Square Barrier

$>$ Barrier with $\mathrm{E}>\mathrm{V}_{0}$

- What is the classical motion of the particle?

Region I Region II Region III

Square Barrier

$>$ In regions I and III we need to solve

$$
\begin{aligned}
& -\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi_{I}}{d x^{2}}=E \psi_{I} \\
& \frac{d^{2} \psi_{I}}{d x^{2}}+k^{2} \psi_{I}=0 \text { where } k_{I}=k_{I I I}=k=\frac{\sqrt{2 m E}}{\hbar}
\end{aligned}
$$

$>$ In region II we need to solve

$$
\begin{aligned}
& -\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi_{I I}}{d x^{2}}+V_{0} \psi_{I I}=E \psi_{I I} \\
& \frac{d^{2} \psi_{I I}}{d x^{2}}+k_{I I}^{2} \psi_{I I}=0 \text { where } k_{I I}=\frac{\sqrt{2 m\left(E-V_{0}\right)}}{\hbar}
\end{aligned}
$$

Square Barrier

© $>$ The solution in Region I contains the incident and reflected wave

$$
\psi_{\mathrm{I}}=A e^{i k x}+B e^{-i k x}
$$

$>$ The solution in Region III contains the transmitted wave

$$
\psi_{\text {III }}=E e^{i k x}+F e^{-i k x} \rightarrow E e^{i k x}
$$

$>$ The solution in Region II is

$$
\psi_{\mathrm{II}}=C e^{i k_{I I} x}+D e^{-i k_{I I} x}
$$

Square Barrier

$\varphi>$ As usual we require continuity of ψ and $d \psi / \mathrm{dx}$ at the boundaries

- At $x=0$ this gives A and B in terms of C and D
- At $x=L$ this gives C and D in terms of E
$>$ The results are

$$
\begin{aligned}
& A=\left[\cos k_{I I} L-i \frac{k^{2}+k_{I I}^{2}}{2 k k_{I I}} \sin k_{I I} L\right] e^{i k L} E \\
& B=i \frac{k_{I I}^{2}-k^{2}}{2 k k_{I I}} \sin \left(k_{I I} L\right) e^{i k L} E
\end{aligned}
$$

Square Barrier

$>$ We define reflection R and transmission T coefficients

$$
\begin{aligned}
& R=\left|\frac{B}{A}\right|^{2}=\frac{\left(k^{2}-k_{I I}^{2}\right)^{2} \sin ^{2} k_{I I} L}{4 k^{2} k_{I I}^{2}+\left(k^{2}-k_{I I}^{2}\right)^{2} \sin ^{2} k_{I I} L} \\
& T=\left|\frac{E}{A}\right|^{2}=\frac{4 k^{2} k_{I I}^{2}}{4 k^{2} k_{I I}^{2}+\left(k^{2}-k_{I I}^{2}\right)^{2} \sin ^{2} k_{I I} L}
\end{aligned}
$$

$>$ And I'll leave it to you to show that R+T=1

Square Barrier

$>$ Using relations for k and k_{II}, we can rewrite the transmission coefficient T as

$$
\begin{aligned}
& \text { with } k=\frac{\sqrt{2 m E}}{\hbar} \text { and } k_{I I}=\frac{\sqrt{2 m\left(E-V_{0}\right)}}{\hbar} \\
& T=\frac{4 E\left(E-V_{0}\right)}{4 E\left(E-V_{0}\right)+V_{0}^{2} \sin ^{2}\left[\sqrt{2 m\left(E-V_{0}\right)} \frac{L}{\hbar}\right]}
\end{aligned}
$$

Square Barrier

$\measuredangle>$ There is one interesting feature

- With E and V_{0} fixed, the transmission coefficient T oscillates between 1 and a minimum value as the barrier width is varied

$$
\begin{aligned}
& T_{\max }=1 \\
& T_{\min }=\frac{4 E\left(E-V_{0}\right)}{4 E\left(E-V_{0}\right)+V_{0}^{2}}
\end{aligned}
$$

- We call the wave in the case of $\mathrm{T}=1$ a resonance
- A resonance is obtained when $\mathrm{k}_{\mathrm{II}} \mathrm{L}=\mathrm{n}$ п
- This means $T=1$ at values of $L=\lambda / 2$ in region II
- That is, a standing wave will exist in region II

Square Barrier

. $>$ Barrier with $\mathrm{E}<\mathrm{V}_{0}$

- What is the classical motion of the particle?

Square Barrier

$>$ In regions I and III we need to solve

$$
\begin{aligned}
& -\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi_{I}}{d x^{2}}=E \psi_{I} \\
& \frac{d^{2} \psi_{I}}{d x^{2}}+k^{2} \psi_{I}=0 \text { where } k_{I}=k_{I I I}=k=\frac{\sqrt{2 m E}}{\hbar}
\end{aligned}
$$

$>$ In region II we need to solve

$$
\begin{aligned}
& -\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi_{I I}}{d x^{2}}+V_{0} \psi_{I I}=E \psi_{I I} \\
& \frac{d^{2} \psi_{I I}}{d x^{2}}-\kappa_{I I}^{2} \psi_{I I}=0 \text { where } \kappa_{I I}=\kappa=\frac{\sqrt{2 m\left(V_{0}-E\right)}}{\hbar}
\end{aligned}
$$

Square Barrier

© $>$ The solution in Region I contains the incident and reflected wave

$$
\psi_{\mathrm{I}}=A e^{i k x}+B e^{-i k x}
$$

$>$ The solution in Region III contains the transmitted wave

$$
\psi_{\mathrm{III}}=E e^{i k x}+F e^{-i k x} \rightarrow E e^{i k x}
$$

$>$ The solution in Region II is

$$
\psi_{\mathrm{II}}=C e^{\kappa x}+D e^{-\kappa x}
$$

Square Barrier

\rightarrow We could again apply boundary conditions on ψ and $\mathrm{d} \psi / \mathrm{dx}$
$>$ But it's easier to note the difference between this case and the one previous is
$k_{I I} \rightarrow-i \kappa$
and thus $\sin k_{I I} L \rightarrow \sin (-i \kappa L)=-\sinh (\kappa L)$
$>$ Thus for $\mathrm{E}<\mathrm{V}_{0}$, T becomes

$$
T=\frac{4 E\left(V_{0}-E\right)}{4 E\left(V_{0}-E\right)+V_{0}^{2} \sinh ^{2}\left[\sqrt{2 m\left(V_{0}-E\right)} \frac{L}{\hbar}\right]}
$$

Square Barrier

Square Barrier

$\leftrightarrow>$ Thus we get a finite transmission probability T even though $\mathrm{E}<\mathrm{V}_{0}$

- This is called tunneling
- You can think of tunneling in terms of the uncertainty principle
- As shown in Thornton and Rex, when the particle is in region II, the uncertainty in kinetic energy is $V_{0}-E$
- The uncertainty in energy is comparable to the barrier height and there is a probability that particles could have sufficient energy to cross the barrier

Square Barrier

$>$ For $k L \gg 1$, the tunneling probability T becomes

$$
\begin{aligned}
& T=16 \frac{E}{V_{0}}\left(1-\frac{E}{V_{0}}\right) e^{-2 \kappa L} \\
& \text { where we used } \sinh (\mathrm{x})=\left(e^{x}-e^{-x}\right) / 2
\end{aligned}
$$

$>$ For rough estimates we can further approximate this as (see example 6.15 in Thornton and Rex)

$$
T=2 e^{-2 \kappa L}
$$

> The exponential shows the importance of the barrier width L over the barrier height V_{0}

Scanning Tunneling Microscope

STM

$_>$Invented by Gerd Binnig and Heinrich Rohrer in 1982
$>$ Nobel prize in 1986!
$>$ The basic idea makes use tunneling

- When a sharp needle tip is placed less than 1 nm from a conducting material surface and a voltage applied between them, electrons can tunnel between the tip and surface
- Since the tunnel current varies exponentially with the tip-surface distance, sub-nm changes in distance can be detected

STM

STM

STM

$>$ Tunneling through the potential barrier

STM

$>$ Raster scanning with constant Z

$>$ Raster scanning with constant tunneling current

STM

STM

$>$ The STM tip is attached to piezoelectric elements (usually a tube) that precisely control the position in $x-y-z$

- Used to control tip-surface distance (z)
- Used to raster scan (x-y)

STM

$\downarrow>$ STM can also be used to manipulate atoms via van der Waals, tunneling, or electric field forces

STM

Fig. 7. OU logo writing sequence using individual silver atoms on a Ag (111) surface at 6 K (upper) and a three-dimensional representation (middle) ($42 \mathrm{~nm} \times 26 \mathrm{~nm}$ area, 51 silver atoms are used). "Atomic smiley" image is written by using silver atoms on a $\mathrm{Ag}(111)$ surface at 5 K (32 nm diameter).

STM

Quantum Corrals

$\downarrow>$ Electron in a corral of iron atoms on copper

Quantum Corrals

$4>$ Electron in a corral of iron atoms

Alpha Decay

$>$ Geiger-Nuttall law

- Nuclei with A > 150 are unstable with respect to alpha decay
- An alpha particle (a) consists of a bound state of 2 protons and 2 neutrons (${ }^{4} \mathrm{He}$ nucleus)
- $A(Z, N) \rightarrow A(Z-2, N-2)+a$
- Effectively all of the energy released goes into the kinetic energy of the a

Alpha Decay

$>$ Geiger-Nuttall law

- Radioactive half lives vary from $\sim 10^{-6} \mathrm{~S}$ to $\sim 10^{17} \mathrm{~S}$ but the alpha decay energies only vary from 4 to 9 MeV

Alpha Decay

$>$ Geiger-Nuttall law

- The experimental data follow the Geiger-Nuttall law

$$
\log _{10} W=C-\frac{D}{\sqrt{T_{\alpha}}} \text { where }
$$

W is the decay probability
$\tau_{1 / 2}=\ln 2 / W$
C, D are constants
T_{α} is the alpha kinetic energy

- A calculation of the quantum mechanic tunneling probability explained this law and was one of the early successes of quantum mechanics

Alpha Decay

Radius

Alpha Decay

$>$ Calculation of the decay probability W

This is just a rough estimate
$W=P v T$
where
P is the probability of finding an alpha in a nucleus
v is the frequency that an alpha appears at the surface of the nucleus
T is the transmission probability
$>$ Do this for ${ }^{238} \mathrm{U}$ alpha decay with $\mathrm{r}_{\mathrm{N}}=7 \mathrm{~F}$ and $\mathrm{T}_{\alpha}=4.2 \mathrm{MeV}$

Alpha Decay

$>$ Calculation of P and v

$$
\begin{aligned}
& \text { Guess } P=0.1 \\
& v=\frac{\mathrm{v}}{2 R}=\frac{\sqrt{2 T / M_{\alpha}}}{2 R} \\
& v=\frac{\sqrt{2 \times 4.2 \mathrm{MeV} / 3727 \mathrm{MeV} / \mathrm{c}^{2}}}{2 \times 7 \times 10^{-15} \mathrm{~m}} \\
& v=10^{21} / \mathrm{s}
\end{aligned}
$$

Alpha Decay

$>$ Calculation of transmission probability T

- Preliminaries
- Calculate the height of the Coulomb barrier

$$
V_{C}=\frac{Z_{1} Z_{2} e^{2}}{4 \pi \varepsilon_{0} r_{n}}=37 \mathrm{MeV}
$$

- Calculate the tunneling distance

$$
\begin{aligned}
& T=4.2 \mathrm{MeV}=\frac{Z_{1} Z_{2} e^{2}}{4 \pi \varepsilon_{0} r^{\prime}} \\
& r^{\prime}=6.2 \times 10^{-14} \mathrm{~m}=62 F \\
& L=62-7=55 F
\end{aligned}
$$

Alpha Decay

$\rightarrow>$ The Coulomb barrier is not a square well

- There is a way in quantum mechanics to calculate T correctly (called the WKB approximation) but for today we'll just estimate the equivalent height and width of a square well
- Use $\mathrm{V}_{\mathrm{C}}=20 \mathrm{MeV}$ and $\mathrm{r}^{\prime}=25 \mathrm{~F}$

Alpha Decay

$>$ Calculation of T

$$
\begin{aligned}
& \kappa=\frac{\sqrt{2 M_{\alpha}\left(V_{C}-E\right)}}{\hbar} \\
& \kappa=\frac{\sqrt{2 \times 3727 \mathrm{MeV} / c^{2} \times(20-4.2) \mathrm{MeV}}}{6.58 \times 10^{-22} \mathrm{MeVS}} \\
& \kappa=1.7 \times 10^{15} / \mathrm{m} \\
& \text { then } \\
& T=2 e^{-2 \kappa L}=2 e^{-(2)\left(1.7 \times 10^{15}\right)\left(25 \times 10^{-15}\right)}=2.4 \times 10^{-37}
\end{aligned}
$$

Alpha Decay

$>$ Calculation of $\mathrm{t}_{1 / 2}$

$$
\begin{aligned}
& W=P v T \\
& W=(0.1)\left(10^{21}\right)\left(2.4 \times 10^{-37}\right)=2.4 \times 10^{-17} / \mathrm{s} \\
& \tau_{1 / 2}(\text { theory })=\frac{\ln 2}{W}=2.8 \times 10^{16} \mathrm{~s} \\
& \tau_{1 / 2}(\exp \text { eriment })=1.4 \times 10^{17} \mathrm{~s}
\end{aligned}
$$

