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The Standard Model of Particle Physics
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The Success & Challenges of the Standard Model

The standard model makes many predictions that are testable in very 
different experimental environments.
‣ Non-trivial aspects of the theory have been tested to < 1 ppm
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Standard Model Higgs Properties
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Production and Decay of the Standard Model Higgs @ the LHC
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- Gluon-Gluon Fusion dominant production process.
- Vector Boson Fusion (Hqq) ≈ 20% of gg at 120 GeV
- Associated production with W, Z and heavy quarks have

small rate, but can provide trigger independent of H decay

September 26, 2006
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Higgs Searches at the LHC:

Challenges, Prospects, and Developments (page 10)
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outin

The Higgs boson can be produced via 
different interactions.
Production cross section σ depends on 
the unknown Higgs mass
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Fig. 41: The SM Higgs production cross section at
√
s = 7 TeV.
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Fig. 42: The SM Higgs production cross section at
√
s = 14 TeV.
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The Higgs boson then decays in one of 
several possible final states
The fraction of each decay mode also 
depends on the unknown Higgs mass

Standard Model Higgs Properties
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Production and Decay of the Standard Model Higgs @ the LHC
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Fig. 41: The SM Higgs production cross section at
√
s = 7 TeV.
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Fig. 42: The SM Higgs production cross section at
√
s = 14 TeV.

114

 [GeV]HM
100 120 140 160 180 200

Br
an

ch
ing

 ra
tio

s

-310

-210

-110

1
bb

!!

cc

gg

"" "Z

WW

ZZ

LH
C 

HI
GG

S 
XS

 W
G 

20
10

Fig. 35: SM Higgs branching ratios as a function of the Higgs-boson mass.
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Fig. 36: SM Higgs total width as a function of the Higgs-boson mass.
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Triggering

Higgs cross-section is ~10 pb

Total cross-section for proton-
proton collisions is ~100 mb
(most interactions are not interesting)

s/b ~ 10-10 !

For each combination of 
production and decay, a 
“search” is performed.
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Cross-sections and event rates
From the many, many collision events, we impose some criteria to 
select n candidate signal events.  We hypothesize that it is 
composed of some number of signal and background events.

The number of events that we expect from a given interaction 
process is given as a product of 
‣ L : a time-integrated beam intensity (units 1/cm2) that serves as a measure 

of the amount of data that we have collected or the number of trials we 
have had to produce signal events

‣ σ : “cross-section” (units cm2) a quantity that can be calculated from theory
‣ ε : fraction of signal events selected by selection criteria 

The selection efficiency and the theoretical cross-section have 
experimental and theoretical systematic uncertainties and we 
parametrize them with nuisance parameters α

11

s = L�(α)σ(α)

Pois(n|s+ b)
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In addition to the rate of interactions, our theories predict the distributions of 
angles, energies, masses, etc. of particles produced

● we form functions of these called discriminating variables m, 
● and use Monte Carlo techniques to estimate f(m)

In addition to the hypothesized Higgs signal process, there are known 
background processes.
‣ thus, the distribution of f(m) is a mixture model
‣ the full model is a marked Poisson process

12

Theoretical Predictions

P (m|s) = Pois(n|s+ b)
n�

j

sfs(mj) + bfb(mj)

s+ b

signal process background process



Kyle Cranmer (NYU)

Center for 
Cosmology and 
Particle Physics

PhyStat 2011, January, 18, 2011

Example model
Here is an example prediction from search for H→ZZ and H→WW
‣ sometimes multivariate techniques are used

13

A better separation between the signal and backgrounds is obtained at the higher masses. It can also be

seen that for the signal, the transverse mass distribution peaks near the Higgs boson mass.
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Figure 3: The transverse mass as defined in Equation 1 for signal and background events in the l
+

l
−νν̄

analysis after all cuts for the Higgs boson masses mH = 200, 300, 400, 500 and 600 GeV.

The sensitivity associated with this channel is extracted by fitting the signal shape into the total cross-

section. The sensitivity as a function of the Higgs boson mass for 1fb
−1

at 7 TeV can be seen in Fig. 4

(Left).

3.2 H → ZZ → l
+
l
−
bb̄

Candidate H → ZZ → l
+

l
−

bb̄ events are selected starting from events containing a reconstructed primary

vertex consisting of at least 3 tracks which lie within ±30 cm of the nominal interaction point along the

beam direction. There must be at least two same-flavour leptons, with the invariant mass of the lepton

pair forming the Z candidate lying within the range 79 < mll < 103 GeV.

The missing transverse momentum, E
miss

T
, must be less than 30 GeV, and there should be exactly

9

6 3 Control of background rates from data
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Figure 5: NN outputs for signal (blue squares) and background (red circles) events for
mH = 130 GeV (left) and mH = 170 GeV (right). Both distributions are normalized to 1 fb−1

of integrated luminosity.

is performed. The background measurement in the normalization region is used as a reference
to estimate the magnitude of the background in the signal region by multiplying the measured
background events in the normalization region (NN

bkg) by the ratio of the efficiencies:

NS
bkg =

εS
bkg

εN
bkg

NN
bkg. (1)

For the estimation of the tt background, events has to pass the lepton- and pre-selection cuts
described in section 2. Then, since in all Higgs signal regions the central jet veto is applied, in
this case, the presence of two jets are required.

Table 4 shows the expected number of tt and other background events after all selection cuts
are applied for an integrated luminosity of 1 fb−1. The ratio between signal and background
is quite good for all three channels and the uncertainty in the tt is dominated by systematics
uncertainties for this luminosity.

Final state tt WW Other background
µµ 1090 14 82
ee 680 10 50
eµ 2270 40 125

Table 4: Expected number of events for the three final states in the tt normalization region
for an integrated luminosity of 1 fb−1. It is worth noticing that the expected Higgs signal
contribution applying those selection requirements is negligible.
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Data-driven background determination
Regions in the data with negligible signal 
expected are used as control samples

‣ simulated events are used to estimate 
extrapolation coefficients

‣ extrapolation coefficients have large 
theoretical and experimental uncertainties 

14

4 3 Control of background rates from data

In the case of the eµ final state it is worth to note that the optimization was performed against

tt and WW background only. As a consequence the results obtained are suboptimal since the

background contribution from W+jets is not small and it affects the final cut requirements.

In the NN analysis, additional variables have been used. They are:

• the separation angle ∆η�� between the isolated leptons in η

• the transverse mass of each lepton-Emiss

T
pair, which help reduce non-W background;

• the |η| of both leptons, as leptons from signal events are more central than the ones

from background events;

• the angle in the transverse plane between the Emiss

T
and the closest lepton. This

variable discriminates against events with no real Emiss

T

• the di-lepton final states: ee, µµ or eµ, the background level and composition is quite

different depending on the type.

The mass of the di-lepton system and the the angle between the isolated leptons in the trans-

verse plane are shown in Figures 2, 3 and 4 for the Higgs boson signal (mH = 160 GeV) and for

the main backgrounds. In these distributions, only events that satisfy the lepton identification,

pre-selection cuts and the central jet veto criteria are considered.
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Figure 2: Invariant mass of the di-lepton system (left) and azimuthal angular separation be-

tween the two leptons (right) for the e±e∓ channel after the High Level Trigger, lepton identifi-

cation, pre-selection cuts and the central jet veto for a SM Higgs with mH = 160 GeV.

Figure 5 shows the neural network outputs for the mass hypotheses of mH = 130 GeV and

mH = 170 GeV. The distributions are representative of other mass regions. There is a clear

shape difference between signal and background events for both mass scenarios, although

there is no region completely free of background. Vertical lines indicate the cut values used.

3 Control of background rates from data
3.1 tt and WW normalization from data
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Figure 10: Flow chart describing the four data samples used in the H →WW (∗) → !ν!ν analysis. S.R
and C.R. stand for signal and control regions, respectively.

Figure 10 summarises the flow chart of the extraction of the main backgrounds. Shown are the four
data samples and how the five scale factors are applied to get the background estimates in a graphical
form. The top control region and theW+jets control regions are considered to be pure samples of top and
W+jets respectively. The normalisation for the WW background is taken from the WW control region
after subtracting the contaminations from top andW+jets in theWW control region. To get the numbers
of top andW+jets events in the signal region and in theWW control region there are four scale factors,
αtop and αW+ jets to get the number of events in the signal region and βtop and βW+ jets to get the number
of events in theWW control region. Finally there is a fifth scale factor, αWW to get the number ofWW
background events in the signal region from the number of background subtracted events in the WW
control region.
Table 12 shows the number ofWW , top backgrounds andW+jets events in each of the four regions.

Other smaller backgrounds are ignored for the purpose of estimating the scale factors. The assumption
that the three control regions are dominated by these three sources of backgrounds is true to a level of
97% or higher. No uncertainty is assigned due to ignoring additional small backgrounds.
The central values for the five scale factors are obtained from ratios of the event counts in Table 12,

and are shown in Table 13. Table 14 shows the impact of systematic uncertainties on these scale factors
for the H + 0 j, H + 1 j and H + 2 j analyses, respectively. The following is a list of the systematic
uncertainties considered in the analyses together with a short description of how they are estimated:

• WW and Top Monte Carlo Q2 Scale: The uncertainty from higher order effects on the scale
factors for WW and top quark backgrounds is estimated from varying the Q2 scale of the WW
and tt̄ Monte Carlo samples. SeveralWW and t t̄ Monte Carlo samples have been generated with
different Q2 scales. Both renormalisation and factorisation scales are multiplied by factors of 8
and 1/8 (4 and 1/4) for theWW (t t̄) process. The uncertainties on the relevant scale factors (αWW ,
αtop and βtop) are taken to be the maximum deviation from the central value for these scale factors
and the values for these scale factors in any of the Q2 scale altered samples [19].

• Jet Energy Scale and Jet Energy Resolution: The Jet Energy Scale (JES) uncertainty is taken
to be 7% for jets with |η | < 3.2 and 15% for jets with |η | > 3.2. To estimate the effect of the

23
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Data-driven background determination
Regions in the data with negligible signal 
expected are used as control samples

‣ simulated events are used to estimate 
extrapolation coefficients

‣ extrapolation coefficients have large 
theoretical and experimental uncertainties 
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the main backgrounds. In these distributions, only events that satisfy the lepton identification,
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tween the two leptons (right) for the e±e∓ channel after the High Level Trigger, lepton identifi-

cation, pre-selection cuts and the central jet veto for a SM Higgs with mH = 160 GeV.

Figure 5 shows the neural network outputs for the mass hypotheses of mH = 130 GeV and

mH = 170 GeV. The distributions are representative of other mass regions. There is a clear

shape difference between signal and background events for both mass scenarios, although

there is no region completely free of background. Vertical lines indicate the cut values used.
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and C.R. stand for signal and control regions, respectively.

Figure 10 summarises the flow chart of the extraction of the main backgrounds. Shown are the four
data samples and how the five scale factors are applied to get the background estimates in a graphical
form. The top control region and theW+jets control regions are considered to be pure samples of top and
W+jets respectively. The normalisation for the WW background is taken from the WW control region
after subtracting the contaminations from top andW+jets in theWW control region. To get the numbers
of top andW+jets events in the signal region and in theWW control region there are four scale factors,
αtop and αW+ jets to get the number of events in the signal region and βtop and βW+ jets to get the number
of events in theWW control region. Finally there is a fifth scale factor, αWW to get the number ofWW
background events in the signal region from the number of background subtracted events in the WW
control region.
Table 12 shows the number ofWW , top backgrounds andW+jets events in each of the four regions.

Other smaller backgrounds are ignored for the purpose of estimating the scale factors. The assumption
that the three control regions are dominated by these three sources of backgrounds is true to a level of
97% or higher. No uncertainty is assigned due to ignoring additional small backgrounds.
The central values for the five scale factors are obtained from ratios of the event counts in Table 12,

and are shown in Table 13. Table 14 shows the impact of systematic uncertainties on these scale factors
for the H + 0 j, H + 1 j and H + 2 j analyses, respectively. The following is a list of the systematic
uncertainties considered in the analyses together with a short description of how they are estimated:

• WW and Top Monte Carlo Q2 Scale: The uncertainty from higher order effects on the scale
factors for WW and top quark backgrounds is estimated from varying the Q2 scale of the WW
and tt̄ Monte Carlo samples. SeveralWW and t t̄ Monte Carlo samples have been generated with
different Q2 scales. Both renormalisation and factorisation scales are multiplied by factors of 8
and 1/8 (4 and 1/4) for theWW (t t̄) process. The uncertainties on the relevant scale factors (αWW ,
αtop and βtop) are taken to be the maximum deviation from the central value for these scale factors
and the values for these scale factors in any of the Q2 scale altered samples [19].

• Jet Energy Scale and Jet Energy Resolution: The Jet Energy Scale (JES) uncertainty is taken
to be 7% for jets with |η | < 3.2 and 15% for jets with |η | > 3.2. To estimate the effect of the

23

C.R.S.R.

αWW



Kyle Cranmer (NYU)

Center for 
Cosmology and 
Particle Physics

PhyStat 2011, January, 18, 2011
beta

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Pr
oj

ec
tio

n 
of

 g
pr

io
r

0

0.02

0.04

0.06

0.08

0.1

Constraints on Nuisance Parameters
Many uncertainties have no clear statistical description or it is impractical to provide
Traditionally, we use Gaussians, but for large uncertainties it is clearly a bad choice

‣ quickly falling tail, bad behavior near physical boundary, optimistic p-values, ...
For systematics constrained from control samples and dominated by statistical uncertainty, 
a Gamma distribution is a more natural choice [PDF is Poisson for the control sample]

‣ longer tail, good behavior near boundary, natural choice if auxiliary is based on counting

For “factor of 2” notions of uncertainty log-normal is a good choice
‣ can have a very long tail for large uncertainties

None of them are as good as an actual model for the auxiliary measurement, if available

15

Truncated Gaussian
Gamma
Log-normal

PDF Prior Posterior
Gaussian uniform Gaussian
Poisson uniform Gamma
Log-normal reference Log-Normal

To consistently switch between frequentist, 
Bayesian, and hybrid procedures, need to 
be clear about prior vs. likelihood function
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Combinations within an experiment
Each experiment combines multiple searches for the Higgs to improve power

The Standard Model Higgs imposes relations between the different searches
‣ There is only one Higgs boson with unknown mass mH

● giving rise to a mild form of the look-elsewhere effect (LEE)
‣ There are well defined branching ratios for a given value of mH

‣ There is a common production cross-section σSM for a given value of mH

● though we often choose to consider µ = σ/σSM as a parameter assuming the 
branching ratios are given by Standard Model

In other theories, these relations are violated, exacerbating the LEE

The different searches also suffer from common systematic uncertainties from 
detector performance, luminosity uncertainty, etc.
‣ the ability to incorporating these correlations imposes some constraints in the 

strategy employed by the individual searches

16
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4 3 Control of background rates from data

In the case of the eµ final state it is worth to note that the optimization was performed against

tt and WW background only. As a consequence the results obtained are suboptimal since the

background contribution from W+jets is not small and it affects the final cut requirements.

In the NN analysis, additional variables have been used. They are:

• the separation angle ∆η�� between the isolated leptons in η

• the transverse mass of each lepton-Emiss

T
pair, which help reduce non-W background;

• the |η| of both leptons, as leptons from signal events are more central than the ones

from background events;

• the angle in the transverse plane between the Emiss

T
and the closest lepton. This

variable discriminates against events with no real Emiss

T

• the di-lepton final states: ee, µµ or eµ, the background level and composition is quite

different depending on the type.

The mass of the di-lepton system and the the angle between the isolated leptons in the trans-

verse plane are shown in Figures 2, 3 and 4 for the Higgs boson signal (mH = 160 GeV) and for

the main backgrounds. In these distributions, only events that satisfy the lepton identification,

pre-selection cuts and the central jet veto criteria are considered.
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Figure 2: Invariant mass of the di-lepton system (left) and azimuthal angular separation be-

tween the two leptons (right) for the e±e∓ channel after the High Level Trigger, lepton identifi-

cation, pre-selection cuts and the central jet veto for a SM Higgs with mH = 160 GeV.

Figure 5 shows the neural network outputs for the mass hypotheses of mH = 130 GeV and

mH = 170 GeV. The distributions are representative of other mass regions. There is a clear

shape difference between signal and background events for both mass scenarios, although

there is no region completely free of background. Vertical lines indicate the cut values used.

3 Control of background rates from data
3.1 tt and WW normalization from data

C.R.S.R.

αWW

The theory imposes the same relationships among searches performed by 
different experiments (eg. ATLAS and CMS)
‣ uncertainties associated with detector performance are uncorrelated

There is a long history of combining Higgs searches across experiments
‣ At LEP collider, combining four experiments (around 1999)
‣ At Tevatron, combining two experiments

Combinations at the LHC pose new challenges -- toy exercise in 2010
‣ RooStats: a new tools to address these challenges [see talk by G. Schott, Wed.]

However, we use the same theoretical tools for 
predicting the rates and distributions associated 
with the signal and several backgrounds
‣ Even for data-driven approaches, we often 

rely on simulation for extrapolation
‣ requires coordination between experiments

Combinations across experiments

17
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The 2010 ATLAS+CMS Higgs Combination Exercise
The exercise was based on “toy” data and models, though realistic in complexity

‣ An intense effort between in June 2010, toy results shown July 6
‣ Initial meetings were mainly focused on

● aligning language, philosophy, strategy, and priorities.
● discussion practical and technical issues

Early on we decided the initial combination would be based on H→WW+0j and 
that the analyses would be number counting in a few channels
‣ attempt to provide inputs in a technology neutral way as well as a RooStats 

workspace format
‣ early discussions on form of constraint terms (Gaussian, gamma, lognormal)
‣ later discussions on methods, test statistics, etc.

Took ~1 month to prepare and validate inputs
‣ Four days from the time the inputs were shared to final results!
‣ Very impressive and encouraging exercise... but still an exercise.
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Tables, Formulae, and Workspaces
The ATLAS input:

‣ Poisson terms 3 signal regions and 6 control regions
‣ Uncertainties in extrapolation coefficients treated with truncated Gaussians and 

individual systematics on extrapolation coefficients were summed in quadrature
● thus, unable to identify any correlated systematic (eg. theory uncertainty)

‣ after discussions, decided to use this approach for initial exercise, but the need to 
evolve parametrization for real combination was recognized.
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June 6, 2010 – 13 : 40 DRAFT 4

where the products run over jet multiplicity and final state lepton flavor. The various contributions to the91

Likelihood are given by92
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where P(N|n) is the Poisson probability to observe N events given n expected, N
j
X is the number of93

events observed in region X (with X = S R,CR, T B, LL, corresponding to the Signal Region, WW control94

region, top control region, or Loose Lepton control region, respectively) for jet multiplicity j, parameters95

like n
j

tt
(T B) indicate the fitted number of events for the background indicated in the subscript in the96

control region indicated by the superscript, L denotes the integrated luminosity, σ
j
DY(S R) (σ

j
DY(CR)) is97

the predicted cross-section for the Drell-Yan process in the signal region (main WW control region), and98

n
j
s(X) is the expected number of signal events in region X for jet multiplicity j. This last quantity is given99

by100

n
exp
s = µ ×L × σ × BR × ε × (νee f f )ne × (ν

µ
e f f

)nµ × ν j
jets
× νL (6)

where σ× BR is the predicted cross-section times branching ratio, ε is the signal efficiency, ne (nµ) is the101

number of electrons (muons) in the given signal region or control region, and ν
j
jets is a single nuisance102

parameter for each jet multiplicity j representing the contributions to the signal efficiency uncertainty103

which arise from both theoretical errors and uncertainties related to the reconstruction of jets. Note that104

the above formula for the Likelihood function only indicates the eµ channel; the corresponding expres-105

sions for the same-flavor channels, L
j,ee
Pois

and L
j,µµ
Pois

, are similar except that the values of the expected106

backgrounds in the various regions are given by the corresponding value in the eµ channel times a ra-107

tio of cross-sections. (So, for example, α
j
WW

n
j
WW

(CR) in the Poisson term for the signal region above108

would be replaced by α
j
WW

n
j
WW

(CR)× (σ
j
WW

(S R, ee)/σ
j
WW

(S R, eµ)) for the case of the ee channel.) Also109

note that, since the W+jets background in the signal region for the H + 2 j analysis is small, the terms110

corresponding to the W+jets control sample are absent from the Likelihood for the H + 2 j channel.111

The toy Monte Carlo outcomes used to study the sensitivity calculation here explicitly include ran-112

dom Poisson counts in these control regions and re-sampling of the Gaussian constraint terms for the113

nuisance parameters. The resulting limits therefore include the contributions to the background uncer-114

tainty arising from the finite number of events expected in the control regions as well as the contributions115

arising from the extrapolation of the background estimate from the control regions to the signal region.116

2.2 H → ZZ → 4&117

Only a few events are expected in the H → ZZ → 4& channel in 1 fb−1 of 7 TeV collisions. Therefore,118

although previous work on this channel has included detailed studies of fitting algorithms to normalize119

the background under the mass peak, only simple number counting is used here. No control samples are120

considered in the present calculation. The Likelihood function consists of three Poisson terms, corre-121

sponding to the 4e, 2e2µ, and 4µ channels, respectively:122

LZZ = P(N4e|n
exp
4e

) × P(N2e2µ|n
exp
2e2µ

) × P(N4µ|n
exp
4µ

). (7)
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Tables, Formulae, and Workspaces
The CMS input:
‣ cleanly tabulated effect on each background due to each source of systematic 
‣ systematics broken down into uncorrelated subsets
‣ used lognormal distributions for all systematics, Poissons for observations

Started with a txt input, defined a mathematical representation, and then prepared 
the RooStats workspace
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3

Input tables

• txt tables are attached to the agenda
• snippet:

• comments will help understand which nuisance 
parameter corresponds to what:

although for technical combination all we need to know is which ones have to be correlated between ATLAS and CMS

4
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The full model has
  12 observables and
  50 parameters 

At this point, no correlated 
systematics across experiments
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Comparison of statistical methods
RooStats supports several statistical methods used in high energy physics

‣ Common test statistics 
● simple likelihood ratio (LEP)
● ratio of profiled likelihoods (Tevatron) 
● profile likelihood ratio (LHC)

‣ Sampling strategies
● toy MC randomizing nuisance parameters according to 

• a Bayes-frequentist hybrid (prior-predictive)
● toy MC with nuisance parameters fixed (Neyman Construction)
● assuming asymptotic distribution (Wilks and Wald)

‣ Bayesian (different priors for the parameter of interest)

During the next four days, we tried to obtain results with as many of 
these methods as possible
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λ(µ) = Ls+b(µ, ˆ̂ν)/Ls+b(µ̂, ν̂)

QLEP = Ls+b(µ = 1)/Lb(µ = 0)

QTEV = Ls+b(µ = 1, ˆ̂ν)/Lb(µ = 0, ˆ̂ν�)

π(ν)
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Results of exercise
Despite the complexity, we were able to go from inputs to results in 4 days!

‣ not only did we get results for the combination, we did it with six techniques 
‣ a testament to the power and flexibility of the workspace technology and the 

RooFit/RooStats tools 
The results were based upon loosely representative toy models. The CMS results were more 
powerful, as they were using multivariate analyses and systematic uncertainties are not so extreme.
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Some lessons learned
In general, this combination has been a great success

‣ in our first meeting we were already discussing correlated systematics between ATLAS and CMS

We need to identify each of the backgrounds estimated from theory, because 
‣ they are affected by luminosity uncertainty
‣ their theoretical uncertainties are correlated between experiments

● separate production modes: the qg, qQ, and gg parts uncertainties in the parton 
density functions affect different processes in a different way, lumping them all 
together may be missing some essential physics.

We need to separate and individually parametrize the effect of individual systematics 
‣ the ability to correlate across experiments (and for different channels within the same 

experiment) requires the ability to relate parameters in the model in a consistent way
● consistent procedures are needed for assessing effect of common systematics

Attempt to directly incorporate model for control samples when feasible
‣ superior to approximating by Gaussian, Gamma, etc. (though often not feasible)
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Next Steps
Since our toy exercise in July, ATLAS and CMS have formed an 
official LHC Higgs Combination Group 
‣ kick-off meeting was in December
‣ first working meeting was last week

● focusing on validation of RooStats  [link]

The goal for the group is to show a combined ATLAS+CMS Higgs 
combination this summer -- with real data!

Good luck to the LHC-HCG in 2011!
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Backup
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Essential Higgs Physics

Higgs mechanism: 
‣ Add   , a new [complex doublet of] scalar field

[s] with specific potential     and 
interactions with W,Z
● generates masses for W,Z
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φ =
1√
2
(v + h)

vacuum expectation v

fluctuations

Goldstone modes
(become longitudinal 
polarizations of 
massive W,Z)
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Interactions with fermions:

We know that the W, Z bosons 
are massive, but explicit mass 
terms for the W,Z break the 
electroweak gauge symmetry.
‣ massless W,Z only have 
transverse polarizations

● coupling arbitrary, but proportional to mass
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“Power-Constrained” limits
The ATLAS+CMS statistics committees are looking into a different way 
to avoid setting limits where we have no sensitivity (instead of CLs)
‣ idea: don’t quote limit below some threshold defined by an N-σ 

downward fluctuation of b-only pseudo-experiments
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Comments and Recommendations for Statistical Techniques

We review a collection of statistical tests used for a prototype problem, characterize their

generalizations, and provide comments on these generalizations. Where possible, concrete

recommendations are made to aid in future comparisons and combinations with ATLAS and

CMS results.

1 Preliminaries

A simple ‘prototype problem’ has been considered as useful simplification of a common HEP

situation and its coverage properties have been studied in Ref. [1] and generalized by Ref. [2].

The problem consists of a number counting analysis, where one observes non events and

expects s + b events, b is uncertain, and one either wishes to perform a significance test

against the null hypothesis s = 0 or create a confidence interval on s. Here s is considered the

parameter of interest and b is referred to as a nuisance parameter (and should be generalized

accordingly in what follows). In the setup, the background rate b is uncertain, but can

be constrained by an auxiliary or sideband measurement where one expects τb events and

measures noff events. This simple situation (often referred to as the ‘on/off’ problem) can be

expressed by the following probability density function:

P (non, noff |s, b) = Pois(non|s + b) Pois(noff |τb). (1)

Note that in this situation the sideband measurement is also modeled as a Poisson process

and the expected number of counts due to background events can be related to the main

measurement by a perfectly known ratio τ . In many cases a more accurate relation between

the sideband measurement noff and the unknown background rate b may be a Gaussian with

either an absolute or relative uncertainty ∆b. These cases were also considered in Refs. [1, 2]

and are referred to as the ‘Gaussian mean problem’.

While the prototype problem is a simplification, it has been an instructive example. The

first, and perhaps, most important lesson is that the uncertainty on the background rate b
has been cast as a well-defined statistical uncertainty instead of a vaguely-defined systematic

uncertainty. To make this point more clearly, consider that it is common practice in HEP to

describe the problem as

P (non|s) =

�
db Pois(non|s + b)π(b), (2)

where π(b) is a distribution (usually Gaussian) for the uncertain parameter b, which is

then marginalized (ie. ‘smeared’, ‘randomized’, or ‘integrated out’ when creating pseudo-

experiments). But what is the nature of π(b)? The important fact which often evades serious

consideration is that π(b) is a Bayesian prior, which may or may-not be well-justified. It

often is justified by some previous measurements either based on Monte Carlo, sidebands, or

control samples. However, even in those cases one does not escape an underlying Bayesian

prior for b. The point here is not about the use of Bayesian inference, but about the clear ac-

counting of our knowledge and facilitating the ability to perform alternative statistical tests.

1

Let’s consider a simplified problem that has been studied quite a bit to 
gain some insight into our more realistic and difficult problems
‣ number counting with background uncertainty

● in our main measurement we observe non with s+b expected

‣ and the background has some uncertainty
● but what is “background uncertainty”?  Where did it come from?
● maybe we would say background is known to 10% or that it has some pdf

• then we often do a smearing of the background: 

● Where does           come from?
• did you realize that this is a Bayesian procedure that depends on some prior 

assumption about what b is?

Incorporating systematics
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We review a collection of statistical tests used for a prototype problem, characterize their

generalizations, and provide comments on these generalizations. Where possible, concrete

recommendations are made to aid in future comparisons and combinations with ATLAS and

CMS results.

1 Preliminaries

A simple ‘prototype problem’ has been considered as useful simplification of a common HEP

situation and its coverage properties have been studied in Ref. [1] and generalized by Ref. [2].

The problem consists of a number counting analysis, where one observes non events and

expects s + b events, b is uncertain, and one either wishes to perform a significance test

against the null hypothesis s = 0 or create a confidence interval on s. Here s is considered the

parameter of interest and b is referred to as a nuisance parameter (and should be generalized

accordingly in what follows). In the setup, the background rate b is uncertain, but can

be constrained by an auxiliary or sideband measurement where one expects τb events and

measures noff events. This simple situation (often referred to as the ‘on/off’ problem) can be

expressed by the following probability density function:

P (non, noff |s, b) = Pois(non|s + b) Pois(noff |τb). (1)

Note that in this situation the sideband measurement is also modeled as a Poisson process

and the expected number of counts due to background events can be related to the main

measurement by a perfectly known ratio τ . In many cases a more accurate relation between

the sideband measurement noff and the unknown background rate b may be a Gaussian with

either an absolute or relative uncertainty ∆b. These cases were also considered in Refs. [1, 2]

and are referred to as the ‘Gaussian mean problem’.

While the prototype problem is a simplification, it has been an instructive example. The

first, and perhaps, most important lesson is that the uncertainty on the background rate b
has been cast as a well-defined statistical uncertainty instead of a vaguely-defined systematic

uncertainty. To make this point more clearly, consider that it is common practice in HEP to

describe the problem as

P (non|s) =

�
db Pois(non|s + b)π(b), (2)

where π(b) is a distribution (usually Gaussian) for the uncertain parameter b, which is

then marginalized (ie. ‘smeared’, ‘randomized’, or ‘integrated out’ when creating pseudo-

experiments). But what is the nature of π(b)? The important fact which often evades serious

consideration is that π(b) is a Bayesian prior, which may or may-not be well-justified. It

often is justified by some previous measurements either based on Monte Carlo, sidebands, or

control samples. However, even in those cases one does not escape an underlying Bayesian

prior for b. The point here is not about the use of Bayesian inference, but about the clear ac-

counting of our knowledge and facilitating the ability to perform alternative statistical tests.

1

The “on/off” problem
Now let’s say that the background was estimated from some control 
region or sideband measurement.  
‣ We can treat these two measurements simultaneously:

● main measurement: observe non with s+b expected
● sideband measurement: observe noff with      expected

● In this approach “background uncertainty” is a statistical error
● justification and accounting of background uncertainty is much more clear

How does this relate to the smearing approach?

‣ while        is based on data, it still depends on a prior 
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Comments and Recommendations for Statistical Techniques

We review a collection of statistical tests used for a prototype problem, characterize their

generalizations, and provide comments on these generalizations. Where possible, concrete

recommendations are made to aid in future comparisons and combinations with ATLAS and

CMS results. These comments are quite general, and each experiment is expected to have

well-developed techniques that are (hopefully) consistent with what is presented here.

1 Preliminaries

A simple ‘prototype problem’ has been considered as useful simplification of a common HEP

situation and its coverage properties have been studied in Ref. [1] and generalized by Ref. [2].

The problem consists of a number counting analysis, where one observes non events and

expects s + b events, b is uncertain, and one either wishes to perform a significance test

against the null hypothesis s = 0 or create a confidence interval on s. Here s is considered the

parameter of interest and b is referred to as a nuisance parameter (and should be generalized

accordingly in what follows). In the setup, the background rate b is uncertain, but can

be constrained by an auxiliary or sideband measurement where one expects τb events and

measures noff events. This simple situation (often referred to as the ‘on/off’ problem) can be

expressed by the following probability density function:

P (non, noff |s, b)� �� �
jointmodel

= Pois(non|s+ b)
� �� �
mainmeasurement

Pois(noff |τb)� �� �
sideband

. (1)

Note that in this situation the sideband measurement is also modeled as a Poisson process

and the expected number of counts due to background events can be related to the main

measurement by a perfectly known ratio τ . In many cases a more accurate relation between

the sideband measurement noff and the unknown background rate b may be a Gaussian with

either an absolute or relative uncertainty ∆b. These cases were also considered in Refs. [1, 2]

and are referred to as the ‘Gaussian mean problem’.

Here we rely heavily on the correspondence between hypothesis tests and confidence

intervals [3], and mainly frame the discussion in terms of confidence intervals.

While the prototype problem is a simplification, it has been an instructive example. The

first, and perhaps, most important lesson is that the uncertainty on the background rate b
has been cast as a well-defined statistical uncertainty instead of a vaguely-defined systematic

uncertainty. To make this point more clearly, consider that it is common practice in HEP to

describe the problem as

P (non|s) =
�

dbPois(non|s+ b)π(b), (2)

where π(b) is a distribution (usually Gaussian) for the uncertain parameter b, which is

then marginalized (ie. ‘smeared’, ‘randomized’, or ‘integrated out’ when creating pseudo-

experiments). But what is the nature of π(b)? The important fact which often evades serious

consideration is that π(b) is a Bayesian prior, which may or may-not be well-justified. It

1

If we were actually in a case described by the ‘on/off’ problem, then it would be better to
think of π(b) as the posterior resulting from the sideband measurement

π(b) = P (b|noff) =
P (noff |b)η(b)�
dbP (noff |b)η(b)

. (3)

By doing this it is clear that the term P (noff |b) is an objective probability density that can
be used in a frequentist context and that η(b) is the original Bayesian prior assigned to b.

Recommendation: Where possible, one should express uncertainty on a parameter as
statistical (eg. random) process (ie. Pois(noff |τb) in Eq. 1).

Recommendation: When using Bayesian techniques, one should explicitly express and
separate the prior from the objective part of the probability density function (as in Eq. 3).

Now let us consider some specific methods for addressing the on/off problem and their
generalizations.

2 The frequentist solution: ZBi

The goal for a frequentist solution to this problem is based on the notion of coverage (or
Type I error). One considers there to be some unknown true values for the parameters s, b
and attempts to construct a statistical test that will not incorrectly reject the true values
above some specified rate α.

A frequentist solution to the on/off problem, referred to as ZBi in Refs. [1, 2], is based on
re-writing Eq. 1 into a different form and using the standard frequentist binomial parameter
test, which dates back to the first construction of confidence intervals for a binomial parameter
by Clopper and Pearson in 1934 [3]. This does not lead to an obvious generalization for more
complex problems.

The general solution to this problem, which provides coverage “by construction” is the
Neyman Construction. However, the Neyman Construction is not uniquely determined; one
must also specify:

• the test statistic T (non, noff ; s, b), which depends on data and parameters

• a well-defined ensemble that defines the sampling distribution of T

• the limits of integration for the sampling distribution of T

• parameter points to scan (including the values of any nuisance parameters)

• how the final confidence intervals in the parameter of interest are established

The Feldman-Cousins technique is a well-specified Neyman Construction when there are
no nuisance parameters [6]: the test statistic is the likelihood ratio T (non; s) = L(s)/L(sbest),
the limits of integration are one-sided, there is no special conditioning done to the ensemble,
and there are no nuisance parameters to complicate the scanning of the parameter points or
the construction of the final intervals.

The original Feldman-Cousins paper did not specify a technique for dealing with nuisance
parameters, but several generalization have been proposed. The bulk of the variations come
from the choice of the test statistic to use.

2

π(b) η(b)
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Separating the prior from the objective model
Recommendation: where possible, one should express 
uncertainty on a parameter as a statistical (random) process
‣ explicitly include terms that represent auxiliary measurements 

in the likelihood
Recommendation: when using a Bayesian technique, one should 
explicitly express and separate the prior from the objective part of 
the probability density function

Example: 
‣By writing 

● the objective statistical model is for the background uncertainty is clear

‣One can then explicitly express a prior        and obtain:

32

If we were actually in a case described by the ‘on/off’ problem, then it would be better to
think of π(b) as the posterior resulting from the sideband measurement

π(b) = P (b|noff) =
P (noff |b)η(b)�
dbP (noff |b)η(b)

. (3)

By doing this it is clear that the term P (noff |b) is an objective probability density that can
be used in a frequentist context and that η(b) is the original Bayesian prior assigned to b.

Recommendation: Where possible, one should express uncertainty on a parameter as
statistical (eg. random) process (ie. Pois(noff |τb) in Eq. 1).

Recommendation: When using Bayesian techniques, one should explicitly express and
separate the prior from the objective part of the probability density function (as in Eq. 3).

Now let us consider some specific methods for addressing the on/off problem and their
generalizations.

2 The frequentist solution: ZBi

The goal for a frequentist solution to this problem is based on the notion of coverage (or
Type I error). One considers there to be some unknown true values for the parameters s, b
and attempts to construct a statistical test that will not incorrectly reject the true values
above some specified rate α.

A frequentist solution to the on/off problem, referred to as ZBi in Refs. [1, 2], is based on
re-writing Eq. 1 into a different form and using the standard frequentist binomial parameter
test, which dates back to the first construction of confidence intervals for a binomial parameter
by Clopper and Pearson in 1934 [3]. This does not lead to an obvious generalization for more
complex problems.

The general solution to this problem, which provides coverage “by construction” is the
Neyman Construction. However, the Neyman Construction is not uniquely determined; one
must also specify:

• the test statistic T (non, noff ; s, b), which depends on data and parameters

• a well-defined ensemble that defines the sampling distribution of T

• the limits of integration for the sampling distribution of T

• parameter points to scan (including the values of any nuisance parameters)

• how the final confidence intervals in the parameter of interest are established

The Feldman-Cousins technique is a well-specified Neyman Construction when there are
no nuisance parameters [6]: the test statistic is the likelihood ratio T (non; s) = L(s)/L(sbest),
the limits of integration are one-sided, there is no special conditioning done to the ensemble,
and there are no nuisance parameters to complicate the scanning of the parameter points or
the construction of the final intervals.

The original Feldman-Cousins paper did not specify a technique for dealing with nuisance
parameters, but several generalization have been proposed. The bulk of the variations come
from the choice of the test statistic to use.
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Comments and Recommendations for Statistical Techniques

We review a collection of statistical tests used for a prototype problem, characterize their

generalizations, and provide comments on these generalizations. Where possible, concrete

recommendations are made to aid in future comparisons and combinations with ATLAS and

CMS results.

1 Preliminaries

A simple ‘prototype problem’ has been considered as useful simplification of a common HEP

situation and its coverage properties have been studied in Ref. [1] and generalized by Ref. [2].

The problem consists of a number counting analysis, where one observes non events and

expects s + b events, b is uncertain, and one either wishes to perform a significance test

against the null hypothesis s = 0 or create a confidence interval on s. Here s is considered the

parameter of interest and b is referred to as a nuisance parameter (and should be generalized

accordingly in what follows). In the setup, the background rate b is uncertain, but can

be constrained by an auxiliary or sideband measurement where one expects τb events and

measures noff events. This simple situation (often referred to as the ‘on/off’ problem) can be

expressed by the following probability density function:

P (non, noff |s, b) = Pois(non|s + b) Pois(noff |τb). (1)

Note that in this situation the sideband measurement is also modeled as a Poisson process

and the expected number of counts due to background events can be related to the main

measurement by a perfectly known ratio τ . In many cases a more accurate relation between

the sideband measurement noff and the unknown background rate b may be a Gaussian with

either an absolute or relative uncertainty ∆b. These cases were also considered in Refs. [1, 2]

and are referred to as the ‘Gaussian mean problem’.

While the prototype problem is a simplification, it has been an instructive example. The

first, and perhaps, most important lesson is that the uncertainty on the background rate b
has been cast as a well-defined statistical uncertainty instead of a vaguely-defined systematic

uncertainty. To make this point more clearly, consider that it is common practice in HEP to

describe the problem as

P (non|s) =

�
db Pois(non|s + b)π(b), (2)

where π(b) is a distribution (usually Gaussian) for the uncertain parameter b, which is

then marginalized (ie. ‘smeared’, ‘randomized’, or ‘integrated out’ when creating pseudo-

experiments). But what is the nature of π(b)? The important fact which often evades serious

consideration is that π(b) is a Bayesian prior, which may or may-not be well-justified. It

often is justified by some previous measurements either based on Monte Carlo, sidebands, or

control samples. However, even in those cases one does not escape an underlying Bayesian

prior for b. The point here is not about the use of Bayesian inference, but about the clear ac-

counting of our knowledge and facilitating the ability to perform alternative statistical tests.
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Goal of Bayesian-frequentist hybrid solutions is to provide a frequentist 
treatment of the main measurement, while eliminating nuisance 
parameters (deal with systematics) with an intuitive Bayesian technique.

Principled version (eg. ZΓ):
‣ clearly state prior        ; identify control samples (sidebands) and use:

Ad-hoc version (eg. ZN):
‣ unable or unwilling to justify       , so go straight to some distribution 

● eg. a Gaussian, truncated Gaussian, log normal, Gamma, etc...
● often the case for real systematic uncertainty (eg. MC generators, different 

background estimation techniques, etc.)

Recommendation: Avoid ad hoc priors if possible.

If we were actually in a case described by the ‘on/off’ problem, then it would be better to
think of π(b) as the posterior resulting from the sideband measurement

π(b) = P (b|noff) =
P (noff |b)η(b)�
dbP (noff |b)η(b)

. (3)

By doing this it is clear that the term P (noff |b) is an objective probability density that can
be used in a frequentist context and that η(b) is the original Bayesian prior assigned to b.

Recommendation: Where possible, one should express uncertainty on a parameter as
statistical (eg. random) process (ie. Pois(noff |τb) in Eq. 1).

Recommendation: When using Bayesian techniques, one should explicitly express and
separate the prior from the objective part of the probability density function (as in Eq. 3).

Now let us consider some specific methods for addressing the on/off problem and their
generalizations.

2 The frequentist solution: ZBi

The goal for a frequentist solution to this problem is based on the notion of coverage (or
Type I error). One considers there to be some unknown true values for the parameters s, b
and attempts to construct a statistical test that will not incorrectly reject the true values
above some specified rate α.

A frequentist solution to the on/off problem, referred to as ZBi in Refs. [1, 2], is based on
re-writing Eq. 1 into a different form and using the standard frequentist binomial parameter
test, which dates back to the first construction of confidence intervals for a binomial parameter
by Clopper and Pearson in 1934 [3]. This does not lead to an obvious generalization for more
complex problems.

The general solution to this problem, which provides coverage “by construction” is the
Neyman Construction. However, the Neyman Construction is not uniquely determined; one
must also specify:

• the test statistic T (non, noff ; s, b), which depends on data and parameters

• a well-defined ensemble that defines the sampling distribution of T

• the limits of integration for the sampling distribution of T

• parameter points to scan (including the values of any nuisance parameters)

• how the final confidence intervals in the parameter of interest are established

The Feldman-Cousins technique is a well-specified Neyman Construction when there are
no nuisance parameters [6]: the test statistic is the likelihood ratio T (non; s) = L(s)/L(sbest),
the limits of integration are one-sided, there is no special conditioning done to the ensemble,
and there are no nuisance parameters to complicate the scanning of the parameter points or
the construction of the final intervals.

The original Feldman-Cousins paper did not specify a technique for dealing with nuisance
parameters, but several generalization have been proposed. The bulk of the variations come
from the choice of the test statistic to use.
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Comments and Recommendations for Statistical Techniques

We review a collection of statistical tests used for a prototype problem, characterize their

generalizations, and provide comments on these generalizations. Where possible, concrete

recommendations are made to aid in future comparisons and combinations with ATLAS and

CMS results.

1 Preliminaries

A simple ‘prototype problem’ has been considered as useful simplification of a common HEP

situation and its coverage properties have been studied in Ref. [1] and generalized by Ref. [2].

The problem consists of a number counting analysis, where one observes non events and

expects s + b events, b is uncertain, and one either wishes to perform a significance test

against the null hypothesis s = 0 or create a confidence interval on s. Here s is considered the

parameter of interest and b is referred to as a nuisance parameter (and should be generalized

accordingly in what follows). In the setup, the background rate b is uncertain, but can

be constrained by an auxiliary or sideband measurement where one expects τb events and

measures noff events. This simple situation (often referred to as the ‘on/off’ problem) can be

expressed by the following probability density function:

P (non, noff |s, b) = Pois(non|s + b) Pois(noff |τb). (1)

Note that in this situation the sideband measurement is also modeled as a Poisson process

and the expected number of counts due to background events can be related to the main

measurement by a perfectly known ratio τ . In many cases a more accurate relation between

the sideband measurement noff and the unknown background rate b may be a Gaussian with

either an absolute or relative uncertainty ∆b. These cases were also considered in Refs. [1, 2]

and are referred to as the ‘Gaussian mean problem’.

While the prototype problem is a simplification, it has been an instructive example. The

first, and perhaps, most important lesson is that the uncertainty on the background rate b
has been cast as a well-defined statistical uncertainty instead of a vaguely-defined systematic

uncertainty. To make this point more clearly, consider that it is common practice in HEP to

describe the problem as

P (non|s) =

�
db Pois(non|s + b)π(b), (2)

where π(b) is a distribution (usually Gaussian) for the uncertain parameter b, which is

then marginalized (ie. ‘smeared’, ‘randomized’, or ‘integrated out’ when creating pseudo-

experiments). But what is the nature of π(b)? The important fact which often evades serious

consideration is that π(b) is a Bayesian prior, which may or may-not be well-justified. It

often is justified by some previous measurements either based on Monte Carlo, sidebands, or

control samples. However, even in those cases one does not escape an underlying Bayesian

prior for b. The point here is not about the use of Bayesian inference, but about the clear ac-

counting of our knowledge and facilitating the ability to perform alternative statistical tests.

1

Hybrid Solutions
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Hypothesis Testing
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Now on a real PROOF cluster with 30 machines
‣ real world example throws millions of toys experiments, does full fit on 50 

parameters for each toy.
‣ also supports producing simple shells scripts for use with GRID or batch queues

Now importance sampling is also implemented, 
‣ following presentation at Banff with particle physics & statistics experts
‣ allows for 1000x speed increase!  
‣ Still being tested in detail
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