Total Angular Momentum

$>$ Since J is an angular momentum like L and S , its algebra is identical to that for orbital and spin angular momentum

$$
\begin{aligned}
& j=l+s, \ldots,|l-s| \\
& m_{j}=-j, \ldots, j \\
& J^{2} \psi=j(j+1) \hbar^{2} \psi \\
& J_{z} \psi=m_{j} \hbar \psi \\
& J^{2}=J_{x}^{2}+J_{y}^{2}+J_{z}^{2} \\
& {\left[J_{x}, J_{y}\right]=i \hbar J_{z},\left[J_{y}, J_{z}\right]=i \hbar J_{x},\left[J_{z}, J_{x}\right]=i \hbar J_{y}} \\
& {\left[J^{2}, J_{x}\right]=\left[J^{2}, J_{y}\right]=\left[J^{2}, J_{z}\right]=0}
\end{aligned}
$$

Total Angular Momentum

$>$ We can determine the possible values of j by looking at the z components

$$
\begin{aligned}
& J_{z}=L_{z}+S_{z} \\
& m_{j} \hbar=m_{l} \hbar+m_{s} \hbar \\
& m_{j}=m_{l}+m_{s}
\end{aligned}
$$

- The maximum value of j is the maximum value of m_{j} is the maximum value of m_{1} and m_{s} is I+s
\Rightarrow The minimum value of j can be found using the vector inequality $|\vec{L}+\vec{S}| \geq||\vec{L}|-|\vec{S}||=|l-s|$
$>$ Thus j runs from $l+s, \ldots,|l-s|$ in integer steps

Addition of Angular Momentum

$\checkmark>$ These rule hold true for the addition of any two types of angular momenta
>Example

- What are the possible s and m_{s} values for the combination of two spin $1 / 2$ particles?
- What are the possible I and m_{1} values for two electrons having $\mathrm{I}_{1}=1$ and $\mathrm{I}_{2}=2$?
- What are the possible j and m_{j} values for one electron with $\mathrm{l}=2$ and $\mathrm{s}=1 / 2$?

Fine Structure

\rightarrow For the hydrogen atom, we found that when one includes the spin-orbit interaction n, l, m_{1}, s, m_{s} are no longer "good" quantum numbers
\Rightarrow Instead we must use n, l, s, j, m_{j}
\Rightarrow We usually use spectroscopic notation to describe these states

$$
n^{2 S+1} L_{J}
$$

$>$ We'll use this notation for multielectron states as well

Fine Structure

- > Examples

- What are first three states (ground and first two excited states) for hydrogen?
- What are I, s, j values for ${ }^{3} \mathrm{~F}_{2}$?

Fine Structure

$>$ The potential energy associated with the spinorbit interaction was calculated as

$$
\Delta E=\frac{Z e^{2}}{8 \pi \varepsilon_{0}} \frac{1}{m^{2} c^{2} r^{3}} \vec{s} \cdot \vec{L}
$$

> Additionally we noted

$$
\vec{J}^{2}=(\vec{L}+\vec{S})^{2}=\vec{L}^{2}+\vec{S}^{2}+2 \vec{L} \cdot \vec{S}
$$

$>$ Hence
$\vec{L} \cdot \vec{S}=\frac{J^{2}-L^{2}-S^{2}}{2}$
$\vec{L} \cdot \vec{S}=\frac{\hbar^{2}}{2}[j(j+1)-l(l+1)-s(s+1)]$
And so $\Delta E=\frac{e^{2}}{8 \pi \varepsilon_{0}} \frac{1}{m^{2} c^{2} r^{3}} \frac{\hbar^{2}}{2}[j(j+1)-l(l+1)-s(s+1)]$

Fine Structure

$>$ Furthermore, the energy eigenvalues are just the expectation values of H and with time you could show
$\left\langle\frac{1}{r^{3}}\right\rangle=\frac{1}{l(l+1 / 2)(l+1) n^{3} a_{0}^{3}}$
thus $\Delta \mathrm{E}=\frac{e^{2}}{8 \pi \varepsilon_{0}} \frac{1}{m^{2} c^{2} r^{3}} \frac{\hbar^{2}}{2} \frac{[j(j+1)-l(l+1)-s(s+1)]}{l(l+1 / 2)(l+1) n^{3} a_{0}^{3}}$
$>$ The point is that the spin-orbit interaction lifts the $21+1$ degeneracy in I

Fine Structure

$>$ Hydrogen fine structure

Fine structure in $n=2$ level in hydrogen

$\begin{aligned} & \text { Bohr } \\ & \text { degenerate states }\end{aligned}+$ Spin-Orbit + Relativity + QED

Fine Structure

Δ The selection rules for transitions between states must be updated as well

$$
\begin{aligned}
& \Delta n=\text { anything } \\
& \Delta l= \pm 1 \\
& \Delta j= \pm 1,0 \\
& \Delta m_{j}= \pm 1,0
\end{aligned}
$$

Fine Structure

- $>$ Transitions with spin-orbit interaction

Unperturbed
(a)

Fine structure
(b)

Two Body Problem

↔ $>$ Two body systems (proton and electron, two electrons, ...) are obviously important in quantum mechanics
$>$ A two body problem can be reduced to an equivalent one body problem if the potential energy one depends on the separation of the two particles

Two Body Problem

$\left(-\frac{\hbar^{2}}{2 m_{1}} \frac{\partial^{2}}{\partial x_{1}^{2}}-\frac{\hbar^{2}}{2 m_{2}} \frac{\partial^{2}}{\partial x_{2}^{2}}\right) \psi\left(x_{1}, x_{2}\right)+V\left(x_{1}-x_{2}\right) \psi\left(x_{1}, x_{2}\right)=E \psi\left(x_{1}, x_{2}\right)$
let $x=x_{1}-x_{2}($ relative $)$ and $X=\frac{m_{1} x_{1}+m_{2} x_{2}}{m_{1}+m_{2}}$ (center - of - mass)
also let $\frac{1}{\mu}=\frac{1}{m_{1}}+\frac{1}{m_{2}}$ and $M=m_{1}+m_{2}$
using the chain rule $\frac{\partial}{\partial x_{1}}=\frac{\partial}{\partial x} \frac{\partial x}{\partial x_{1}}+\frac{\partial}{\partial X} \frac{\partial X}{\partial x_{1}}$ and ditto for x_{2}
$\left(-\frac{\hbar^{2}}{2 M} \frac{\partial^{2}}{\partial X^{2}}-\frac{\hbar^{2}}{2 \mu} \frac{\partial^{2}}{\partial x^{2}}\right) \psi(x, X)+V(x) \psi(x, X)=E \psi(x, X)$

Two Body Problem

$>$ This equation is now separable
Now let $\psi(x, X)=u(x) U(X)$
$\left(-\frac{\hbar^{2}}{2 M} \frac{\partial^{2}}{\partial X^{2}}-\frac{\hbar^{2}}{2 \mu} \frac{\partial^{2}}{\partial x^{2}}\right) \psi(x, X)+V(x) \psi(x, X)=E \psi(x, X)$ is separable into
$-\frac{\hbar^{2}}{2 M} \frac{\partial^{2} U(X)}{\partial X^{2}}=E_{c m} U(X)$
$-\frac{\hbar^{2}}{2 \mu} \frac{\partial^{2} u(x)}{\partial x^{2}}+V(x)=E_{r e l} u(x)$
$E=E_{c m}+E_{\text {rel }}$
$>$ The two equations represent

- A free particle equation for the center-of-mass
- A one body equation using the reduced mass and relative coordinates

Two Body Problem

Δ In the case of a central potential problem (like He) with $m_{1}=m_{2}=m$

$$
\begin{aligned}
& H=\frac{\vec{p}_{1}^{2}}{2 m}+\frac{\vec{p}_{2}^{2}}{2 m}+V\left(\left|\vec{r}_{1}-\vec{r}_{2}\right|\right) \text { becomes } \\
& H=\frac{\vec{P}^{2}}{2 M}+\frac{\vec{p}^{2}}{2 \mu}+V(|\vec{r}|) \\
& \text { where } \frac{\vec{p}}{\mu}=\frac{\vec{p}_{1}}{m}-\frac{\vec{p}_{2}}{m} \text { and } \vec{r}=\vec{r}_{1}-\vec{r}_{2}
\end{aligned}
$$

$>$ The point is the following: the interchange of two particles in central potential simply means

$$
\vec{r} \rightarrow-\vec{r}
$$

Two Body Problem

$>$ Particle interchange in the central potential problem means $\vec{r} \rightarrow-\vec{r}$
\Rightarrow This means $r \rightarrow r$

$$
\begin{aligned}
& \theta \rightarrow \pi-\theta \\
& \varphi \rightarrow \pi+\varphi
\end{aligned}
$$

$>$ Under particle interchange of 1 and 2

- The radial wave function is unchanged
- The symmetry of the angular wave function depends on I

$$
Y_{l m}(\theta, \varphi) \rightarrow Y_{l m}(\pi-\theta, \pi+\varphi)=(-1)^{l} Y_{l m}(\theta, \varphi)
$$

