Central Potential

$\triangleleft>$ Another important problem in quantum mechanics is the central potential problem

- This means $\mathrm{V}=\mathrm{V}(\mathrm{r})$ only
- This means angular momentum is conserved
$>$ This problem is important because
- We can find simultaneous eigenfunctions for the operators H, L², Lz
- Many two particle systems in which the potential energy depends only on their relative position can be reduced to a central potential problem
- Hydrogen and hydrogen-like atoms have V(r) given by the Coulomb potential

Central Potential

$>$ There is a lot of calculation here so we will have to be content to set the problem up and then state the results

$$
-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi+V \psi=E \psi
$$

where in rectangular coordinates $\nabla^{2}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}$
where in spherical coordinates $\nabla^{2}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta}\left(\frac{\partial^{2}}{\partial \varphi^{2}}\right)$

We solve this by separation of variables
First let $\psi(r, \theta, \varphi)=R(r) Y(\theta, \varphi)$

Hydrogen Atom

$\downarrow>$ Spherical coordinates

Central Potential

$>$ As when we used separation of variables before, we algebraically manipulate the separate variables to be on one side or the other of the $=$ and then set them equal to a constant

$$
\begin{align*}
& \frac{1}{R} \frac{d}{d r}\left(r^{2} \frac{d R}{d r}\right)-\frac{2 m r^{2}}{\hbar^{2}}[V(r)-E]=l(l+1) \tag{1}\\
& \frac{1}{\mathrm{Y}}\left\{\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial Y}{\partial \theta}\right)+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2} Y}{\partial \varphi^{2}}\right\}=-l(l+1) \tag{2}
\end{align*}
$$

- We'll come back to (1) later

Now let $\mathrm{Y}(\theta, \varphi)=\Theta(\theta) \Phi(\varphi)$ and repeat the process

$$
\begin{align*}
& \frac{1}{\Theta}\left[\sin \theta \frac{d}{d \theta}\left(\sin \theta \frac{d \Theta}{d \theta}\right)\right]+l(l+1) \sin ^{2} \theta=m^{2} \tag{3}\\
& \frac{1}{\Phi} \frac{d^{2} \Phi}{d \varphi^{2}}=-m^{2} \tag{4}
\end{align*}
$$

Central Potential

$>$ Solution to (3)
$\Phi(\varphi)=e^{i m \varphi}$
And applying the condition $\Phi(\varphi)=\Phi(2 \pi+\varphi)$ we must have $m=0, \pm 1, \pm 2, \ldots$
$>$ Solution to (4)
$\Theta(\theta)=A P_{l}^{m}(\cos \theta)$
where $P_{l}^{m}(\cos \theta)$ are the associated Legendre polynomials and for the solution to remain finite $l=0,1,2, \ldots$ with $m=-l,-l+1, \ldots, l-1, l$

Central Potential

$>$ More generally we group these two solutions together

- The $Y_{\text {Im }}$ are called the spherical harmonics
$Y_{l m}(\theta, \varphi)=\Theta(\theta) \Phi(\varphi)$
$=(-1)^{m} \sqrt{\frac{(2 l+1)}{4 \pi} \frac{(l-m)!}{(l+m)!}} e^{i m \varphi} P_{l}^{m}(\cos \theta)$ for $m \geq 0$
$Y_{l-m}(\theta, \varphi)=(-1)^{m} Y_{l m}^{*}(\theta, \varphi)$

Central Potential

$\checkmark>$ Spherical harmonics

Table 7.2 Normalized Spherical Harmonics $Y(\boldsymbol{\theta}, \boldsymbol{\phi})$

ℓ	m_{ϵ}	$Y_{\text {m }_{\boldsymbol{c}}}$
0	0	$\frac{1}{2 \sqrt{\pi}}$
1	0	$\frac{1}{2} \sqrt{\frac{3}{\pi}} \cos \theta$
1	± 1	$\mp \frac{1}{2} \sqrt{\frac{3}{2 \pi}} \sin \theta e^{ \pm i \phi}$
2	0	$\frac{1}{4} \sqrt{\frac{5}{\pi}}\left(3 \cos ^{2} \theta-1\right)$
2	$\pm \frac{1}{2} \sqrt{\frac{15}{2 \pi}} \sin \theta \cos \theta e^{ \pm i \phi}$	
2	± 2	$\frac{1}{4} \sqrt{\frac{15}{2 \pi}} \sin ^{2} \theta e^{ \pm 2 i \phi}$
3	$\frac{1}{4} \sqrt{\frac{7}{\pi}}\left(5 \cos ^{3} \theta-3 \cos \theta\right)$	
3	± 1	$\mp \frac{1}{8} \sqrt{\frac{21}{\pi}} \sin ^{2} \theta\left(5 \cos { }^{2} \theta-1\right) e^{ \pm i \phi}$
3	± 2	$\frac{1}{4} \sqrt{\frac{105}{2 \pi}} \sin ^{2} \theta \cos \theta e^{ \pm 2 i \phi}$
3	$\mp \frac{1}{8} \sqrt{\frac{35}{\pi}} \sin ^{3} \theta e^{ \pm 3 i \phi}$	

Central Potential

Central Potential

$>$ Polar plots of spherical harmonics $\left(\mathrm{Y}^{*} \mathrm{Y}\right)$

- Z axis is horizontal

$\mathrm{L}, \mathrm{M}=1,1$

Central Potential

$\measuredangle>$ Polar plots of spherical harmonics ($Y^{*} \mathrm{Y}$)

- Z axis is horizontal

$\mathrm{L}, \mathrm{M}=2,1$

L,M=2,2

Central Potential

$\rightarrow>$ Comments

- The spherical harmonics are the angular solution to ANY central potential problem
- The shape of the potential $V(r)$ only affects the radial part of the wave function
- There spherical harmonics are orthonormal

$$
\int_{0}^{2 \pi} \int_{0}^{\pi}\left[Y_{l}^{m}(\theta, \varphi)\right]\left[Y_{l^{\prime}}^{m^{\prime}}(\theta, \varphi)\right] \sin \theta d \theta d \varphi=\delta_{l l^{\prime}} \delta_{m m^{\prime}}
$$

Angular Momentum

$\downarrow>$ As we mentioned already, angular momentum is very important in both classical quantum mechanics

- Angular momentum is conserved for an isolated system and a particle in a central potential
- Orbital angular momentum (L)
- We usually call this angular momentum
- Intrinsic angular momentum (S)
- We usually call this spin
- Total angular momentum (J)
- Sum of orbital plus spin angular momentum

Angular Momentum

$>$ In classical mechanics
$\vec{L}=\vec{r} \times \vec{p}$
$L_{x}=y p_{z}-z p_{y}, L_{y}=z p_{x}-x p_{z}, L_{z}=x p_{y}-y p_{x}$
$L^{2}=L_{x}^{2}+L_{y}^{2}+L_{z}^{2}$
$>$ Using quantum operators

$$
\begin{aligned}
& L_{x}=\frac{\hbar}{i}\left(y \frac{\partial}{\partial z}-z \frac{\partial}{\partial y}\right), L_{y}=\frac{\hbar}{i}\left(z \frac{\partial}{\partial x}-x \frac{\partial}{\partial z}\right), L_{z}=\frac{\hbar}{i}\left(x \frac{\partial}{\partial y}-y \frac{\partial}{\partial x}\right) \\
& L^{2}=L_{x}^{2}+L_{y}^{2}+L_{z}^{2}
\end{aligned}
$$

Angular Momentum

PIn spherical coordinates

$$
\begin{aligned}
& L_{x}=\frac{\hbar}{i}\left(-\sin \varphi \frac{\partial}{\partial \theta}-\cot \theta \cos \varphi \frac{\partial}{\partial \varphi}\right) \\
& L_{y}=\frac{\hbar}{i}\left(\cos \varphi \frac{\partial}{\partial \theta}-\cot \theta \sin \varphi \frac{\partial}{\partial \varphi}\right) \\
& L_{z}=\frac{\hbar}{i} \frac{\partial}{\partial \varphi}
\end{aligned}
$$

$>$ And then

$$
L^{2}=\vec{L} \cdot \vec{L}=-\hbar^{2}\left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2}}{\partial \varphi^{2}}\right]
$$

$>$ Which (believe it or not) you have already seen

Angular Momentum

$>$ This is the most important slide today
\Rightarrow Thus we have

$$
\begin{aligned}
& L^{2} Y_{l m}(\theta, \varphi)=l(l+1) \hbar^{2} Y_{l m}(\theta, \varphi) \\
& L_{z} Y_{l m}(\theta, \varphi)=m \hbar Y_{l m}(\theta, \varphi)
\end{aligned}
$$

$>$ Angular momentum is quantized
The allowed values of l are $0,1,2, \ldots$
Sometimes we use letter names for l instead s, p, d, f, g, \ldots The allowed values of m are $0, \pm 1, \ldots, \pm l$
The eigenvalues of L^{2} are $l(l+1) \hbar^{2}$
The eigenvalues of L_{z} are $m \hbar$

Hydrogen Atom

- $>$ Orbital angular momentum for $\mathrm{I}=2$

Angular Momentum

$>$ The condition that two physical quantities are simultaneously observable is $[A, B]=A B-B A=0$

Proof

$$
\text { Let } \hat{A} \psi=a \psi \text { and } \hat{B} \psi=b \psi
$$

$\hat{A} \hat{B} \psi=\hat{A} b \psi=b \hat{A} \psi=a b \psi$
$\hat{B} \hat{A} \psi=\hat{B} a \psi=a \hat{B} \psi=a b \psi$
$(\hat{A} \hat{B}-\hat{B} \hat{A}) \psi=0$
$[\hat{A}, \hat{B}]=0$

Angular Momentum

$>$ You can work these out yourself

$$
\begin{aligned}
& \left\lfloor L_{x}, L_{y}\right\rfloor=i \hbar L_{z} \\
& {\left[L_{y}, L_{z}\right]=i \hbar L_{x}} \\
& {\left[L_{z}, L_{x}\right]=i \hbar L_{y}} \\
& {\left[L^{2}, L_{x}\right]=0,\left[L^{2}, L_{y}\right]=0,\left[L^{2}, L_{z}\right]=0} \\
& {\left[L^{2}, L\right]=0} \\
& {\left[x, p_{x}\right]=i \hbar} \\
& {[x, y]=[x, z]=[y, z]=0} \\
& {\left[p_{x}, p_{y}\right]=\left[p_{x}, p_{z}\right]=\left[p_{y}, p_{z}\right]=0}
\end{aligned}
$$

Angular Momentum

$>$ If the operators don't commute one can't measure the corresponding physical quantities simultaneously

- Examples
- x and p_{x}
- L_{x}, L_{y}, L_{z}
$>$ We can only find eigenstates of L^{2} and one of L_{x}, L_{y}, and L_{z}
- Usually we pick z
- This is arbitrary unless there is preferred direction in space set by an external magnetic field e.g.
$>$ Note in the previous picture a few slides back that L never points in the z direction
- This is because L_{x} and L_{y} can not be precisely known

Central Potential

$>$ The results we have arrived at hold true for any central potential
$>$ Thus we've learned quite a lot about the hydrogen atom without really solving it explicitly
$>$ Note the difference in the expression for angular momentum between the Bohr model and the QM calculation

- $L_{z}=n h$-bar versus $L_{z}=m$ h-bar
- Electron moves in orbits versus electron probability distribution over all space
- Energy determined by angular momentum versus energy determined by principle quantum number n

