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Spin
Many quantum experiments are done with 
photon polarization instead of electron spin
Here is the correspondence between the two

And the measurement probabilities are the 
same
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Spin
From our study of spin and Stern-Gerlach
experiments we know we must choose a 
direction (basis) to measure Sz for electrons or 
linear polarization for photons
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Spin or Polarization
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Quantum Cryptography

How does the left side of the room pass 
a note to the right side of the room 
without me learning the contents of the 
message?
The only mathematically proven way to 
transmit a message is to use a one-time 
pad

This requires a key the same length as the 
message and can be used only once
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Quantum Cryptography

Note, the figures on the next few slides 
were take from a talk on quantum 
cryptography by Vadim Makarov from 
NTNU in Norway
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Quantum Cryptography
Classical key cryptography requires a secure 
channel for key distribution

Vulnerable, authentication not assured, 
evesdropping

Quantum cryptography can distribute the key 
using an open channel
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Quantum Cyptography
In addition, a message transmitted classically 
can be passively monitored
A message transmitted quantum mechanically 
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Quantum Cryptography
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Quantum Cryptography
Alice generates a random key
Alice generates a random set of analyzers
Alice sends the results to Bob
Bob generates a random set of analyzers
Alice and Bob publicly exchange what 
analyzers were used (sifting)
Alice and Bob check whether randomly 
selected entries agree
The remaining results are kept as a key
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Quantum Cryptography
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Quantum Cryptography
Here is Alice



12

Quantum Cryptography
Here is Bob
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Qubit
A Qubit (or Qbit) is a quantum system with 
exactly two degrees of freedom

Examples
Electron with spin up and spin down
Photon with horizontal and vertical polarization
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Entanglement
Recall the EPR paradox
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Entanglement
Describes quantum states that have to be referenced 
to each other even though they are spatially separated
Say I can generate electron (or photon) pairs such that 
they always have opposite spins

What is the probability of A measuring up?
What is the probability of A measuring down?
What is the probability of B measuring up when A measures 
down?

We say the two spins are entangled
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Quantum Teleportation

Quantum teleportation transfers a 
quantum state to an arbitrarily far 
location using a distributed entangled 
state and the transmission of classical 
information
The state at A is physically not 
transferred but an identical copy 
appears at B



17

Quantum Teleportation
Recall that spin can be measured with different 
SG analyzers (bases)
We’ll define
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Quantum Teleportation
Let’s define some operations
These don’t destroy the quantum state
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Quantum Teleportation
We want to transfer an arbitrary state from 
Lab A to Lab B

We also start with an entangled state

Then the overall state is 
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Quantum Teleportation

Spin 1 is the unknown spin to be 
transported
Spin 2 is the first spin of the entangled 
pair and is located Lab A
Spin 3 is the second spin of the 
entangled pair and is located in Lab B
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Quantum Teleportation
Apply the C-X operation to spins 1 and 2 in  
Lab A
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Quantum Teleportation
Measure spin 2 in the z basis

The probability of getting spin up is

And also 1/2 for getting spin down

Let’s say we measure up, then the new state 
will be
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Quantum Teleportation
Measure spin 1 in the x basis

Then the probability of measuring spin right is

And 1/2 for getting spin left

Let’s say we measure right, then the new state 
will be
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Quantum Teleportation
Now call Lab B and tell them the results
Lab B responds by

Our example is case 3
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Quantum Teleportation
Thus the state of spin 3 in Lab B is

Exactly the state we were trying to transmit

↓+↑

↓↑→+↑↑→

ba

ba ,,,,



26

Quantum Teleportation


