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Classical Statistics
What is the speed distribution of the molecules of an 
ideal gas at temperature T?

Maxwell speed distribution

This is the probabilitity of finding a particle with speed 
between v and v +dv

And if we cared to calculate it we would find
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Classical Statistics

Maxwell speed distribution
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Classical Statistics
In quantum mechanics we are generally 
interested in the energy
Maxwell’s velocity distribution can be 
converted into a statement about energy
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Classical Statistics
The factor                   is called the Maxwell-
Boltzmann factor

FMB gives the probability that a state of energy E is 
occupied at temperature T

The E1/2 factor is not universal but rather specific to the 
molecular speed problem

We need one more element called the density 
of states g(E)

g(E) is the number of states available per unit 
energy interval
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Classical Statistics
We have then

This is useful because we can then calculate 
thermodynamic properties of interest
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Quantum Statistics

We would like to apply these same 
ideas using quantum mechanics
To give some idea of how quantum 
mechanics will change things consider 
the following example

Let a gas be made of only two particles A 
and B
Let there be three quantum states s=1,2,3
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Quantum Statistics
Maxwell-Boltzmann
case 

The two particles are 
distinguishable and 
two particles can 
occupy the same 
state
There are 9 distinct 
states shown on the 
right
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Quantum Statistics
Bose-Einstein case

The particles are 
identical bosons
Any number of 
particles can occupy 
the same state
Let B=A
There are 6 distinct 
states shown on the 
right
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Quantum Statistics
Fermi-Dirac case

The particles are 
identical fermions
No two particles can 
occupy the same 
quantum state (Pauli
exclusion principle)
There are 3 distinct 
states
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Quantum Statistics
The number of particles with energy E for the 
three cases is given by
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Quantum Statistics

The three probability distributions with 
A = B1 = B2 = 1
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Fermi-Dirac Statistics
This is the case for electrons so let’s study it a 
bit more
The constant B1 can be written

You will hear a lot about the Fermi energy in 
solid state physics
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Fermi-Dirac Statistics

Comments
When E=EF , FFD = ½

The Fermi energy EF is the energy of the 
highest occupied energy level at T=0

As T→0, FFD=1 for E<EF and FFD=0 for 
E>EF

At/near T=0, the fermions will occupy the 
lowest energy states available (consistent with 
the Pauli exclusion principle)
As T increases, the can occupy higher energy 
states 
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Fermi-Dirac Statistics

Define kBTF = EF


