Identical Particles

$\leftrightarrow>$ We would like to move from the quantum theory of hydrogen to that for the rest of the periodic table

- One electron atom to multielectron atoms
$>$ This is complicated by the interaction of the electrons with each other and by the fact that the electrons are identical
- The Schrodinger equation for the two electron atom can only be solved by using approximation methods

Identical Particles

$\checkmark>$ In classical mechanics, identical particles can be identified by their positions
$>$ In quantum mechanics, because of the uncertainty principle, identical particles are indistinguishable

- This effect is connected with the Pauli exclusion principle and is of major importance in determining the properties of atoms, nuclei, and bulk matter

Identical Particles

Consider two particles, then $\Psi(x, t) \rightarrow \Psi\left(x_{1}, x_{2}, t\right)$
The time dependent Schrodinger equation is
$i \hbar \frac{\partial \Psi\left(x_{1}, x_{2}, t\right)}{\partial t}=\left[-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x_{1}^{2}}-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x_{2}^{2}}+V\left(x_{1}, x_{2}\right)\right] \Psi\left(x_{1}, x_{2}, t\right)$
The time independent Schrodinger equation is
$\left[-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x_{1}^{2}}-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x_{2}^{2}}+V\left(x_{1}, x_{2}\right)\right] \psi\left(x_{1}, x_{2}\right)=E \psi\left(x_{1}, x_{2}\right)$
And note here we have used labels that identify particles 1 and 2

Identical Particles

$\hookrightarrow>$ An important case is when the particles do not interact with each other

- This is called the independent particle model
- It's the starting point for the He atom e.g.

Then $V\left(x_{1}, x_{2}\right)=V_{1}\left(x_{1}\right)+V_{2}\left(x_{2}\right)$
$\left[-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x_{1}^{2}}+V_{1}\left(x_{1}\right)-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x_{2}^{2}}+V_{2}\left(x_{2}\right)\right] \psi\left(x_{1}, x_{2}\right)=E \psi\left(x_{1}, x_{2}\right)$
This suggests we can write $\psi\left(x_{1}, x_{2}\right)=\psi\left(x_{1}\right) \psi\left(x_{2}\right)$ and $E=E_{1}+E_{2}$
Which leads to

$$
\begin{aligned}
& {\left[-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x_{1}^{2}}+V_{1}\left(x_{1}\right)\right] \psi\left(x_{1}\right)=E_{1} \psi\left(x_{1}\right)} \\
& {\left[-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x_{2}^{2}}+V_{2}\left(x_{2}\right)\right] \psi\left(x_{2}\right)=E_{2} \psi\left(x_{2}\right)}
\end{aligned}
$$

Identical Particles

$>$ Let's say particle 1 is in quantum state m and particle 2 is in quantum state n

$$
\psi\left(x_{1}, x_{2}\right)=\psi_{m}\left(x_{1}\right) \psi_{n}\left(x_{2}\right)
$$

$>$ If we interchange the two particles then

$$
\psi\left(x_{1}, x_{2}\right)=\psi_{m}\left(x_{2}\right) \psi_{n}\left(x_{1}\right)
$$

$>$ We get different wave functions (and probability densities) so the two particles are distinguishable

- Two particles are indistinguishable if we can exchange their labels without changing a measurable quantity
- Thus neither of the solutions above is satisfactory

Identical Particles

$\measuredangle>$ In fact there are two ways to construct indistinguishable wave functions

$$
\begin{aligned}
& \psi_{s}=\frac{1}{\sqrt{2}}\left(\psi_{m}\left(x_{1}\right) \psi_{n}\left(x_{2}\right)+\psi_{m}\left(x_{2}\right) \psi_{n}\left(x_{1}\right)\right) \\
& \psi_{a}=\frac{1}{\sqrt{2}}\left(\psi_{m}\left(x_{1}\right) \psi_{n}\left(x_{2}\right)-\psi_{m}\left(x_{2}\right) \psi_{n}\left(x_{1}\right)\right)
\end{aligned}
$$

- Ψ_{s} is a symmetric wave function under particle interchange of $1 \leftrightarrow 2$
- $\psi_{s} \rightarrow \psi_{s}$
- Ψ_{a} is a antisymmetric wave function under particle interchange of $1 \leftrightarrow 2$
- $\Psi_{\mathrm{a}} \rightarrow-\Psi_{\mathrm{a}}$
- The probability density remains unchanged under particle interchange of $1 \leftrightarrow 2$

Identical Particles

$\measuredangle>$ All particles with integer spin are called bosons

- Spin 0,1,2,...
- Photon, pions, Z-boson, Higgs
$>$ All particles with half integer spin are called fermions
- Spin $1 / 2,3 / 2, \ldots$
- Electron, proton, neutron, quarks, ...
$>$ For the next few lectures we'll focus on the fermions (electrons)

Identical Particles

$\measuredangle>$ The wave function of a multi-particle system

- of identical fermions is antisymmetric under interchange of any two fermions
- of identical bosons is symmetric under interchange of any two bosons
$>$ The Pauli exclusion principle follows from these principles
- No two identical electrons (fermions) can occupy the same quantum state

$$
\begin{aligned}
& \psi_{a}=\frac{1}{\sqrt{2}}\left(\psi_{m}\left(x_{1}\right) \psi_{n}\left(x_{2}\right)-\psi_{m}\left(x_{2}\right) \psi_{n}\left(x_{1}\right)\right) \\
& \text { for } m=n(\text { same quantum state }) \\
& \psi_{a}=\frac{1}{\sqrt{2}}\left(\psi_{m}\left(x_{1}\right) \psi_{m}\left(x_{2}\right)-\psi_{m}\left(x_{2}\right) \psi_{m}\left(x_{1}\right)\right)=0
\end{aligned}
$$

Identical Particles

$>$ What about 3 particles?

$>$ Symmetric

$$
\begin{aligned}
& \psi_{s}=\left(\psi_{m}\left(x_{1}\right) \psi_{n}\left(x_{2}\right) \psi_{o}\left(x_{3}\right)+\psi_{o}\left(x_{1}\right) \psi_{m}\left(x_{2}\right) \psi_{n}\left(x_{3}\right)+\psi_{n}\left(x_{1}\right) \psi_{o}\left(x_{2}\right) \psi_{m}\left(x_{3}\right)\right) \\
& \psi_{s}=\left(\psi_{m}\left(x_{1}\right) \psi_{n}\left(x_{2}\right) \psi_{o}\left(x_{3}\right)+\text { permutations }\right)
\end{aligned}
$$

> Antisymmetric

- Use the Slater determinant

$$
\begin{aligned}
\psi_{a}= & \frac{1}{\sqrt{3!}} \operatorname{det}\left|\begin{array}{lll}
\psi_{m}(1) & \psi_{m}(2) & \psi_{m}(3) \\
\psi_{n}(1) & \psi_{n}(2) & \psi_{n}(3) \\
\psi_{o}(1) & \psi_{o}(2) & \psi_{o}(3)
\end{array}\right| \\
\psi_{a}= & \frac{1}{\sqrt{6}}\left(\psi_{m}(1) \psi_{n}(2) \psi_{o}(3)-\psi_{m}(1) \psi_{n}(3) \psi_{o}(2)\right. \\
& +\psi_{m}(2) \psi_{n}(3) \psi_{o}(1)-\psi_{m}(2) \psi_{n}(1) \psi_{o}(3) \\
& \left.+\psi_{m}(3) \psi_{n}(1) \psi_{o}(2)-\psi_{m}(3) \psi_{n}(2) \psi_{o}(1)\right)
\end{aligned}
$$

Identical Particles

$\leftrightarrow>$ Just a reminder, we are presently only working with the space wave functions

- We'll get to spin in a little bit
$>$ A consequence of identical particles is called exchange "forces"
- Symmetric space wave functions behave as if the particles attract one another
- Antisymmetric wave functions behave as if the particles repel one another

Infinite Square Well

$>$ Quick review. For an infinite well at $x=0$ and $\mathrm{x}=\mathrm{L}$

Solutions are $\psi_{n}(\mathrm{x})=\sqrt{\frac{2}{\mathrm{~L}}} \sin \frac{\mathrm{n} \pi \mathrm{x}}{\mathrm{L}}$
$\mathrm{E}=n^{2} \frac{\pi^{2} \hbar^{2}}{2 m L^{2}}$

Identical Particles

$\measuredangle>$ Let's return to the infinite well problem only now with two particles

- Case 1 distinguishable particles

$$
\psi\left(x_{1}, x_{2}\right)=\psi_{m}\left(x_{1}\right) \psi_{n}\left(x_{2}\right)
$$

- Case 2 identical particles (symmetric)

$$
\psi\left(x_{1}, x_{2}\right)=\frac{1}{\sqrt{2}}\left(\psi_{m}\left(x_{1}\right) \psi_{n}\left(x_{2}\right)+\psi_{m}\left(x_{2}\right) \psi_{n}\left(x_{1}\right)\right)
$$

- Case 3 identical particles (antisymmetric)

$$
\psi\left(x_{1}, x_{2}\right)=\frac{1}{\sqrt{2}}\left(\psi_{m}\left(x_{1}\right) \psi_{n}\left(x_{2}\right)-\psi_{m}\left(x_{2}\right) \psi_{n}\left(x_{1}\right)\right)
$$

Identical Particles

\rightarrow What is the probability that both particles will be on the left side of the well?
$P=\left.\int_{0}^{L / 2 L / 2} \int_{0}^{L} \psi\left(x_{1}, x_{2}\right)\right|^{2} d x_{1} d x_{2}$
$>$ Case 1

$$
\begin{aligned}
& P=\int_{0}^{L / 2}\left|\psi_{m}\left(x_{1}\right)\right|^{2} d x_{1} \int_{0}^{L / 2}\left|\psi_{n}\left(x_{2}\right)\right|^{2} d x_{2} \\
& P=\frac{2}{L} \frac{2}{L} \int_{0}^{L / 2} \frac{\sin ^{2} m \pi x}{L} d x \int_{0}^{L / 2} \frac{\sin ^{2} n \pi x}{L} d x \\
& P=\frac{4}{L^{2}} \frac{L}{4} \frac{L}{4}=\frac{1}{4}
\end{aligned}
$$

Identical Particles

$$
\begin{aligned}
> & >\text { Case } 2 \text { and } 3 \\
P & =\frac{1}{2} \int_{0}^{L / 2}\left[\psi_{m}^{2}\left(x_{1}\right) \psi_{n}^{2}\left(x_{2}\right)+\psi_{m}^{2}\left(x_{2}\right) \psi_{n}^{2}\left(x_{1}\right) \pm 2 \psi_{m}\left(x_{1}\right) \psi_{n}\left(x_{2}\right) \psi_{m}\left(x_{2}\right) \psi_{n}\left(x_{1}\right)\right] d x_{1} d x_{2} \\
P & =\frac{1}{2}\left[\frac{1}{4}+\frac{1}{4} \pm \int_{0}^{L / 2} \psi_{m}\left(x_{1}\right) \psi_{n}\left(x_{1}\right) d x_{1} \int_{0}^{L / 2} \psi_{m}\left(x_{2}\right) \psi_{n}\left(x_{2}\right) d x_{2}\right] \\
P & =\frac{1}{4} \pm\left(\int_{0}^{L / 2} \psi_{m}\left(x_{2}\right) \psi_{n}\left(x_{2}\right) d x_{2}\right)^{2} \\
P & =\frac{1}{4} \pm K \text { where } K>0
\end{aligned}
$$

\rightarrow For a symmetric wave function (+) the particles are more likely on the same side (attracted)
$>$ For the antisymmetric wave function (-) the particles are more likely on opposite sides (repel)

Identical Particles

$\measuredangle>$ The wave function of a multi-particle system

- of identical fermions is antisymmetric under interchange of any two fermions
- of identical bosons is symmetric under interchange of any two bosons
$>$ The Pauli exclusion principle follows from these principles
- No two identical electrons (fermions) can occupy the same quantum state

$$
\begin{aligned}
& \psi_{a}=\frac{1}{\sqrt{2}}\left(\psi_{m}\left(x_{1}\right) \psi_{n}\left(x_{2}\right)-\psi_{m}\left(x_{2}\right) \psi_{n}\left(x_{1}\right)\right) \\
& \text { for } m=n(\text { same quantum state }) \\
& \psi_{a}=\frac{1}{\sqrt{2}}\left(\psi_{m}\left(x_{1}\right) \psi_{m}\left(x_{2}\right)-\psi_{m}\left(x_{2}\right) \psi_{m}\left(x_{1}\right)\right)=0
\end{aligned}
$$

Periodic Table

$\leftrightarrow>$ The Pauli exclusion principle is the basis of the periodic table

- This is why all the electron's don't simply fall into the ground state - because they are fermions
- Recall there were 4 quantum numbers that specified the complete hydrogen wave function: $\mathrm{n}, \mathrm{l}, \mathrm{m}_{\mathrm{l}}$, and m_{s}
- No two electrons in the same atom can have these same quantum numbers

Periodic Table

- Building the periodic table

- Principle quantum number n forms shells
- Orbital angular momentum quantum number I forms subshells
$\bullet I=0,1,2,3, \ldots$ are called s, p, d, f, \ldots
- Each m_{1} can hold two electrons, one spin up ($m_{s}=1 / 2$) and one spin down ($m_{s}=-1 / 2$)
- The electrons tend to occupy the lowest energy level possible
- Electrons obey the Pauli exclusion principle

Periodic Table

> Energy levels

- Note for multielectron atoms, states of the same n and different I are no longer degenerate
- This is because of screening effects
- Referring back to the radial probability distributions, because the s states have non-zero probability of being close to the nucleus, their Coulomb potential energy is lower

Ionization Potential

© 2006 Brooks/Cole - Thomson

Periodic Table

$>$ Hydrogen (H)

- $1 \mathrm{~s}^{1}$
$>$ Helium (He)
- $1 \mathrm{~s}^{2}$ - closed shell and chemically inert
$>$ Lithium (Li)
- $1 s^{2} 2 s$ - valence +1 , low I, partially screened, chemically very active
$>$ Beryllium (Be)
- $1 s^{2} 2 s^{2}$ - Closed subshell but the 2 s electrons can extend far from the nucleus

Periodic Table

$>$ Boron (B)

- $1 s^{2} 2 s^{2} 2 p^{1}$ - Smaller I than Be because of screening
$>$ Carbon (C)
- $1 s^{2} 2 s^{2} 2 p^{2}$ - I actually increases because the electrons can spread out in $2 / 3$ I state lobes
- The valence is +4 since an energetically favorable configuration is $1 s^{2} 2 s^{1} 2 p^{3}$
$>$ Nitrogen (N)
- $1 s^{2} 2 s^{2} 2 p^{3}$ - See comments for C. Electrons spread out in $3 / 3$ I state lobes
$>$ Oxygen (O)
- $1 s^{2} 2 s^{2} 2 p^{4}-$ Two of the I state electrons are "paired"
- Electron-electron repulsion lowers I

Periodic Table

$\checkmark>$ Fluorine (F)

- $1 s^{2} 2 s^{2} 2 p^{5}$ - Very chemically active because it can accept an electron to become a closed shell
$>$ Neon (Ne)
- $1 s^{2} 2 s^{2} 2 p^{6}$ - Like He

Periodic Table

$>$ Periodic table is arranged into groups and periods
$>$ Groups

- Have similar shell structure hence have similar chemical and physical properties
- Examples are alkalis, alkali earths, halogens, inert gases
$>$ Periods
- Correspond to filling d and f subshells
- Examples are transition metals (3d,4d,5d), lanthanide (4f), and actinide (5f) series
- Because there are many unpaired electrons, spin is important for these elements and there are large magnetic effects

