More Top Quark Physics and the Trigger Program

Ken Johns 07 November 2006

Given our expertise in muon detectors and triggering, one of the first Run II top physics measurements we performed was the tt
 triangle triangle triangle triangle triggering

production cross section in the μμ channel
Early studies and machinery development

- Measurement of $\sigma_{t\bar{t}}$ using 240 pb⁻¹ (published)
- Measurement of $\sigma_{t\bar{t}}$ using 370 pb⁻¹ (conference)
- Measurement of $\sigma_{t\bar{t}}$ using 370 pb⁻¹ in all dilepton channels including lepton plus track and with improved muon identification (to be published)
- Susan Burke Ph.D. defense in 12/06 or 01/07

Physics backgrounds • $Z/\gamma^* \to \tau\tau \to \mu\mu$ and WW/WZWith intrinsic missing E_T proton Estimated from Monte Carlo Instrumental backgrounds $Z / \gamma^* \to \mu \mu$ antiprotor Fake missing E_T Estimated from Monte Carlo normalized to data ■ *W* + *jets* and *multijet* Fake muon isolation Estimated from data 11/6/2006 K. Johns

4

Efficiencies

Category	Cut	Efficiency	Cum. Efficiency
Muon Identification	Muon ID & Track Match	0.512 ± 0.006	0.512
	$\kappa_{\mu ID}$	1.020	0.522
	$\kappa_{trk-match}$	0.968	9.505
	Muon Track- χ^2	0.995 ± 0.001	0.503
	$\kappa_{trk-\chi^2}$	0.968	0.487
	Opposite Charge	0.888 ± 0.005	0.432
	Muon $p_T > 15 \text{ GeV}$	0.714 ± 0.008	0.308
Channel Orthogonality	Veto on one EM	0.997 ± 0.001	0.308
Trigger		0.924 ± 0.006	0.284
Jets	≥ 2 Jets	0.811 ± 0.009	0.231
	≥ 2 Jets with $p_T > 20$ GeV	0.927 ± 0.006	0.214
Primary Vertex	$ z < 60 \text{ cm}, N_{trk} \ge 3$	0.989 ± 0.003	0.212
	KPV	0.997	0.211
	$ z^{abroot} - z^{reco} < 5 \text{ cm}$	0.994 ± 0.002	0.210
	Kroot-reco	1.000	0.210
Muon Promptness	$ z^{\mu} - z^{Fv} < 1 \text{ cm } \& z^{\mu} - z^{Fv} < 1 \text{ cm}$	0.999 ± 0.001	0.210
	κ_{lv}	0.990	0.208
	Muon DCA Significance	0.866 ± 0.009	0.180
	K _{DCA}	0.988	0.177
Muon Isolation	Rat11 < 0.12 & Rattrk < 0.12	0.729 ± 0.012	0.129
	K _{Iso}	1.001	0.129
Z Fitter	$\chi^2 > 2$	0.788 ± 0.013	0.102
Contour Cut		0.616 ± 0.018	0.063 ± 0.003
	K. Johns		5

11/6/2006

6

- χ^2_{Z} and a contour cut (below) are used to reduce the Z/ γ^* background
 - Cut values optimized using 2400 combination grid search using S/√B significance

Data – Monte Carlo agreement (all dilepton channels combined)

11/6/2006

Top Pair Production Cross Section

Systematic uncertainties

Source	$t\bar{t}$
Primary vertex	± 0.4
$\Delta z(d \emptyset reco, d \emptyset root)$	± 0.2
Lepton promptness	± 0.1
μ ID	± 3.0
μ isolation	± 0.8
$\mu \sigma_{dca}$	± 0.6
μ tracking	± 2.4
χ^2	± 0.2
μ smearing	-0.2 + 0.1
L1 μ trigger	+3.9 - 4.8
L2 μ trigger	+0.2 - 0.4
JES	+5.7 - 7.4
Jet ID	+0.4 - 4.9
Jet energy resolution	-2.5 -1.4
Uncorrelated	± 3.1

9

Category	Yield	Stat Err	Sys Err
WW/WZ	0.16	0.02	+0.07 -0.06
$Z/\gamma^* \ (\mu \text{ or } \tau)$	1.14	0.16	+0.38 -0.30
W/QCD (Isolation Fakes)	0.07	0.04	+0.02 -0.02
Total Bkg	1.37	0.16	+0.47 -0.39
Expected signal	1.55	0.07	+0.20 -0.22
Selected Events	0	_	_

Results for 240 pb⁻¹

10

 $\sigma_{t\bar{t}}$ for the combined $e\mu(8)$, ee(5), and $\mu\mu(0)$ channels

is found by maximizing the likelihood to observe the

$$N_{obs}$$
 in the data given N_{bkg} and ε_{sig}

 $\sigma_{t\bar{t}} = 8.6^{+3.2}_{-2.7}(stat) + 1.1(syst) + 0.6(lumi) \ pb$

11/6/2006

 Combined results for 370 pb⁻¹
eµ (21), ee (5), and µµ (2)
Not including improved muon ID analysis

11/6/2006

Status

- Stefan Anderson is the lead author of the 370 pb⁻¹ cross section PRD
- This PRD will contain all three dilepton channels plus *e+track* and *µ+track* channels
 - These latter require 1 isolated lepton plus 1 isolated track with at least one jet tagged as a b-jet
 - The five channels are not orthogonal so correlations must be determined
- EB approval of this paper is in progress

1	1/6	/20	06

- Precision measurements of the W boson and top quark masses provide a constraint on the Higgs boson mass
- The measurement of the top mass in the dilepton channel is statistically limited but can be used as a consistency check and compared with other channel
 - Early studies and machinery development
 - Measurement of top mass using neutrino weighting using 370 pb⁻¹ (conference)
 - Measurement of top mass using neutrino weighting and matrix element weighting using 370 pb⁻¹ (submitted to PRL)
 - Jeff Temple Ph.D. defense in 11/06

11/6/2006

11/6/2006

Top Mass in the Dilepton Channel

\$ S	ta	rt	W	itł	n i	SO	la	te	d	di	e	oto	on	S
											-			

Cuts that maximize S/B include

- H_T > 122 GeV for *eµ*
- S > 0.15 and E_T^{miss} > 35 GeV for *ee*
- χ^2_{Z} and contour cut in $\mu\mu$
- > 0 b-tagged jets and E_T^{miss} > 35 GeV in *I+track*

TABLE I: Expected and observed dilepton event yields for $t\overline{t}$ production with $m_t = 175$ GeV and the backgrounds from WW and Z production based on Monte Carlo, and from misidentified leptons (mis-id) based on collider data.

Sample	$t\overline{t}$	WW	Z	Mis-id	Total	Data
$\ell\ell$ no-tag	7.2	1.1	2.6	2.2	$13.2^{+2.8}_{-2.1}$	12
$\ell\ell b$ -tag	9.9	0.05	0.12	0.09	10.1 ± 0.9	14
$\ell\ell$ tight	15.8	1.1	2.4	0.5	19.8 ± 0.6	21
$\ell + \mathrm{track}$	11.3	0.02	4.4	0.4	16.2 ± 1.1	15

15

- The general method for both techniques is similar
 - Assume a top mass
 - Calculate an event weight W(m_t) based on agreement with observables
 - Neutrino weighting uses missing E_T
 - Matrix element weighting uses lepton E
 - Produce weight templates using Monte Carlo at each trial top mass
 - Perform a maximum likelihood fit to the data to determine the best estimate top mass

Neutrino weighting

 Actually in this case the MET_x and MET_y information is ignored and instead neutrino rapidities are judiciously chosen in addition to m_t

$$W(m_{t}) = \sum_{\eta_{v},\eta_{\bar{v}}} \sum_{i=x,y} \exp(-(MET_{i} - p_{v_{i}} - p_{\bar{v}_{i}})^{2} / 2\sigma_{i}^{2}$$

Templates for a range of top masses are formed by summing over events and smearing of jet and lepton momenta

The templates can be characterized by an event weight vector \vec{w} found by rebinning the weight templates into 25 GeV bins

The event weight vectors from data events are compared to those from the signal and background Monte Carlo templates by forming and maximizing a likelihood

$$L(w,\overline{n}_b, N \mid m_t, n_s, n_b) = L_{template}(m_t) \times G_{n_b,\overline{n}_b} \times P_{n_s+n_b,N}$$

Systematic errors are estimated by generating ensembles of fake data from parent distributions with error sources varied by their uncertainties and then comparing these ensembles to the original templates

Source	Uncertainty (GeV)
Jet Energy Scale	4.3
Gluon Radiation	1.5
Background Statistics	0.9
Signal MC Statistics	0.9
PDFs	0.8
Jet Resolution	0.3
Heavy Flavor	0.3
Muon Resolution	0.2
Total	4.8
5	23

11/6/2006

Top Mass in the Dilepton Channel

K. Johns

Final combined (neutrino weighting and matrix element weighting) result submitted to PRL

(* = p	reliminary)	auark Mass	
CDF-I dilepton —	• <mark>-</mark> -	167.4 ± 11.4	
D0-I dilepton —	<mark>-</mark>	168.4 ± 12.8	
CDF-II dilepton* 🛛 🛶	- <mark>-</mark>	$\textbf{164.5} \pm \textbf{5.5}$	
D0-II dilepton	_ •	178.1 ± 8.3	
CDF-I lepton+jets	 -	176.1 ± 7.3	
D0-I lepton+jets	-	180.1 ± 5.3	
CDF-II lepton+jets*	•	170.9 ± 2.5	
D0-II lepton+jets	•	170.3 ± 4.5	
CDF-I alljets		186.0 ± 11.5	
CDF-II alljets*	<mark>.</mark>	$\textbf{174.0} \pm \textbf{5.2}$	
CDF-II b decay length*	<mark></mark>	183.9 ± 15.8	
Tevatron Run I/II	•	171.4 ± 2.1	
80 100 120 140 160 Measured To) 180 20 op Mass (00 220 240 260 (GeV)	
		24	