Hydrogen Atom

$>$ Returning now to the hydrogen atom we have the radial equation left to solve

$$
\begin{align*}
& \frac{1}{R} \frac{d}{d r}\left(r^{2} \frac{d R}{d r}\right)-\frac{2 \mu r^{2}}{\hbar^{2}}[V(r)-E]=l(l+1) \tag{1}\\
& \text { where } V(r)=-\frac{Z e^{2}}{4 \pi \varepsilon_{0} r} \text { and note } m \rightarrow \mu
\end{align*}
$$

$>$ The solution to the radial equation is complicated and we must be content with the result

$$
R_{n l}(r)=N e^{-\frac{Z r}{n a_{0}}}\left(\frac{2 Z r}{n a_{0}}\right)^{l} L_{n+1}^{2 l+1}\left(\frac{2 Z r}{n a_{0}}\right)
$$

Hydrogen Atom

$>$ Comments

$L_{n+l}^{2 l+1}$ are the associated Laguerre polynomials
$a_{0}=\frac{4 \pi \varepsilon_{0} \hbar^{2}}{\mu e^{2}}=0.529 \dot{A}$ is the familiar Bohr radius

- The radial wave functions are listed and shown on the following slides
- The solution near $r=0$ is

$$
R_{n l}(r) \rightarrow r^{l}
$$

- This means the larger the I the smaller the probability of finding the electron close to the nucleus
- The asymptotic solution is

$$
R_{n l}(r) \rightarrow e^{-\frac{Z r}{n a_{0}}}
$$

Hydrogen Atom

$\omega>$ Radial wave functions

$$
\begin{array}{lcl}
\text { Table } 7.1 & \text { Hydrogen Atom Radial Wave Functions } \\
\boldsymbol{n} & \ell & \boldsymbol{R}_{n \ell}(r) \\
\hline 1 & 0 & \frac{2}{\left(a_{0}\right)^{3 / 2}} e^{-r / a_{0}} \\
2 & 0 & \left(2-\frac{r}{a_{0}}\right) \frac{e^{-r / 2 a_{0}}}{\left(2 a_{0}\right)^{3 / 2}} \\
2 & 1 & \frac{r}{a_{0}} \frac{e^{-r / 2 a_{0}}}{\sqrt{3}\left(2 a_{0}\right)^{3 / 2}} \\
3 & 0 & \frac{1}{\left(a_{0}\right)^{3 / 2}} \frac{2}{81 \sqrt{3}}\left(27-18 \frac{r}{a_{0}}+2 \frac{r^{2}}{a_{0}^{2}}\right) e^{-r / 3 a_{0}} \\
3 & 1 & \frac{1}{\left(a_{0}\right)^{3 / 2}} \frac{4}{81 \sqrt{6}}\left(6-\frac{r}{a_{0}}\right) \frac{r}{a_{0}} e^{-r / 3 a_{0}} \\
3 & 2 & \frac{1}{\left(a_{0}\right)^{3 / 2}} \frac{4}{81 \sqrt{30}} \frac{r^{2}}{a_{0}^{2}} e^{-r / 3 a_{0}}
\end{array}
$$

Hydrogen Atom

$>$ Radial wave distribution

function and probability

Radial wave functions ($R_{n e}$)

(a)

Radial probability distribution $\left(P_{n e}\right)$

(b)

Hydrogen Atom

$>$ Comments

The full hydrogen wave function is
$\psi_{n l m}(\vec{r})=R_{n l}(r) Y_{l m}(\theta, \varphi)$
The angular probability density is $\left|\mathrm{Y}_{\mathrm{lm}}\right|^{2}$
The radial probability density is $\mathrm{r}^{2}\left|\mathrm{R}_{\mathrm{n}}\right|^{2}$
The total probability density is $\left|\psi_{n l m}\right|^{2}$
$\left|\psi_{n l m}\right|^{2} d^{3} r$ is the probability of finding the particle in volume element $d^{3} r=r^{2} d r d \Omega=r^{2} d r \sin \theta d \theta d \varphi$

Hydrogen Atom

¢ $>$ Probability density function $\left|\Psi_{\text {nlm }}\right|^{2}$

$$
\begin{aligned}
n & =2 \\
\ell & =1 \\
m_{\ell} & = \pm 1
\end{aligned}
$$

$$
\begin{aligned}
n & =3 \\
\ell & =1 \\
m_{\ell} & =0
\end{aligned}
$$

$$
n=3
$$

$$
\ell=2
$$

$$
m_{\ell}=0
$$

Hydrogen Atom

- $>$ Problems

- What is the expectation value for r for the 1s state?
- What is the most probable value for r for the 1 s state?

Hydrogen Atom

Comments

- The quantum numbers associated with the radial wave function are n and I
- The quantum numbers associated with the angular wave function are I and m
- Boundary conditions on the solutions lead to
n is the principle quantum number
The allowed values of n are 1,2,3,...
The allowed values of l are $0 \leq l<n$
Sometimes we use letter names for l instead s, p, d, f, g, \ldots
The allowed values of m are $0, \pm 1, \ldots, \pm l$
Hydrogen quantum states are specified by n, l, m

Hydrogen Atom

Comments

- The energy eigenvalues for bound states are also found from the requirement that the radial wave function remain finite

$$
E_{n}=-\frac{\mu Z^{2} e^{4}}{\left(4 \pi \varepsilon_{0}\right)^{2} 2 \hbar^{2} n^{2}}=-\frac{Z^{2} 13.6 e V}{n^{2}}
$$

- This is identical to the prediction of the Bohr model and in good agreement with data
- Note the eigenfunction degeneracy
- For each n, there are n possible values of I
- For each I, there are 2I+1 possible values of m
- For each n, there are n^{2} degenerate eigenfunctions

Hydrogen Atom

$\measuredangle>$ The hydrogen wave functions can be used to calculate transition probabilities for the electron to change from one state to another
$>$ Selection rules governing allowed transitions are found to be

$$
\begin{aligned}
& \Delta n=\text { anything } \\
& \Delta \mathrm{l}= \pm 1 \\
& \Delta \mathrm{~m}=0, \pm 1
\end{aligned}
$$

Hydrogen Atom

> Hydrogen energy levels

Atoms in Magnetic Fields

$\checkmark>$ Return to the Bohr atom

Proton

Atoms in Magnetic Fields

Recall a circulating charge produces
an orbital magnetic dipole moment μ_{l}
$\mu_{l}=i A$
$i=\frac{e}{T}=\frac{e v}{2 \pi r}$ so $\mu_{l}=\frac{e v r}{2}$
$L=m_{e} v r$ so $\frac{\mu_{l}}{L}=\frac{e}{2 m_{e}}$
Usually we write $\frac{\mu_{l}}{L}=\frac{g_{l} \mu_{b}}{\hbar}$
where $\mu_{\mathrm{B}}=\frac{e \hbar}{2 m_{e}}$ is called the Bohr magneton and $g_{l}=1$
Thus $\vec{\mu}_{l}=-\frac{g_{l} \mu_{B}}{\hbar} \vec{L}$

Atoms in Magnetic Fields

$>$ This relation holds true in quantum mechanics as well thus

$$
\begin{aligned}
& \vec{\mu}_{l}=-\frac{g_{l} \mu_{b}}{\hbar} \vec{L} \\
& \mu_{l}=g_{l} \mu_{b} \sqrt{l(l+1)} \\
& \mu_{l_{z}}=-g_{l} \mu_{b} m_{l}
\end{aligned}
$$

Atoms in Magnetic Fields

$>$ Recall from $\mathrm{E}+\mathrm{M}$ that when a magnetic dipole is placed in a magnetic field

$$
\begin{aligned}
& \vec{\tau}=\vec{\mu}_{l} \times \vec{B} \\
& \Delta E=-\vec{\mu}_{l} \cdot \vec{B}
\end{aligned}
$$

$>$ We expect the operator for this potential energy to look like

$$
-\vec{\mu}_{l} \cdot \vec{B}=\frac{\mu_{B} \vec{L} \cdot \vec{B}}{\hbar}=\frac{\mu_{B} L_{Z} B_{Z}}{\hbar}
$$

Then the full Hamiltonian is

$$
\hat{H}=\hat{H}_{0}+\frac{\mu_{B} L_{Z} B_{Z}}{\hbar}=-\frac{\hbar^{2}}{2 \mu} \nabla^{2}-\frac{Z e^{2}}{4 \pi \varepsilon_{0} r}+\frac{\mu_{B} L_{Z} B_{Z}}{\hbar}
$$

Atoms in Magnetic Fields

$>$ Now we have shown that the $\psi_{\text {nlm }}$ are simultaneous eigenfunctions of $\mathrm{E}, \mathrm{L}^{2}$, and L_{z}
$>$ Thus the additional term in the Hamiltonian only changes the energy

$$
E=E_{0}+m \mu_{B} B_{Z} \text { where }-l \leq m \leq l
$$

$>$ The m degeneracy of the hydrogen energy levels is lifted

- In an external magnetic field there will be m=2|+1 states with distinct energies
- This is why m is called the magnetic quantum number

Hydrogen Atom

- $>$ Normal Zeeman effect

$$
\begin{aligned}
& \text { Energy } \\
& \uparrow \\
& 1 s \frac{\ell=0}{\vec{B}=0}
\end{aligned}
$$

(a)
(b)

