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Abstract

I have started to use a new and highly flexible tool called RooStats,
which makes use of a Workspace container created within RooFit, to
do statistical tests on the validity of a user created model hypothesis.
In earnest, some crude assumptions have been made, which will be
discussed here and addressed with further experience. This first report
is aimed at bringing together the initial stages of my work.
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Figure 1: A simple PDF Function Created in RooFit

1 RooFit

RooFit focuses on the need for a practical way to create a probability density
function in ROOT, providing ways not just to code simple problems, but
to enable use of non-trivial or even multidimensional functions that were
usually too problematic to include previously.

The implementation of RooFit, compliments the already existing ROOT
Libraries, creating practically no overlap of functionality (See Figure 2).I
will not go through the tools in great detail here, but I do feel some points
are worth mentioning in this report, any further information can be easily
located in the comprehensive RooFit Manual, which is easy to follow even
for newcomers.

RooFit’s core design philosophy is to represent the relations between
variables and functions in the same way that you would associate client and
server links between objects, orientated around the framework of object-
orientated data modelling. As all objects in RooFit are self documenting,
it enables objects to have unique identifiers and complex descriptions right
from the get go, and the relation between these objects made clear.

As well as creating your desired model, with signal and as many back-
ground components as required, one is able to make uses of data in this
environment in several ways. The simplest way is to generate toy monte
carlo events about your model, including statistical fluctuations to a user
preset degree. If one wishes to take a more frequentist approach they can
simply create more of these toy monte carlo sets but the advantage of this
system is that one is not restricted to using a strictly frequentist OR bayesian
approach when coming to analysis as they can include components that en-
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Figure 2: A Diagram of the Extension of RooFit to ROOT.

able you to later run separate or even hybrid analyses. Another method
for including data, which is of more interest in this report for it’s future
connotations, is the ability to import unbinned/binned data from ROOT
TTrees. It will initially be seen that from an invariant mass search which
was performed on offical monte carlos samples, RooFit/RooStats can then
be used to try and determine any significance of such a search unbiasedly,
only assuming the shape of the Signal Peak and Background. However the
further reaches of this second method is it’s ability to eventually be used with
real data, allowing RooStats to be used to it’s full potential with multiple
physics channels and datasets.

The end product of the RooFit endeavour is to create a Workspace,
which RooFit uses as a generic container class for all the objects of your
project, easing the task of your analysis projects organisation. The hand over
from RooFit to RooStats is here, with RooFit writing the final composite
model and it’s components, the data, and any priors or details specified, to
the Workspace for Roostats to later read out as required for the analysis
technique chosen.

2 RooStats

RooStats is a collaborative project between ATLAS, CMS, and ROOT, to
provide a consolidated set of statistical tools. It was created for want of sev-
eral features that centre around the ability to have sound statistical inter-
pretations of data in an analysis, and be able to combine different analysis’s
with and even across the experiments involved. When one has a problem,
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it is undesirable to recode the problem each time you want to compare it to
another analysis, or even just look at it with another method, there is al-
ways some information that may be being lost. Roostats is designed for the
purpose of only having the problem coded once, and then it has the ability
to compare the statistical methods, generalise, and bring together the sta-
tistical tools within ROOT. Currently at the time of writing this report, the
RooStats manual is still under construction, however its synopsis will still
be short, as the important details are included where relevant throughout
the rest of the report.

On the premise of eventually wanting to combine channels, it is prudent
to mention the basics of how this would be done. In the example of a simple
likelihood analysis you would have the form in Equation 1, and naively this
can be simply extended to a binned likelihood for multiple channels by the
order of Equation 2. Finally extending the latter to include observables for
the signal and background events, with distributions fs, and fb respectively,
one obtains Equation 3.

Li(ni|r, si, bi) =
e−rsi−bi

ni!
(rsi + bi)ni (1)

L(r) =
�

i

Li(ni|r, si, bi) (2)

L(−→x |r, s, b,−→Os

−→
Ob) =

e−rs−b

n!
(rs + b)n

n�

j=1

(rsfs(−→xj |
−→
Os) + bfb(−→xj |

−→
Ob)) (3)

Once a statistical problem has been described, various methods can then
be easily applied using RooStats, with the results of which are simultaneous
enabling ease of comparison for different methods. An overview of the classes
currently in RooStats can be seen in Figure 3.

3 My Analysis

3.1 Aim

My Aim is to use the tools mentioned above to search for a High Mass Di-
Lepton Resonance with the ATLAS Detector at CERN, initially looking at
e+e− but with the view to combining this with the µ+µ− and γγ channels
at a later stage. For the purpose of this report, I will be using the example
of the Graviton, which is the subject of my PhD Thesis. This provides the
need to create a model, which incorporates many interesting parameters,
like the Mass, and coupling k/Mpl, as well as difficult parameters in regards
to statistical tests, such as the width of the expected signal SigSigma, which
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Figure 3: A Diagram of the Extension of RooFit to ROOT.

for the graviton is very narrow and so causes problems for certain fitting
methods as will be shown.

The initial aims will be to create a robust model for my analysis, trying
various statistical tests to verify this, and extract significances and exclusion
limits for both the official, and in situ generated, monte carlo data. This
includes the extraction of limits for various volumes of integrated luminosity,
and how this plot changes relative to the parameters of my model.

3.2 My Model

3.2.1 Signal

Assuming one knows the shape of your signal peak, which I have rather
naively extracted from the truth of my official monte carlo sample, one can
create a signal peak trivially using RooFit as shown in Figure 4. Note here
I have assumed a Breit Wigner signal shape.

3.2.2 Background

Currently for the Background to my model I am only considering the Drell-
Yan process, as this is the dominant irreducible background to my signal.
Note that here I have used a Landau function, which may have to be revisited
as it causes complications in the fitting process which will be seen. The
function has to be repeatedly integrated each time, in cases of tests that use
a large numbers of toy monte carlo samples.
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Figure 4: Model Signal Peak (BreitWigner::sigPdf(mass,trueMass[300,150,450],sigSigma[10]))

Figure 5: Model Background (Landau::bkgPdf(mass,c0[100],c1[10])
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Figure 6: Composite Model (SUM::model(S[300]*sigPdf,B[3000]*bkgPdf”))

3.2.3 Composite

The composite model is a predefined combination of the two separate pdfs.
The ratio of signal/background has to initially be set, but can be scanned
across with the RooStats tests. I set the ratio to that roughly expected, but
give a range either side of these values to allow some freedom. Note that
one can immediately see the model’s signal and background components
separated by a dashed line so that one can see the proportion of background
under the signal peak easily. Ranges can be given to the number of Signal
and Background events, the Width of the signal peak, and indeed almost
any of the parameters shown. Below is a full model and list of parameters
written into the Workspace for the proceeding tests.

// Observable
mass[120,500]

// Signal & Background Pdf’s
BreitWigner::sigPdf(mass,trueMass[300,150,450],sigSigma[5,20])
Landau::bkgPdf(mass,c0[100],c1[10]
SUM::modelSB(S[300,0,600]*sigPdf,B[3000,0,30000]*bkgPdf

// Background Only Pdf
ExtendPdf::modelBkg(bkgPdf,B)

// Priors for Signal
Uniform::priorS(S)
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Uniform::priorMass(trueMass)
PROD::priorPOI(priorS,priorMass)

// Priors for Nuisance Parameters
Gaussian::prior sigSigma(sigSigma,15,2)
Uniform::prior B(B)
PROD::priorNuisance(prior sigSigma,prior B)

// Full Model Including Systematics
PROD::model(modelSB,priorNuisance)

// Definition of Observables and Parameters of Interest
defineSet(”observables”,”mass”)
defineSet(”parameters”,”B,sigSigma”)
defineSet(”POI”,”S,trueMass”)
// Note for POI, the S and trueMass can be taken separately or together.

3.3 Data Sources

The test data for this report will come from two separate sources. The first
is generated binned monte carlo data, created around the model with preset
error fluctuations, that RooFit will perform and write into the WorkSpace.
This will be used for Bayesian approaches, however for the Frequentist meth-
ods RooStats is able to actually repeat this monte carlo generation with dif-
ferent random seeds, to get the preset required number of toy monte carlos
in those examples. The second source of data will be that of the official
monte carlo samples for the Graviton (Signal), and Drell-Yan (Background)
which I intend to test my user made model against, as if I were looking at
real data. A plot of the initial data written into the Workspace for both the
model generated monte carlo, and the official monte carlo can be found in
Figures 7, and 8, respectively. Note that these plots are data with Signal +
Background in them.

4 Statistical Tests used in this Report

4.1 Profile Likelihood Calculator

The Profile Likelihood Calculator is a bayesian interval estimation and hy-
pothesis testing method using MINUIT/MINOS, which essentially requires
a fit to be made to the model twice, once with everything floating, and once
with the signal fixed to zero. It incorporates Wilks’ theorem that states;
asymptotically the distribution of Equation 5 approaches a chi-square dis-
tribution, with the number of degrees of freedom equal to the number of
parameters of interest.
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Figure 7: Monte Carlo Data, Generated around the Model

Figure 8: Official Monte Carlo Data

� =
L(x|θrO,

ˆ̂
θs)

L(x|θ̂r, θ̂s)
(4)

−2logλ(θO) = −2log
f(x|θO)

f(x|θbest(x))
(5)

4.2 Hybrid Calculator

The Hybrid Calculator, is a Frequentist hypothesis testing calculator with
Bayesian integration of nuisance parameters. This method is based on sam-
pling toy monte carlos around a test statistic, Q, for the Background Only,
and Signal+Background Hypothesis. The test statistic is the likelihood ra-
tio by default, shown in equation 6, but can optionally be set to the number
of events, or the profile likelihood ratio which are all performed in this re-
port. The test returns a HypoTestResult with the hypothesis p-values; CLb,
CLsb, and the ratio of these which gives you CLs along with it’s significance.
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This test is based on the Frequentist method as it uses a preset number of
toy monte carlo (usually around 5000), bus has a Bayesian element in the
form of Cousins-Highland integration of the nuisance parameters. Note that
the toys are created by generating data around their pdf’s while varying the
nuisance parameters.

Q =
L(s + b)

L(b)
(6)

4.3 Three Test Comparison

One can also perform multiple tests and plot them on the same graph for
comparison of methods. Looked at here with be the 2D Profile Likelihood
(Blue Contour), Feldman Cousins (Red Boxes), and Markov Chain Monte
Carlo (MCMC)(Black Outline Contour) methods. The 2D Profile Likelihood
is simply the intersection of two 1D Profile Likelihood tests, one for each
of the parameters of interest, and seems therefore to be the most robust of
the tests looked at here. Feldman Cousins uses Neyman construction with
likelihood ratio ordering rule, WILL ADD TO AT A LATER DATE. MCMC
is a Bayesian Approach that incorporates Markov Chain Monte Carlo, WILL
ADD TO AT LATER DATE.

4.4 Combination Run

The only original test in this report, written by the author to try and emu-
late a H to ττ example for combining the WorkSpaces containing different
datasets, based around the same model albeit optimised for the test mass
hypothesis of the WorkSpace. The aim of this test was to be two-fold;
Firstly, for the case where the data set is monte carlo generated around
the model within each WorkSpace, the Combination Run macro plots sig-
nal significance from the profile likelihood tests for each WorkSpace. The
result of this should be interpreted as the expected significance if the signal
were found at that mass, with a given integrated luminosity (200pb−1 for all
cases here). The Second use of this macro is if instead of monte carlo data
generated around the model each time, one used the Official Monte Carlo
data with Signal at 300 GeV for all of the Workspaces, while still varying
the models Signal peak trueMass, then the result should be interpreted as
the expected significance one would see given some integrated luminosity, if
the Graviton existsed at 300 GeV.
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5 Statistical Testing

5.1 Simple Example

First of all I give the example of a very simple model created in RooFit, with
the results which using the suite of statistical tests I will be doing on my
own model are shown in Appendix A. Here all of the tests seem to work well,
and all are performed without warnings or errors in the terminal output.

5.2 Model + Generated Data

Here I introduce my own Model based on the Physics of the Graviton to
e+e−, using Monte Carlo generated about it as the dataset, I will only
include here the main points for discussion, but all relevant plots can be
found in Appendix B.

5.2.1 Hybrid Calculator

Upon running the Hybrid Calculator, for every Toy Monte Carlo Generated,
one receives the output line “INFO:NumericIntegration – RooRealIntegral ::
init(bkgPdf Int[mass]) using numeric integrator RooIntegrator1D to Calcu-
late Int(mass)” This I have pinned down to the use of a Landau Function for
the background, and while everything still works it slows the process down.
As well as the problem of using the Landau function, from Figure 16 one
can see that if the nuisance parameters are not considered in the hypothesis
fit something goes wrong, but in reality it would make more sense to al-
ways include nuisance parameters where possible, especially as the point in
the Hybrid Calculator is to be Hybrid by integrating those parameters out.
My initial thoughts on another reason for this though could be because the
signal width, sigSigma, is so small, that it gets to the point where you can
find a fit anywhere, the width of the signal peak approaches the width of a
bin, so any tiny fluctuation above normal becomes a possible fit, and you
cannot get a good fit anywhere. Indeed by increasing the sigSigma to an
unreasonably large value that no longer represents the physics, the Hybrid
Calculator returns a more sensible plot with nuisance parameters turned
off. In Figures 17 & 18 there is good overlap between the distributions and
one gets an 89% signal result confidence level, with σ:1.21177, and a test
significance (1-Cb) of 0.8872 which seems positive. But the test statistics
now seem to have a flat distribution, where as I would have expected them,
possible falsely so, to be of the same distribution shape as the case where
the prior nuisance is turned off. The reason for this I can only attribute to
being because the Signal and Background event priors are Uniform, and I
do not know whether this a correct assmuption, or the prior for the number
of signal/background events should be distributed in the same form as that
of their respective pdf, i.e. for the Breit Wigner signal shape, should the
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prior S distribution be Uniform, or also of a Breit Wigner Shape? Initially
experimenting by using a Landau function as the Prior for B, as well as the
Background Pdf, seems to disrupt most of the statistical tests.

5.2.2 Three Test Comparison

The most robust of the tests seems to be the 2D profile Likelihood test
as it consistently succeeds to give a contour. In Figure 19 it can be seen
that the possible mass range is very limited as you would expected for such
an obvious signal, whereas the amount of signal can vary +/- 50 events.
The main problems are faced with the other two tests, where varying the
sigSigma appropriately to allow random walks through the parameter space
seems to be the trouble with constant warnings during the MCMC fit saying
that the sigSigma parameter keeps going out of bounds, meaning that the
test is trying to vary it to explore the parameter space fully and is unable
because of the narrow range it is allowed. Using a BreitWigner function for
the Signal Shape may also partly be the problem as the RooStats tests seem
to favour Gaussian shapes, I have still been unable to solve this problem.
Also again using the Landau function to describe the background seems to
slow down the process.

5.2.3 Combination Run

This macro is successful in producing the distribution of significances and is
what one would expect, with the significance continually rising with Signal
Peak Mass, as this in turn means a lower background around the peak
and so clearer signal. However I am uncomfortable with just how high the
significances are, and I fear this is simply due to the nature of the signal
being too obvious over the background, which is an inherent issue in this
search, if the parameters are as expected, then there is no trouble what so
ever to find the resonance.

5.3 Model + Official Monte Carlo Data

Here I will repeat the same tests as in the previous section but using instead
for data, the Official Monte Carlo of the 300 GeV Graviton and 120-500
GeV Drell-Yan Channel. As before only points of interest will be discussed
here, and all relevant plots can be found in Appendix C.

5.3.1 Hybrid Calculator

Once again performing the test without nuisance parameters returns a non-
sense result, the distributions are well separated with no overlap around the
test statistic, and a significance of infinite is returned. Including the nuisance
parameters produces a plot that does make sense, but has the unexpectedly
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flat distributions once again. The result for the likelihood ratio (test statis-
tic = 1) returns a no signal result unfortunately, but with a CLsb:0 which
usually means and indeed as the macro recommends, maybe more toy monte
carlo should be used (even though I was already using 5000). The result for
the number of events (test statistic = 2) returns a positive signal result with
65% confidence level, σ:1.88671 and test significance = 0.9704.

5.3.2 Three Test Comparison

In the case of the Official Graviton Sample in Figure 27, more or less the
same results are found, with the allowed mass being in a narrow region
while the number of signal events has some possible range, only this time
the number of signal events are lower, which merely reflects the differences
in the official to crudely model generated monte carlo.

5.3.3 Combination Run

The Combination macro in this case should be interpreted as the returned
profile likelihood significance for the model, given the existence of a 300
GeV Graviton. As expected in Figure 28 the significance at model masses
far away from 300 GeV on both sides are low, being highest at the correct
mass, and interestingly +/- 50 GeV of the trueMass in the dataset. To better
visualise the models within each workspace here, you may find the model and
data for each WorkSpace the macro used, in Appendix D. One final thing I
tried, as the significances seemed uncomfortably high, was to say, what if the
number of signal events were actually far less than we expected, 25% of what
the Official monte carlo was saying, which approached the generated monte
carlo of the model case (See Figure 37, Appendix D). The effect of using
this reduced dataset can be seen in Figure 29 (Back in Appendix C), and
shows much lower significances but still of the same form, showing that even
though the significances were very high in the previous case, the plot does
change logically with reduced data so the tests do appear to be correct. It
simply means that other than something going wrong, the inherent problem
of the signal being very clear over the background gives these very high
significances.

6 Summary of Current Questions, Issues & Prob-
lems

• Landau Function representing Background pdf causes problems. What
substitute could be used? Maybe doing a manual fit would expose
where/why the fit is going wrong? (Talk to Samir Ferrag)
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• Narrow Width of Signal Peak creates difficulty fitting. How can this
be solved while remaining true to Physics? Initial thoughts further
reduce the size of the binning so width is comparatively large.

• Signal is very clear over background, so always going to get high sig-
nificances. As it is clear that the search would be trivial, need to
turn attention to minimum number of signal events to reach 3σ, 5σ

discovery, given the user made model. This is next step.

• Leading on from the previous point, use more Official samples as they
arrive at different masses and width’s, how does this change?

• Why does distribution around the test statistic in the Hybrid test
go from a gaussian (like) distribution to a completely flat distribution
when the (admittedly uniform) prior nuisance parameters are included.
As this is of importance what form should the Prior B and Prior S
have? (Ask Glen Cowan).

• All of the above, will hopefully result in the FC and MCMC tests
finally working for my model as these are the tests that properly scan
parameter space, and so I am keen to fix, as testing different parameter
hypothesis’ is my long term aim for the project, aided greatly with the
eventual arrival of the new Graviton samples.
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A Simple Model

In this Appendix you can find the Figures relating to the Simple Model
Example.

Figure 9: Simple Model

Figure 10: Profile Likelihood Test on Simple Model with Significance
3.27176σ
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Figure 11: Hybrid Calculator Test on Simple Model, for 5000 toy monte
carlo, giving p-value S+B:0.6694, p-value B:0.023, CLs:0.685159, at a sig-
nificance of 1.99539σ

Figure 12: A comparison of the 2D Profile Likelihood, Feldman Cousins,
and MCMC tests
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B Model + Generated Data

In this Appendix you can find the Figures relating to My Model with gen-
erated Monte Carlo used for the dataset.

Figure 13: Model + Generated Monte Carlo Data

Figure 14: ProfileLikelihood Test with trueMass as Parameter of Interest, at
90% two-sided upper CL interval [299.078;301.419], test gives a significance
estimation of 17σ
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Figure 15: ProfileLikelihood Test with Number of Signal Events as Param-
eter of Interest, at 90% two-sided upper CL interval [212.036;298.392], test
gives a significance estimation of 17σ

Figure 16: Hybrid Calculator with test stat = 1 (Likelihood Ratio), 5000
toy monte carlo samples were used, and Nuisance Parameters turned OFF.
The calculator tests the hypothesis at specific values of the parameters;
SignalWidth(15GeV), SignalN(300), BkgN(3000), and gives a significance
estimation of infσ, for CLb:1, CLsb:0.089 CLs:0.089
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Figure 17: Hybrid Calculator with test stat = 1 (Likelihood Ratio), 5000
toy monte carlo samples were used, and Nuisance Parameters turned ON.
The calculator tests the hypothesis at specific values of the parameters;
SignalWidth(15GeV), SignalN(300), BkgN(3000), and gives a significance
estimation of 0.723σ, for CLb:0.2348, CLsb:0.0986 CLs:0.42029

Figure 18: Hybrid Calculator with test stat = 2 (Number of Events), 5000
toy monte carlo samples were used, and Nuisance Parameters turned ON.
The calculator tests the hypothesis at specific values of the parameters;
SignalWidth(15GeV), SignalN(300), BkgN(3000), and gives a significance
estimation of 1.21177σ, for CLb:0.1128, CLsb:0.1004, CLs:0.89
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Figure 19: Three Tests, however only the 2D Profile Likelihood Test was
successful, shown is the 90% confidence interval

Figure 20: Combination of WorkSpaces to give model significance with vary-
ing Graviton Mass
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C Model + Official Monte Carlo Data

In this appendix you can find the Figures relating to My Model with the
Official Graviton and Drell-Yan Monte Carlo samples used for the dataset.

Figure 21: Model + Official Monte Carlo Data

Figure 22: ProfileLikelihood Test trueMass as Parameter of Interest, at
90% two-sided upper CL interval [298.478;301.033], test gives a significance
estimation of 18σ
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Figure 23: ProfileLikelihood Test with Number of Signal Events as Param-
eter of Interest, at 90% two-sided upper CL interval [101.726;152.301], test
gives a significance estimation of 18σ

Figure 24: Hybrid Calculator with test stat = 1 (Likelihood Ratio), 5000
toy monte carlo samples were used, and Nuisance Parameters turned OFF.
The calculator tests the hypothesis at specific values of the parameters;
SignalWidth(15GeV), SignalN(100), BkgN(1000), and gives a significance
estimation of infσ, for CLb:1, CLsb:0 CLs:0
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Figure 25: Hybrid Calculator with test stat = 1 (Likelihood Ratio), 5000
toy monte carlo samples were used, and Nuisance Parameters turned ON.
The calculator tests the hypothesis at specific values of the parameters;
SignalWidth(15GeV), SignalN(100), BkgN(1000), and gives a significance
estimation of 1.0696σ, for CLb:0.1424, CLsb:0 CLs:0

Figure 26: Hybrid Calculator with test stat = 2 (Number of Events), 5000
toy monte carlo samples were used, and Nuisance Parameters turned ON.
The calculator tests the hypothesis at specific values of the parameters;
SignalWidth(15GeV), SignalN(100), BkgN(1000), and gives a significance
estimation of 1.88671σ, for CLb:0.0296, CLsb:0.0194, CLs:0.6554
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Figure 27: Three Tests, however only the 2D Profile Likelihood Test was
successful, shown is the 90% confidence interval

Figure 28: Combination of WorkSpaces to give model significance with vary-
ing Model Graviton Mass, when a 300 GeV TrueMass Graviton exists
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Figure 29: Combination of WorkSpaces to give model significance with vary-
ing Model Graviton Mass, when a 300 GeV TrueMass Graviton exists but
with 25% of the expected number of events
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D Model Range

In this last appendix you will find then model & data stored in each of the
WorkSpace’s used to compute the significances for the Combination Run
macro.

Figure 30: Model for 150 GeV Graviton with Official 300 GeV Graviton
dataset

Figure 31: Model for 200 GeV Graviton with Official 300 GeV Graviton
dataset
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Figure 32: Model for 250 GeV Graviton with Official 300 GeV Graviton
dataset

Figure 33: Model for 300 GeV Graviton with Official 300 GeV Graviton
dataset
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Figure 34: Model for 350 GeV Graviton with Official 300 GeV Graviton
dataset

Figure 35: Model for 400 GeV Graviton with Official 300 GeV Graviton
dataset
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Figure 36: Model for 450 GeV Graviton with Official 300 GeV Graviton
dataset

Figure 37: Model for 300 GeV Graviton with Official 300 GeV Graviton
dataset but 25% the expected number of signal events
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