to find σ is by estimating the matrix of second derivatives of the log-
likelihood function (cf. Eq. (18)) to obtain the inverse covariance matrix V −1, inverting to
find V , and then extracting the element V00 corresponding to the variance of µ̂. The second
derivative of lnL is

∂2 lnL

∂θj∂θk
=

N
∑

i=1

[

(

ni

νi
− 1

)

∂2νi
∂θj∂θk

−
∂νi
∂θj

∂νi
∂θk

ni

ν2i

]

+
M
∑

i=1

[

(

mi

ui
− 1

)

∂2ui
∂θj∂θk

−
∂ui
∂θj

∂ui
∂θk

mi

u2i

]

. (27)

From (27) one sees that the second derivative of lnL is linear in the data values ni and mi.
Thus its expectation value is found simply by evaluating with the expectation values of the
data, which is the same as the Asimov data. One can therefore obtain the inverse covariance
matrix from

V −1
jk = −E

[

∂2 lnL

∂θj∂θk

]

= −
∂2 lnLA

∂θj∂θk
=

N
∑

i=1

∂νi
∂θj

∂νi
∂θk

1

νi
+

M
∑

i=1

∂ui
∂θj

∂ui
∂θk

1

ui
. (28)

In practice one could, for example, evaluate the the derivatives of lnLA numerically, use this
to find the inverse covariance matrix, and then invert and extract the variance of µ̂. One can
see directly from Eq. (28) that this variance depends on the parameter values assumed for
the Asimov data set, in particular on the assumed strength parameter µ′, which enters via
Eq. (22).

Another method for estimating σ (denoted σA in this section to distinguish it from the
approach above based on the second derivatives of lnL) is to find find the value that is neces-
sary to recover the known properties of −λA(µ). Because the Asimov data set corresponding
to a strength µ′ gives µ̂ = µ′, from Eq. (17) one finds

− 2 lnλA(µ) ≈
(µ− µ′)2

σ2
= Λ . (29)

That is, from the Asimov data set one obtains an estimate of the noncentrality parameter Λ
that characterizes the distribution f(qµ|µ′). Equivalently, one can use Eq. (29) to obtain the
variance σ2 which characterizes the distribution of µ̂, namely,

σ2
A =

(µ− µ′)2

qµ,A
, (30)

where qµ,A = −2 lnλA(µ). For the important case where one wants to find the median
exclusion significance for the hypothesis µ assuming that there is no signal, then one has
µ′ = 0 and therefore

σ2
A =

µ2

qµ,A
, (31)

11

Jeffreys’s Prior is an “objective” prior based on formal rules
(it is related to the Fisher Information and the Cramér-Rao bound]

Eilam, Glen, Ofer, and I showed in arXiv:1007.1727 that the Asimov 
data provides a fast, convenient way to calculate the Fisher Information

Use this as basis to calculate 
Jeffreys’s prior for an arbitrary PDF! Validate on a Poisson

Analytic
RooStats numerical

http://arXiv.org/abs/arXiv:1007.1727
http://arXiv.org/abs/arXiv:1007.1727
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Validate Jeffreys’s Prior on a Gaussian µ, σ, and (µ,σ)
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 RooWorkspace w("w");
  w.factory("Gaussian::g(x[0,-20,20],mu[0,-5,5],sigma[1,0,10])");
  w.factory("n[10,.1,200]");
  w.factory("ExtendPdf::p(g,n)");
  w.var("n")->setConstant();

  w.var("sigma")->setConstant();
  w.defineSet("poi","mu");
  w.defineSet("obs","x");
  RooJeffreysPrior pi("jeffreys","jeffreys",*w.pdf("p"),*w.set("poi"),*w.set("obs"));
  

Analytic
RooStats numerical

Analytic
RooStats numerical
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NonCentralChiSquare
In arXiv:1007.1727, Eilam, Glen, Ofer, and I also outlined the generalization of 
Wilks’s Thm. called Wald’s Thm., which states asymptotic distribution of λ(µ) 
for µ ≠ µtrue is a non-central χ2 with parameter
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The results of Wilks and Wald generalize to more than one parameter of interest. If
the parameters of interest can be explicitly identified with a subset of the parameters θr =
(θ1, . . . , θr), then the distribution of −2 ln λ(θr) follows a noncentral chi-square distribution
for r-degrees of freedom with noncentrality parameter

Λr =
r

∑

i,j=1

(θi − θ′i) Ṽ
−1
ij (θj − θ′j) , (21)

where Ṽ −1
ij is the inverse of the submatrix one obtains from restricting the full covariance

matrix to the parameters of interest. The full covariance matrix is given from inverting
Eq. (18), and we show an efficient way to calculate it in Sec. 3.2.

3.2 The Asimov data set and the variance of µ̂

Some of the formulae given require the standard deviation σ of µ̂, which is assumed to follow
a Gaussian distribution with a mean of µ′. Below we show two ways of estimating σ, both of
which are closely related to a special, artificial data set that we call the “Asimov data set”.

We define the Asimov data set such that when one uses it to evaluate the estimators for
all parameters, one obtains the true parameter values. Consider the likelihood function for
the generic analysis given by Eq. (6). To simplify the notation in this section we define

νi = µ′si + bi . (22)

Further let θ0 = µ represent the strength parameter, so that here θi can stand for any of the
parameters. The ML estimators for the parameters can be found by setting the derivatives
of lnL with respect to all of the parameters equal to zero:

∂ lnL

∂θj
=

N
∑

i=1

(

ni

νi
− 1

)

∂νi
∂θj

+
M
∑

i=1

(

mi

ui
− 1

)

∂ui
∂θj

= 0 . (23)

This condition holds if the Asimov data, ni,A and mi,A, are equal to their expectation values:

ni,A = E[ni] = νi = µ′si(θ) + bi(θ) , (24)

mi,A = E[mi] = ui(θ) . (25)

Here the parameter values represent those implied by the assumed distribution of the data.
In practice, these are the values that would be estimated from the Monte Carlo model using
a very large data sample.

We can use the Asimov data set to evaluate the “Asimov likelihood” LA and the cor-
responding profile likelihood ratio λA. The use of non-integer values for the data is not a
problem as the factorial terms in the Poisson likelihood represent constants that cancel when
forming the likelihood ratio, and thus can be dropped. One finds

λA(µ) =
LA(µ,

ˆ̂
θ)

LA(µ̂, θ̂)
=

LA(µ,
ˆ̂
θ)

LA(µ′,θ)
, (26)

10

Test x=5,k=3, Λ=1.5: 
RooStats   0.0972573
Matlab, R  0.097257

fX(x; k,λ) =
1

2
e−(x+λ)/2

�x
λ

�k/4−1/2
Ik/2−1(

√
λx)

fX(x; k,λ) = e−λ/2
0F1(; k/2;λx/4)

1

2k/2Γ(k/2)
e−x/2xk/2−1.

fX(x; k,λ) =
∞�

i=0

e−λ/2(λ/2)i

i!
fYk+2i(x),

Three forms:
without MathMore, sum of χ2

with MathMore: k≥2, use Incomplete Bessel 

for k<2 confluent hypergeometic functions

Wikipedia

http://arXiv.org/abs/arXiv:1007.1727
http://arXiv.org/abs/arXiv:1007.1727
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∂θj
=

N
∑

i=1

(

ni

νi
− 1

)

∂νi
∂θj

+
M
∑

i=1

(

mi

ui
− 1

)

∂ui
∂θj

= 0 . (23)

This condition holds if the Asimov data, ni,A and mi,A, are equal to their expectation values:

ni,A = E[ni] = νi = µ′si(θ) + bi(θ) , (24)

mi,A = E[mi] = ui(θ) . (25)

Here the parameter values represent those implied by the assumed distribution of the data.
In practice, these are the values that would be estimated from the Monte Carlo model using
a very large data sample.

We can use the Asimov data set to evaluate the “Asimov likelihood” LA and the cor-
responding profile likelihood ratio λA. The use of non-integer values for the data is not a
problem as the factorial terms in the Poisson likelihood represent constants that cancel when
forming the likelihood ratio, and thus can be dropped. One finds

λA(µ) =
LA(µ,

ˆ̂
θ)

LA(µ̂, θ̂)
=

LA(µ,
ˆ̂
θ)

LA(µ′,θ)
, (26)
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Test x=5,k=3, Λ=1.5: 
RooStats   0.0972573
Matlab, R  0.097257

fX(x; k,λ) =
1

2
e−(x+λ)/2

�x
λ

�k/4−1/2
Ik/2−1(

√
λx)

fX(x; k,λ) = e−λ/2
0F1(; k/2;λx/4)

1

2k/2Γ(k/2)
e−x/2xk/2−1.

fX(x; k,λ) =
∞�

i=0

e−λ/2(λ/2)i

i!
fYk+2i(x),

Three forms:
without MathMore, sum of χ2

with MathMore: k≥2, use Incomplete Bessel 

for k<2 confluent hypergeometic functions

Wikipedia
RooStats
(convention change, bug in RooStats,
or is wikipedia’s plot mislabeled?)

http://arXiv.org/abs/arXiv:1007.1727
http://arXiv.org/abs/arXiv:1007.1727
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Other Notes on PDF library
Added Legender Polynomial and Spherical Harmonic functions.

Request to have flag in Poisson PDF so that count is not rounded down to 
nearest integer.
‣ useful for expected data with non-integer counts
‣ WARNING: no consistent way to keep integral=1 and value at integer 

values invariant.
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Summary
RooStats currently provides many useful tools for common statistical 
problems using well known statistical techniques
‣ Bayesian, Frequentist, and Likelihood-based methods available

The tools are still developing rapidly, so keep up to date with the 
current status via the RooStats web page and recent ROOT releases

It is an open project for the field, and we would love to hear your 
ideas and incorporate any tools that you develop.
‣ please see the RooStats developers list 
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https://twiki.cern.ch/twiki/bin/view/RooStats/WebHome

https://twiki.cern.ch/twiki/bin/view/RooStats/WebHome
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Some Statistical Recommendations
(in the context of the prototype “on/off” problem)
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Comments and Recommendations for Statistical Techniques

We review a collection of statistical tests used for a prototype problem, characterize their

generalizations, and provide comments on these generalizations. Where possible, concrete

recommendations are made to aid in future comparisons and combinations with ATLAS and

CMS results.

1 Preliminaries

A simple ‘prototype problem’ has been considered as useful simplification of a common HEP

situation and its coverage properties have been studied in Ref. [1] and generalized by Ref. [2].

The problem consists of a number counting analysis, where one observes non events and

expects s + b events, b is uncertain, and one either wishes to perform a significance test

against the null hypothesis s = 0 or create a confidence interval on s. Here s is considered the

parameter of interest and b is referred to as a nuisance parameter (and should be generalized

accordingly in what follows). In the setup, the background rate b is uncertain, but can

be constrained by an auxiliary or sideband measurement where one expects τb events and

measures noff events. This simple situation (often referred to as the ‘on/off’ problem) can be

expressed by the following probability density function:

P (non, noff |s, b) = Pois(non|s + b) Pois(noff |τb). (1)

Note that in this situation the sideband measurement is also modeled as a Poisson process

and the expected number of counts due to background events can be related to the main

measurement by a perfectly known ratio τ . In many cases a more accurate relation between

the sideband measurement noff and the unknown background rate b may be a Gaussian with

either an absolute or relative uncertainty ∆b. These cases were also considered in Refs. [1, 2]

and are referred to as the ‘Gaussian mean problem’.

While the prototype problem is a simplification, it has been an instructive example. The

first, and perhaps, most important lesson is that the uncertainty on the background rate b
has been cast as a well-defined statistical uncertainty instead of a vaguely-defined systematic

uncertainty. To make this point more clearly, consider that it is common practice in HEP to

describe the problem as

P (non|s) =

�
db Pois(non|s + b)π(b), (2)

where π(b) is a distribution (usually Gaussian) for the uncertain parameter b, which is

then marginalized (ie. ‘smeared’, ‘randomized’, or ‘integrated out’ when creating pseudo-

experiments). But what is the nature of π(b)? The important fact which often evades serious

consideration is that π(b) is a Bayesian prior, which may or may-not be well-justified. It

often is justified by some previous measurements either based on Monte Carlo, sidebands, or

control samples. However, even in those cases one does not escape an underlying Bayesian

prior for b. The point here is not about the use of Bayesian inference, but about the clear ac-

counting of our knowledge and facilitating the ability to perform alternative statistical tests.

1

The “on/off” problem
This is a simplified problem that has been studied quite a bit to 
gain some insight into our more realistic and difficult problems
‣ number counting with background uncertainty

● main measurement: observe non with s+b expected
● sideband measurement: observe noff with      expected

‣ Note: sideband is used to constrain background uncertainty
● In this approach “background uncertainty” is a statistical error

‣ Contrast to:
● where         is usually a Gaussian that is randomized in Toy MC

• it is a Bayesian prior, resulting model is a Bayesian-averaged model
• does not explicitly use knowledge of sideband
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Comments and Recommendations for Statistical Techniques

We review a collection of statistical tests used for a prototype problem, characterize their

generalizations, and provide comments on these generalizations. Where possible, concrete

recommendations are made to aid in future comparisons and combinations with ATLAS and

CMS results.

1 Preliminaries

A simple ‘prototype problem’ has been considered as useful simplification of a common HEP

situation and its coverage properties have been studied in Ref. [1] and generalized by Ref. [2].

The problem consists of a number counting analysis, where one observes non events and

expects s + b events, b is uncertain, and one either wishes to perform a significance test

against the null hypothesis s = 0 or create a confidence interval on s. Here s is considered the

parameter of interest and b is referred to as a nuisance parameter (and should be generalized

accordingly in what follows). In the setup, the background rate b is uncertain, but can

be constrained by an auxiliary or sideband measurement where one expects τb events and

measures noff events. This simple situation (often referred to as the ‘on/off’ problem) can be

expressed by the following probability density function:

P (non, noff |s, b) = Pois(non|s + b) Pois(noff |τb). (1)

Note that in this situation the sideband measurement is also modeled as a Poisson process

and the expected number of counts due to background events can be related to the main

measurement by a perfectly known ratio τ . In many cases a more accurate relation between

the sideband measurement noff and the unknown background rate b may be a Gaussian with

either an absolute or relative uncertainty ∆b. These cases were also considered in Refs. [1, 2]

and are referred to as the ‘Gaussian mean problem’.

While the prototype problem is a simplification, it has been an instructive example. The

first, and perhaps, most important lesson is that the uncertainty on the background rate b
has been cast as a well-defined statistical uncertainty instead of a vaguely-defined systematic

uncertainty. To make this point more clearly, consider that it is common practice in HEP to

describe the problem as

P (non|s) =

�
db Pois(non|s + b)π(b), (2)

where π(b) is a distribution (usually Gaussian) for the uncertain parameter b, which is

then marginalized (ie. ‘smeared’, ‘randomized’, or ‘integrated out’ when creating pseudo-

experiments). But what is the nature of π(b)? The important fact which often evades serious

consideration is that π(b) is a Bayesian prior, which may or may-not be well-justified. It

often is justified by some previous measurements either based on Monte Carlo, sidebands, or

control samples. However, even in those cases one does not escape an underlying Bayesian

prior for b. The point here is not about the use of Bayesian inference, but about the clear ac-

counting of our knowledge and facilitating the ability to perform alternative statistical tests.
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Comments and Recommendations for Statistical Techniques

We review a collection of statistical tests used for a prototype problem, characterize their

generalizations, and provide comments on these generalizations. Where possible, concrete

recommendations are made to aid in future comparisons and combinations with ATLAS and

CMS results. These comments are quite general, and each experiment is expected to have

well-developed techniques that are (hopefully) consistent with what is presented here.

1 Preliminaries

A simple ‘prototype problem’ has been considered as useful simplification of a common HEP

situation and its coverage properties have been studied in Ref. [1] and generalized by Ref. [2].

The problem consists of a number counting analysis, where one observes non events and

expects s + b events, b is uncertain, and one either wishes to perform a significance test

against the null hypothesis s = 0 or create a confidence interval on s. Here s is considered the

parameter of interest and b is referred to as a nuisance parameter (and should be generalized

accordingly in what follows). In the setup, the background rate b is uncertain, but can

be constrained by an auxiliary or sideband measurement where one expects τb events and

measures noff events. This simple situation (often referred to as the ‘on/off’ problem) can be

expressed by the following probability density function:

P (non, noff |s, b)� �� �
jointmodel

= Pois(non|s+ b)
� �� �
mainmeasurement

Pois(noff |τb)� �� �
sideband

. (1)

Note that in this situation the sideband measurement is also modeled as a Poisson process

and the expected number of counts due to background events can be related to the main

measurement by a perfectly known ratio τ . In many cases a more accurate relation between

the sideband measurement noff and the unknown background rate b may be a Gaussian with

either an absolute or relative uncertainty ∆b. These cases were also considered in Refs. [1, 2]

and are referred to as the ‘Gaussian mean problem’.

Here we rely heavily on the correspondence between hypothesis tests and confidence

intervals [3], and mainly frame the discussion in terms of confidence intervals.

While the prototype problem is a simplification, it has been an instructive example. The

first, and perhaps, most important lesson is that the uncertainty on the background rate b
has been cast as a well-defined statistical uncertainty instead of a vaguely-defined systematic

uncertainty. To make this point more clearly, consider that it is common practice in HEP to

describe the problem as

P (non|s) =
�

dbPois(non|s+ b)π(b), (2)

where π(b) is a distribution (usually Gaussian) for the uncertain parameter b, which is

then marginalized (ie. ‘smeared’, ‘randomized’, or ‘integrated out’ when creating pseudo-

experiments). But what is the nature of π(b)? The important fact which often evades serious

consideration is that π(b) is a Bayesian prior, which may or may-not be well-justified. It

1
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Separating the prior from the objective model
Recommendation: where possible, one should express 
uncertainty on a parameter as a statistical (random) process
‣ explicitly include terms that represent auxiliary measurements 

in the likelihood
Recommendation: when using a Bayesian technique, one should 
explicitly express and separate the prior from the objective part of 
the probability density function

Example: 
‣By writing 

● the objective statistical model is for the background uncertainty is clear

‣One can then explicitly express a prior        and obtain:
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If we were actually in a case described by the ‘on/off’ problem, then it would be better to
think of π(b) as the posterior resulting from the sideband measurement

π(b) = P (b|noff) =
P (noff |b)η(b)�
dbP (noff |b)η(b)

. (3)

By doing this it is clear that the term P (noff |b) is an objective probability density that can
be used in a frequentist context and that η(b) is the original Bayesian prior assigned to b.

Recommendation: Where possible, one should express uncertainty on a parameter as
statistical (eg. random) process (ie. Pois(noff |τb) in Eq. 1).

Recommendation: When using Bayesian techniques, one should explicitly express and
separate the prior from the objective part of the probability density function (as in Eq. 3).

Now let us consider some specific methods for addressing the on/off problem and their
generalizations.

2 The frequentist solution: ZBi

The goal for a frequentist solution to this problem is based on the notion of coverage (or
Type I error). One considers there to be some unknown true values for the parameters s, b
and attempts to construct a statistical test that will not incorrectly reject the true values
above some specified rate α.

A frequentist solution to the on/off problem, referred to as ZBi in Refs. [1, 2], is based on
re-writing Eq. 1 into a different form and using the standard frequentist binomial parameter
test, which dates back to the first construction of confidence intervals for a binomial parameter
by Clopper and Pearson in 1934 [3]. This does not lead to an obvious generalization for more
complex problems.

The general solution to this problem, which provides coverage “by construction” is the
Neyman Construction. However, the Neyman Construction is not uniquely determined; one
must also specify:

• the test statistic T (non, noff ; s, b), which depends on data and parameters

• a well-defined ensemble that defines the sampling distribution of T

• the limits of integration for the sampling distribution of T

• parameter points to scan (including the values of any nuisance parameters)

• how the final confidence intervals in the parameter of interest are established

The Feldman-Cousins technique is a well-specified Neyman Construction when there are
no nuisance parameters [6]: the test statistic is the likelihood ratio T (non; s) = L(s)/L(sbest),
the limits of integration are one-sided, there is no special conditioning done to the ensemble,
and there are no nuisance parameters to complicate the scanning of the parameter points or
the construction of the final intervals.

The original Feldman-Cousins paper did not specify a technique for dealing with nuisance
parameters, but several generalization have been proposed. The bulk of the variations come
from the choice of the test statistic to use.
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Comments and Recommendations for Statistical Techniques

We review a collection of statistical tests used for a prototype problem, characterize their

generalizations, and provide comments on these generalizations. Where possible, concrete

recommendations are made to aid in future comparisons and combinations with ATLAS and

CMS results.

1 Preliminaries

A simple ‘prototype problem’ has been considered as useful simplification of a common HEP

situation and its coverage properties have been studied in Ref. [1] and generalized by Ref. [2].

The problem consists of a number counting analysis, where one observes non events and

expects s + b events, b is uncertain, and one either wishes to perform a significance test

against the null hypothesis s = 0 or create a confidence interval on s. Here s is considered the

parameter of interest and b is referred to as a nuisance parameter (and should be generalized

accordingly in what follows). In the setup, the background rate b is uncertain, but can

be constrained by an auxiliary or sideband measurement where one expects τb events and

measures noff events. This simple situation (often referred to as the ‘on/off’ problem) can be

expressed by the following probability density function:

P (non, noff |s, b) = Pois(non|s + b) Pois(noff |τb). (1)

Note that in this situation the sideband measurement is also modeled as a Poisson process

and the expected number of counts due to background events can be related to the main

measurement by a perfectly known ratio τ . In many cases a more accurate relation between

the sideband measurement noff and the unknown background rate b may be a Gaussian with

either an absolute or relative uncertainty ∆b. These cases were also considered in Refs. [1, 2]

and are referred to as the ‘Gaussian mean problem’.

While the prototype problem is a simplification, it has been an instructive example. The

first, and perhaps, most important lesson is that the uncertainty on the background rate b
has been cast as a well-defined statistical uncertainty instead of a vaguely-defined systematic

uncertainty. To make this point more clearly, consider that it is common practice in HEP to

describe the problem as

P (non|s) =

�
db Pois(non|s + b)π(b), (2)

where π(b) is a distribution (usually Gaussian) for the uncertain parameter b, which is

then marginalized (ie. ‘smeared’, ‘randomized’, or ‘integrated out’ when creating pseudo-

experiments). But what is the nature of π(b)? The important fact which often evades serious

consideration is that π(b) is a Bayesian prior, which may or may-not be well-justified. It

often is justified by some previous measurements either based on Monte Carlo, sidebands, or

control samples. However, even in those cases one does not escape an underlying Bayesian

prior for b. The point here is not about the use of Bayesian inference, but about the clear ac-

counting of our knowledge and facilitating the ability to perform alternative statistical tests.
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Goal of Bayesian-frequentist hybrid solutions is to provide a frequentist 
treatment of the main measurement, while eliminating nuisance 
parameters (deal with systematics) with an intuitive Bayesian technique.

Principled version (eg. ZΓ):
‣ clearly state prior        ; identify control samples (sidebands) and use:

Ad-hoc version (eg. ZN):
‣ unable or unwilling to justify       , so go straight to some distribution 

● eg. a Gaussian, truncated Gaussian, log normal, Gamma, etc...
● often the case for real systematic uncertainty (eg. MC generators, different 

background estimation techniques, etc.)

Recommendation: Avoid ad hoc priors if possible.

If we were actually in a case described by the ‘on/off’ problem, then it would be better to
think of π(b) as the posterior resulting from the sideband measurement

π(b) = P (b|noff) =
P (noff |b)η(b)�
dbP (noff |b)η(b)

. (3)

By doing this it is clear that the term P (noff |b) is an objective probability density that can
be used in a frequentist context and that η(b) is the original Bayesian prior assigned to b.

Recommendation: Where possible, one should express uncertainty on a parameter as
statistical (eg. random) process (ie. Pois(noff |τb) in Eq. 1).

Recommendation: When using Bayesian techniques, one should explicitly express and
separate the prior from the objective part of the probability density function (as in Eq. 3).

Now let us consider some specific methods for addressing the on/off problem and their
generalizations.

2 The frequentist solution: ZBi

The goal for a frequentist solution to this problem is based on the notion of coverage (or
Type I error). One considers there to be some unknown true values for the parameters s, b
and attempts to construct a statistical test that will not incorrectly reject the true values
above some specified rate α.

A frequentist solution to the on/off problem, referred to as ZBi in Refs. [1, 2], is based on
re-writing Eq. 1 into a different form and using the standard frequentist binomial parameter
test, which dates back to the first construction of confidence intervals for a binomial parameter
by Clopper and Pearson in 1934 [3]. This does not lead to an obvious generalization for more
complex problems.

The general solution to this problem, which provides coverage “by construction” is the
Neyman Construction. However, the Neyman Construction is not uniquely determined; one
must also specify:

• the test statistic T (non, noff ; s, b), which depends on data and parameters

• a well-defined ensemble that defines the sampling distribution of T

• the limits of integration for the sampling distribution of T

• parameter points to scan (including the values of any nuisance parameters)

• how the final confidence intervals in the parameter of interest are established

The Feldman-Cousins technique is a well-specified Neyman Construction when there are
no nuisance parameters [6]: the test statistic is the likelihood ratio T (non; s) = L(s)/L(sbest),
the limits of integration are one-sided, there is no special conditioning done to the ensemble,
and there are no nuisance parameters to complicate the scanning of the parameter points or
the construction of the final intervals.

The original Feldman-Cousins paper did not specify a technique for dealing with nuisance
parameters, but several generalization have been proposed. The bulk of the variations come
from the choice of the test statistic to use.
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Comments and Recommendations for Statistical Techniques

We review a collection of statistical tests used for a prototype problem, characterize their

generalizations, and provide comments on these generalizations. Where possible, concrete

recommendations are made to aid in future comparisons and combinations with ATLAS and

CMS results.

1 Preliminaries

A simple ‘prototype problem’ has been considered as useful simplification of a common HEP

situation and its coverage properties have been studied in Ref. [1] and generalized by Ref. [2].

The problem consists of a number counting analysis, where one observes non events and

expects s + b events, b is uncertain, and one either wishes to perform a significance test

against the null hypothesis s = 0 or create a confidence interval on s. Here s is considered the

parameter of interest and b is referred to as a nuisance parameter (and should be generalized

accordingly in what follows). In the setup, the background rate b is uncertain, but can

be constrained by an auxiliary or sideband measurement where one expects τb events and

measures noff events. This simple situation (often referred to as the ‘on/off’ problem) can be

expressed by the following probability density function:

P (non, noff |s, b) = Pois(non|s + b) Pois(noff |τb). (1)

Note that in this situation the sideband measurement is also modeled as a Poisson process

and the expected number of counts due to background events can be related to the main

measurement by a perfectly known ratio τ . In many cases a more accurate relation between

the sideband measurement noff and the unknown background rate b may be a Gaussian with

either an absolute or relative uncertainty ∆b. These cases were also considered in Refs. [1, 2]

and are referred to as the ‘Gaussian mean problem’.

While the prototype problem is a simplification, it has been an instructive example. The

first, and perhaps, most important lesson is that the uncertainty on the background rate b
has been cast as a well-defined statistical uncertainty instead of a vaguely-defined systematic

uncertainty. To make this point more clearly, consider that it is common practice in HEP to

describe the problem as

P (non|s) =

�
db Pois(non|s + b)π(b), (2)

where π(b) is a distribution (usually Gaussian) for the uncertain parameter b, which is

then marginalized (ie. ‘smeared’, ‘randomized’, or ‘integrated out’ when creating pseudo-

experiments). But what is the nature of π(b)? The important fact which often evades serious

consideration is that π(b) is a Bayesian prior, which may or may-not be well-justified. It

often is justified by some previous measurements either based on Monte Carlo, sidebands, or

control samples. However, even in those cases one does not escape an underlying Bayesian

prior for b. The point here is not about the use of Bayesian inference, but about the clear ac-

counting of our knowledge and facilitating the ability to perform alternative statistical tests.

1

Hybrid Solutions
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η(b)

π(b)

Common violations of the regularity conditions are:

• the value of a parameter under the null is on the border of a disallowed region (eg.
s > 0). Modifications to the chi-square distribution are now largely understood [7].

• the model has degenerate parameters under the null (eg. the mass of a hypothesized
particle is meaningless when s = 0.) This gives rise to the look-elsewhere effect (see
Ref. [11])

Recommendation: Present a result based on the profile likelihood ratio: it is often the
easiest method and the community is familiar with it.

Recommendation: The profile likelihood function should be presented for problems with
one parameter of interest. Contours of the profile likelihood function should be presented for
problems with two parameters of interest.

Note: It is not possible to perform a frequentist test with guaranteed coverage properties
(ie. Neyman Construction) based on the likelihood function alone, as that requires specifying
the probability density function for the observables for every point in the parameters.

3 The hybrid solutions

The goal of the Bayesian-frequentist hybrid approaches is to provide a frequentist treatment
for the main measurement, while eliminating nuisance parameters with an intuitive Bayesian
technique. As such one typically only specifies a prior for the nuisance parameters. This
often leads to an equation like Eq. 2, where the Bayesian prior on b is explicit. In hybrid
methods one uses the resulting model P (non|s) to calculate p-values,

p =
∞�

n∈nobs

P (n|s). (5)

One can interpret the resulting p-value as a Bayesian average of the frequentist p-values for
known values of the nuisance parameters, or as a p-value from a Bayesian-averaged model.

This approach has been used by the LEP Higgs and Tevatron Higgs working groups,
largely because alternative methods have only been developed recently. It is known that these
methods do not necessarily cover, and that ad-hoc solutions may over-state the significance
(undercover) significantly [1, 2].

3.1 The principled hybrid solution: ZΓ

In a principled version of the hybrid approach, one would attempt to identify a control
sample or sideband measurement that can help constrain the uncertain nuisance parameter
(as in Eq. 1), clearly specify a prior for it (eg. η(b) in Eq. 3), and then calculate the hybrid
p-value [12, 13].

In the on/off problem one might choose η(b) to be a flat prior, resulting in a Γ-prior for
π(b) in Eq. 2, and finally in the expression ZΓ for the significance. In this specific case there
is a coincidence that it coincides with the frequentist result (ie. ZΓ = ZBi), but that should
not be taken too seriously as the result does not generalize to more complicated situations.
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Hybrid Solutions 
Hybrid solutions are common (used by LEP & Tevatron Higgs)
‣ this is what was done for TDR and several ATLAS & CMS results
‣ It is known that using an ad hoc prior can lead to optimistic results (eg. 

overstate significance, undercover).  
● it can be fairly significant, must be studied on a case-by-case basis
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is much more overoptimistic than an exact Poisson calculation of
Eq. (15). The implicit Gaussian approximation underestimates the
Poisson tail at large non; there is in addition a smaller bias towards
Zsb4ZP from ignoring the discreteness of the Poisson sum. Any
method ignoring background uncertainty overestimates signifi-
cance, particularly for small ntot, or to1, where the background
uncertainty is most important. For s40, one can show that
Zsb4Zssb4Znn and that Zsb4Zbo4Znn. (The best that can be said
for Zsb is that it is mostly monotonic in the true significance, so
that when used for a speedy optimization of selection criteria
with non varying by an order of magnitude at most, it is not too
misleading.)

One can also show that Zbo4ZBiN; that Znn4ZBiN for to1, i.e.,
poorly determined background; that Zbo4Zssb for t4mb=s, i.e., for

well-determined backgrounds; and that ZZRoZbo unless t is very
small. Thus most of the non-recommended methods overestimate
Z, except for Znn and Zssb, which are too low for moderate t, and
too high for small t. In general, small t (poorly measured
backgrounds) gives many methods problems; results are generally
more stable for an adequate control region.

Of the ad hoc corrections for signal uncertainty, none are
reliable; the ‘‘corrected’’ Poisson calculation is less biased than the
uncorrected, but still widely overestimates significance for to1.
The attempt to include background uncertainty with s=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m̂b þ sb

p

is not much better than its ‘‘un-corrected’’ version.
To summarize our provisional conclusions from these exam-

ples, most bad approximations overestimate significance (the only
exceptions are Znn for t41, Zssb, and Poisson with m̂b ! m̂b þ sb).
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In a principled version of the hybrid approach, one would attempt to identify a control
sample or sideband measurement that can help constrain the uncertain nuisance parameter
(as in Eq. 1), clearly specify a prior for it (eg. η(b) in Eq. 3), and then calculate the hybrid
p-value [12, 17].

In the on/off problem one might choose η(b) to be a flat prior, which results in a gamma
prior for π(b) in Eq. 2, and finally in the expression ZΓ for the significance. In this specific
case there is a coincidence that it coincides with the frequentist result (eg. ZΓ = ZBi), but
that should not be taken too seriously as the result does not generalize to more complicated
situations.

6 The ad-hoc hybrid solution: ZN

Here we make a distinction between principled and ad-hoc versions of the Bayesian-frequentist
hybrid approach. In the principled version one clearly separates the Bayesian component η(b)
and the objective component Pois(noff |τb) to arrive at π(b). We contrast this with the ad-hoc
version1 in which one uses Eq. 2 by jumping straight to π(b). Often in this jump, one simply
assumes that π(b) is Gaussian without any clear justification. To be clear, this is a very
common approach in HEP [7, 8, 18].

While the method is ad-hoc, often it is not possible to clearly identify what control sample
or auxiliary measurement led to the conclusion that π(b) actually should take on a particular
form, whether it be Gaussian or any other distribution. This is particularly true when the
systematic uncertainty is not statistical in nature (for instance, the difference between Monte
Carlo generators or different approaches for estimating a particular background). In these
cases the ad-hoc solution may be appropriate, but one should be honest about the assumptions
that are involved and the limitations to the inference that they impose. In particular, for
large systematic effects the Gaussian can easily have significant probability in unphysical
regions (eg. b < 0). If one is not able to accurately characterize the prior beyond Zσ, then
one cannot consistently discuss a deviation from the expected distributions beyond the Zσ
level.

Recommendation: When using an ad-hoc prior π, one should be honest about the assump-
tions that are involved and the limitations to the inference that they impose.

Warning: If one is not able to accurately characterize the prior beyond Zσ, then one cannot
consistently discuss a deviation from the expected distributions beyond the Zσ level.

7 General Recommendations

It is not the goal of this document to recommend a specific statistical technique or discourage
the use of other principled statistical approaches. Instead, the goal is to review some of
the commonly used (or at least discussed) statistical approaches and provide some useful
comments and general recommendations. However, it is useful to provide some practical
recommendations.

1
Perhaps it is not fair to identify the ad-hoc method with ZN , as it is a principled solution in the case

of the Gaussian means problem (as was the case for Ref. [2]). However, the Gaussian smearing method is so

prevalent in its ad-hoc form that this seems to be the most useful identification

7

Recommendation: Avoid ad hoc priors if possible

7 General Recommendations

It is not the goal of this document to recommend a specific statistical technique or discourage
the use of other principled statistical approaches. Instead, the goal is to review some of
the commonly used (or at least discussed) statistical approaches and provide some useful
comments and general recommendations. However, it is useful to provide some practical
recommendations.

Recommendation: Use multiple statistical techniques. When they agree we are in ‘asymp-
topia’; when they disagree we learn something.

Recommendation: Present a result based on the profile likelihood ratio: it is often the
easiest method and the community is familiar with it.

Recommendation: Provide enough details and be precise about the statistical technique.

Recommendation: Calibrate your statistical apparatus by means of a coverage study.
Particularly recommended when using modified techniques, such as CLs.
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The Frequentist solution: ZBi

The ZBi solution is a specific, analytical solution to the on/off problem
‣ not of general use

The general frequentist solution to this problem is the Neyman 
Construction, which provides coverage ``by construction''
‣ However, the Neyman Construction is not uniquely determined; 

one must also specify:
● the test statistic T(non, noff; s,b), which depends on data and parameters
● a well-defined ensemble that defines the sampling distribution of T
● the limits of integration for the sampling distribution of T
● parameter points to scan (including the values of any nuisance parameters)
● how the final confidence intervals in the parameter of interest are 

established

We need to specify all of these things to generalize ZBi

‣ See slides on Neyman-Construction and FeldmanCousins tool
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The Bayesian Solution
No clear Bayesian solution among ZBi, ZΓ, ZPL, ZN

● Bayesian solution would generically have a prior for the parameters of 
interest as well as nuisance parameters

See discussion in PDG

Recommendation: When performing a Bayesian analysis one should separate 
the objective likelihood function from the prior distributions to the extent possible. 

Recommendation: When performing a Bayesian analysis one should investigate 
the sensitivity of the result to the choice of priors. 

Warning: Flat priors in high dimensions can lead to unexpected and/or misleading 
results. 

Recommendation: When performing a Bayesian analysis for a single parameter 
of interest, one should attempt to include Jeffreys's prior in the sensitivity analysis.
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Words of wisdom for Bayesian analysis
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a frequentist context (eg. Eq. 3). Priors for the parameters of interest can have a larger
influence on the final inference, thus, in order to compare with frequentist methods it is
important to separate these two components as much as possible.

In order to understand the sensitivity to the choice of priors, it is recommended to repeat
the analysis with several choices of priors. As Michael Goldstein said “Sensitivity Analysis is
at the heart of scientific Bayesianism.”

It is common practice in HEP to use flat priors. This follows partially from the intuitive
notion that flat priors are non-informative. One should absolutely not be fooled by this
intuitive picture, as flat priors are not invariant to reparametrizing the model, and thus are
informative. In many dimensions, uniform priors are especially dangerous, as volume effects
push probability away from the origin.

The conceptual goal of choosing a prior in an objective way that adds as little information
to the resulting inference as possible has been developed significantly by the statistical com-
munity. This was first done by Jeffreys (a physicist and statistician), and is a recommended
prior to try in one-dimensional problems (note, it can be improper). In high-dimensional
problems Jeffrey’s rule has problems. The state-of-the art “objective” priors (eg. priors cho-
sen by formal rules) are the reference priors of Bernardo and collaborators. While this is an
area for our field to investigate, no general tools are available.

It is also worth noting that a Bayesian method has frequentist properties (and vice versa).
So even though a method is Bayesian, one can still quantify its coverage or calibrate it in a
frequentist way.

To support the points raised above, here are some quotes from professional statisticians
(taken from selected PhyStat talks and selections from Bob Cousins lectures):

• “Perhaps the most important general lesson is that the facile use of what appear to be
uninformative priors is a dangerous practice in high dimensions.” – Brad Effron

• “meaningful prior specification of beliefs in probabilistic form over very large possibility
spaces is very difficult and may lead to a lot of arbitrariness in the specification.” –
Michael Goldstein

• “Sensitivity Analysis is at the heart of scientific Bayesianism.” – Michael Goldstein

• “Non-subjective Bayesian analysis is just a part – an important part, I believe of a
healthy sensitivity analysis to the prior choice...” J.M. Bernardo

• “Objective Bayesian analysis is the best frequentist tool around” – Jim Berger

Recommendation: When performing a Bayesian analysis one should separate the objective
likelihood function from the prior distributions to the extent possible.

Recommendation: When performing a Bayesian analysis one should investigate the sensi-
tivity of the result to the choice of priors.

Warning: Flat priors in high dimensions can lead to unexpected and/or misleading results.

Recommendation: When performing a Bayesian analysis for a single parameter of interest,
one should attempt to include Jeffreys’s prior in the sensitivity analysis.

In addition to Bayesian credible intervals, one can use Bayes factors as an alternative to
p-values for hypothesis tests. Bayes factors have not been used extensively in HEP, but it is
an area worth further investigation.
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