Classical Statistics

$>$ What is the speed distribution of the molecules of an ideal gas at temperature T ?

- Maxwell speed distribution

$$
\begin{aligned}
& F(v) d v=C^{\prime} e^{-\frac{\beta m v^{2}}{2}} v^{2} d v \\
& \text { where } \beta=\frac{1}{k T} \text { and } C^{\prime}=4 \pi\left(\frac{\beta m}{2 \pi}\right)^{3 / 2}
\end{aligned}
$$

$>$ This is the probabilitity of finding a particle with speed between v and $v+d v$

- And if we cared to calculate it we would find

$$
\overline{v^{2}}=\int_{0}^{\infty} v^{2} F(v) d v=\frac{3 k T}{m}
$$

Classical Statistics

- $>$ Maxwell speed distribution

Classical Statistics

$>$ In quantum mechanics we are generally interested in the energy
> Maxwell's velocity distribution can be converted into a statement about energy

Using $E=\frac{m v^{2}}{2}$

$$
d E=m v d v
$$

$$
d v=\frac{d E}{m v}=\frac{d E}{\sqrt{2 m E}}
$$

$$
\text { then } F(v) d v=F(E) d E
$$

where $F(E)=C^{\prime \prime} e^{-\beta E} E^{1 / 2}$

Classical Statistics

$\downarrow>$ The factor $F_{M B}=A e^{-\beta E}$ is called the MaxwellBoltzmann factor

- $F_{\text {MB }}$ gives the probability that a state of energy E is occupied at temperature T
- The $E^{1 / 2}$ factor is not universal but rather specific to the molecular speed problem
$>$ We need one more element called the density of states $\mathrm{g}(\mathrm{E})$
- $g(E)$ is the number of states available per unit energy interval
$g(E) d E$ is the number of energy states in the range from E to $E+d E$

Classical Statistics

$>$ We have then

$$
\begin{aligned}
& n(E)=g(E) F_{M B} \text { is the number of particles } \\
& \text { with energy E per unit energy }
\end{aligned}
$$

$>$ This is useful because we can then calculate thermodynamic properties of interest

$$
\begin{aligned}
& n=\int_{0}^{\infty} F_{M B} g(E) d E \\
& U=\int_{0}^{\infty} E F_{M B} g(E) d E \\
& C_{V}=\frac{\partial U}{\partial T} \\
& P=-\frac{\partial U}{\partial V} \text { at } T=0
\end{aligned}
$$

Quantum Statistics

$\phi>$ We would like to apply these same ideas using quantum mechanics
$>$ To give some idea of how quantum mechanics will change things consider the following example

- Let a gas be made of only two particles A and B
- Let there be three quantum states $s=1,2,3$

Quantum Statistics

> Maxwell-Boltzmann case

- The two particles are distinguishable and two particles can occupy the same state
- There are 9 distinct states shown on the right

1	2	3
AB		
	AB	
		AB
A	B	
B	A	
	A	B
	B	A
A		B
B		A

Quantum Statistics

- Bose-Einstein case

- The particles are identical bosons
- Any number of particles can occupy the same state
- Let $\mathrm{B}=\mathrm{A}$
- There are 6 distinct states shown on the right

1	2	3
AA		
	AA	
		AA
A	A	
	A	A
A		A

Quantum Statistics

- The particles are identical fermions
- No two particles can occupy the same quantum state (Pauli exclusion principle)
- There are 3 distinct states

Quantum Statistics

$>$ The number of particles with energy E for the three cases is given by
$n(E)=g(E) F$ where
$F_{M B}=A e^{-\beta E}$ for distinguishable particles (classical)
$F_{B E}=\frac{1}{B_{2} e^{\beta E}-1}$ for identical bosons
$F_{F D}=\frac{1}{B_{1} e^{\beta E}+1}$ for identical fermions

Quantum Statistics

\rightarrow The three probability distributions with $\mathrm{A}=\mathrm{B}_{1}=\mathrm{B}_{2}=1$
(1.0)

Fermi-Dirac Statistics

$>$ This is the case for electrons so let's study it a bit more
$>$ The constant B_{1} can be written

$$
\begin{aligned}
& B_{1}=e^{-\beta E_{F}} \\
& \text { then } F_{F D}=\frac{1}{e^{\beta\left(E-E_{F}\right)}+1} \\
& E_{F} \text { is called the Fermi energy }
\end{aligned}
$$

$>$ You will hear a lot about the Fermi energy in solid state physics

Fermi-Dirac Statistics

\rightarrow Comments

- When $E=E_{F}, F_{F D}=1 / 2$
- The Fermi energy E_{F} is the energy of the highest occupied energy level at $\mathrm{T}=0$
- As $\mathrm{T} \rightarrow 0, F_{F D}=1$ for $\mathrm{E}<\mathrm{E}_{\mathrm{F}}$ and $F_{F D}=O$ for $E>E_{F}$
- At/near T=0, the fermions will occupy the lowest energy states available (consistent with the Pauli exclusion principle)
- As T increases, the can occupy higher energy states

Fermi-Dirac Statistics

$\leftrightarrow>$ Define $\mathrm{k}_{\mathrm{B}} \mathrm{T}_{\mathrm{F}}=\mathrm{E}_{\mathrm{F}}$

(a)

(c)

(b)

(d)

