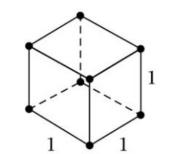

- As we mentioned previously, the Pauli exclusion principle plays an important role in the behavior of solids
  - The first quantum model we'll look at is called the free electron model or the Fermi gas model
  - It's simple but provides a reasonable description of the properties of the alkalai metals (Li, Na, ...) and the nobel metals (Cu, Ag, Au)


- Assume N electrons that are non-interacting (identical) fermions
- $\blacktriangleright$  Assume they are confined to a box of V=L<sup>3</sup>
  - Hopefully you recall the energy levels of the 3D infinite potential well

$$E_{n_x n_y n_z} = \frac{\pi^2 \hbar^2}{2mL^2} \left( n_x^2 + n_y^2 + n_z^2 \right)$$

- Note as L grows large the discrete energy spectrum becomes continuous
- What is the ground state when N is large?
- Assume T=0 to start with

#### Consider a number space to help count the number of states





Cube of unit "volume"

Then we can write

$$E = \frac{\pi^2 \hbar^2}{2mL^2} \left( n_x^2 + n_y^2 + n_z^2 \right) \equiv E_1 r^2$$

The number of states up to radius r is just

$$N_r = \left(2\right) \left(\frac{1}{8}\right) \left(\frac{4}{3}\pi r^3\right)$$

We can rewrite this in terms of energy

$$N_r = \frac{1}{3}\pi \left(\frac{E}{E_1}\right)^{3/2}$$

 $N_r = \frac{1}{3}\pi \left(\frac{E_F}{E_1}\right)^{3/2}$ 

And at T = 0 the Fermi energy is the

highest occupied energy state

We can then solve for the Fermi energy

at

$$E_F = E_1 \left(\frac{3N}{\pi}\right)^{3/2} = \frac{\hbar^2 \pi^2}{2m} \left(\frac{3N}{\pi L^3}\right)^{2/3}$$

- Many metals have ~1 free electron/ion or n=N/L<sup>3</sup> ~ 10<sup>29</sup> e/m<sup>3</sup>
- $\succ$  Thus the Fermi energy E<sub>F</sub> for most metals is ~ 10 eV
- > And the Fermi temperature  $T_F = E_F/k_B$  is ~ 10<sup>5</sup> K
  - Extremely high and much greater than T for room temperature ~ 300 K
  - But this is not the temperature of the electron gas, rather it is a measure of where the Fermi energy is

 $\rightarrow$  N/L<sup>3</sup>

| Selected Elements at $T = 300$ K |                                            |               |                                                |  |  |  |
|----------------------------------|--------------------------------------------|---------------|------------------------------------------------|--|--|--|
| Element                          | $\frac{N/V}{(	imes 10^{28}  { m m}^{-3})}$ | Element       | $\frac{N/V}{(\times 10^{28} \mathrm{m}^{-3})}$ |  |  |  |
| Cu                               | 8.47                                       | Mn $(\alpha)$ | 16.5                                           |  |  |  |
| Ag                               | 5.86                                       | Zn            | 13.2                                           |  |  |  |
| Au                               | 5.90                                       | Cd            | 9.27                                           |  |  |  |
| Be                               | 24.7                                       | Hg (78 K)     | 8.65                                           |  |  |  |
| Mg                               | 8.61                                       | Al            | 18.1                                           |  |  |  |
| Ca                               | 4.61                                       | Ga            | 15.4                                           |  |  |  |
| Sr                               | 3.55                                       | In            | 11.5                                           |  |  |  |
| Ba                               | 3.15                                       | Sn            | 14.8                                           |  |  |  |
| Nb                               | 5.56                                       | Pb            | 13.2                                           |  |  |  |
| Fe                               | 17.0                                       |               |                                                |  |  |  |

 $\leftarrow \ge E_F \text{ and } T_F$ 

| Table 9.4         Fermi Energies (T = 300 K), Fermi Temperatures, and Fermi Velocities for Selected Metals |                       |                                |                                     |  |
|------------------------------------------------------------------------------------------------------------|-----------------------|--------------------------------|-------------------------------------|--|
| Element                                                                                                    | $E_{\rm F}~({ m eV})$ | $T_{\rm F}(\times10^4{\rm K})$ | $u_{\rm F}$ (× 10 <sup>6</sup> m/s) |  |
| Li                                                                                                         | 4.74                  | 5.51                           | 1.29                                |  |
| Na                                                                                                         | 3.24                  | 3.77                           | 1.07                                |  |
| K                                                                                                          | 2.12                  | 2.46                           | 0.86                                |  |
| Rb                                                                                                         | 1.85                  | 2.15                           | 0.81                                |  |
| Cs                                                                                                         | 1.59                  | 1.84                           | 0.75                                |  |
| Cu                                                                                                         | 7.00                  | 8.16                           | 1.57                                |  |
| Ag                                                                                                         | 5.49                  | 6.38                           | 1.39                                |  |
| Au                                                                                                         | 5.53                  | 6.42                           | 1.40                                |  |
| Be                                                                                                         | 14.3                  | 16.6                           | 2.25                                |  |
| Mg                                                                                                         | 7.08                  | 8.23                           | 1.58                                |  |
| Ca                                                                                                         | 4.69                  | 5.44                           | 1.28                                |  |
| Sr                                                                                                         | 3.93                  | 4.57                           | 1.18                                |  |
| Ba                                                                                                         | 3.64                  | 4.23                           | 1.13                                |  |
| Nb                                                                                                         | 5.32                  | 6.18                           | 1.37                                |  |
| Fe                                                                                                         | 11.1                  | 13.0                           | 1.98                                |  |
| Mn                                                                                                         | 10.9                  | 12.7                           | 1.96                                |  |
| Zn                                                                                                         | 9.47                  | 11.0                           | 1.83                                |  |
| Cd                                                                                                         | 7.17                  | 8.68                           | 1.62                                |  |
| Hg                                                                                                         | 7.13                  | 8.29                           | 1.58                                |  |
| Al                                                                                                         | 11.7                  | 13.6                           | 2.03                                |  |
| Ga                                                                                                         | 10.4                  | 12.1                           | 1.92                                |  |
| In                                                                                                         | 8.63                  | 10.0                           | 1.74                                |  |
| TI                                                                                                         | 8.15                  | 9.46                           | 1.69                                |  |
| Sn                                                                                                         | 10.2                  | 11.8                           | 1.90                                |  |
| РЬ                                                                                                         | 9.47                  | 11.0                           | 1.83                                |  |
| Bi                                                                                                         | 9.90                  | 11.5                           | 1.87                                |  |
| Sb                                                                                                         | 10.9                  | 12.7                           | 1.96                                |  |

7

@ 2006 Brooks/Cole - Thomson

#### Comment

Once you know the Fermi energy you can also calculate the Fermi momentum and the Fermi velocity

$$p_F = \sqrt{2mE_F}$$

$$v_F = \frac{p_F}{m} = \sqrt{\frac{2E_F}{m}}$$

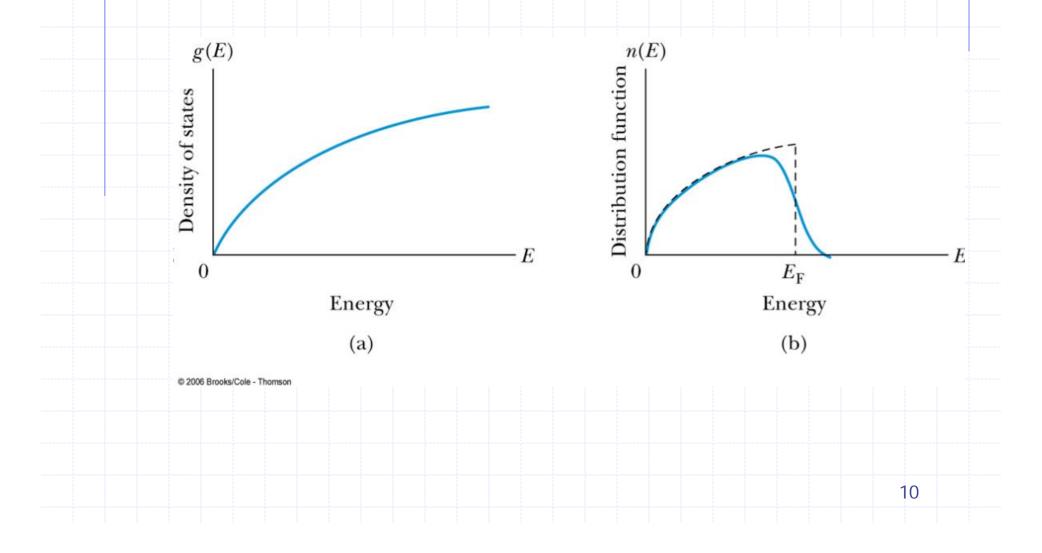
The Fermi velocity is the same order of magnitude as the orbital velocity of the outer electrons in an atom and ~10 times the mean thermal velocity of a non-degenerate electron gas

It's still non-relativistic however

The density of states g(E) is defined as

$$g(E) = \frac{dN}{dE} = \frac{\pi}{2} E_1^{-3/2} E^{1/2}$$

It can also be written in terms of  $E_F$ 


$$g(E) = \frac{3N}{2} E_F^{-3/2} E^{1/2}$$

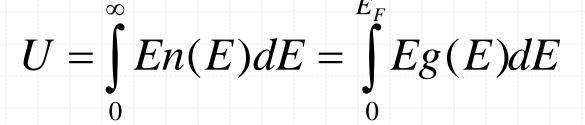
Thus we can calculate n(E)=g(E)F<sub>FD</sub>

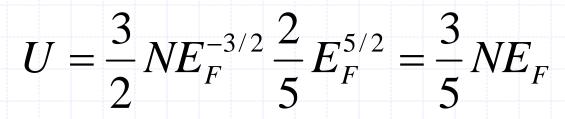
Recall  $F_{FD} = 1$  for  $E < E_F$  and 0 for  $E > E_F$ 

Then n(E) = g(E) for  $E < E_F$  and 0 for  $E > E_F$ 






As we learned earlier, once you know n(E) you can calculate many thermodynamic quantities
 Sanity check


 $oldsymbol{L}$ 

11

$$N = \int_{0}^{\infty} n(E)dE = \int_{0}^{E_{F}} g(E)dE$$
$$N = \frac{3}{2}NE_{F}^{-3/2}\frac{2}{3}E_{F}^{3/2} = N$$







I used U here to indicate the total energy

Recall our discussion earlier in the semester on the molar heat capacity of solids

$$E = \frac{f}{2} N k_B T = \frac{f}{2} nRT$$
$$C_V = \frac{1}{n} \frac{dE}{dT} = \frac{f}{2} R$$

For solids  $C_V = 3R \approx 25 \text{ J/molK}$ 

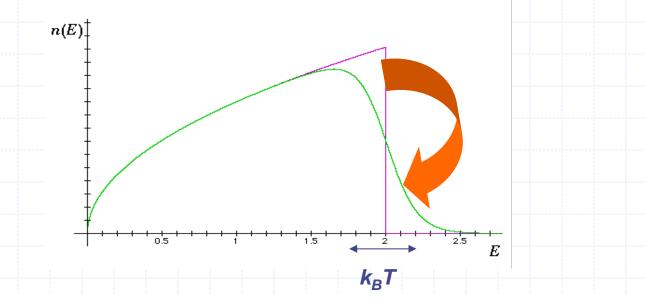
This is called the DuLong - Petit law

 But conduction electrons in a metal should contribute an additional (3/2)R
 The observed electronic contribution is only ~0.02R

We can calculate the electronic contribution in the free electron model

$$C_V = \frac{\partial U}{\partial T}$$

However up to this point we have been working at T=0 in order to calculate C<sub>V</sub> so we have to calculate U(T) for T>0


14

$$U(T) = \int_{-\infty}^{\infty} En(E)dE = \int_{-\infty}^{\infty} Eg(E)F_{FD}dE$$

 $U(T) = \int_{0}^{\infty} Eg(E) \frac{1}{e^{\beta(E-E_F)} + 1}$ 

We could do the integral but it's more important to notice that in heating a Fermi gas, we populate some states above E<sub>F</sub> and deplete some states below E<sub>F</sub>

This modification is only important in a narrow energy range k<sub>B</sub>T around E<sub>F</sub>



The fraction of  $k_{B}T/E_{F}$ electrons transferred to higher energy is  $k_{R}T$ The energy increase of these electrons is So the increase in  $N(k_{\rm B}T)^2/E_{\rm F}$ internal energy is > Making the molar heat  $C_V = \frac{\partial U}{\partial T} \propto N \frac{k_B^2 T}{E_F} = R \frac{T}{T_F}$ capacity (for 1 mole,  $N = N_{A_V}$ )

The correct proportionality constant is found doing the integral

$$C_{V} = \frac{\pi^{2}}{2} N_{Av} k_{B} \frac{k_{B}T}{E_{F}} = \frac{\pi^{2}}{2} R \frac{T}{T_{F}}$$

- The point is, that at room temperature, T < < T<sub>F</sub> and the electronic contribution to the heat capacity is small
- This is because only a small fraction of electrons around E<sub>F</sub> can be thermally excited because of the Pauli exclusion principle
  - This was one of the big successes of the free electron model and not predicted classically

| The free electron model for metals can also be used to calculate                                                                               |   |
|------------------------------------------------------------------------------------------------------------------------------------------------|---|
| <ul> <li>Electrical conductivity</li> <li>Although to get agreement with experiment,</li> </ul>                                                |   |
| long collision lengths (mean free paths) were<br>required                                                                                      |   |
| <ul> <li>The source of how electrons can move ~ 1<br/>centimeter (for a pure metal at low T) without<br/>scattering was unknown</li> </ul>     |   |
| Thermal conductivity                                                                                                                           |   |
| <ul> <li>Although the classical calculation of thermal<br/>conductivity (fortuitously) gave good<br/>agreement with experiment also</li> </ul> |   |
| 18                                                                                                                                             | 3 |