Square Barrier
~—»Barrier with E>V,

= What is the classical motion of the particle?
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Square Barrier

o, » Inregions I and III we need to solve
2 2
il jm ddxl/;[ =BV
d;x‘”; + iy, =0wherek, =k, =k = 2;”E
» In region II we need to solve
2 2
- jm dd;”zﬂ +Vw, =Ly,
d*y, J2m(E-V,)

Y +ky, =0wherek, = i




Square Barrier

_—»The solution in Region I contains the incident
and reflected wave

v, = Ae™ + Be™™

» The solution in Region III contains the
transmitted wave

v = Ee™ + Fe ™ — Ee™

» The solution in Region II is
W L Ceikﬂx _I_De—ikﬂx
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Square Barrier

_—»As usual we require continuity of y and dy/dx
at the boundaries

= At x=0 this gives A and B in terms of Cand D
s At x=L this gives C and D in terms of E

» The results are

2 2
A= coskHL—ik + sink, L |e"E
| 2kk |
2 2
B=ifu—k sin(k,, L)e"" E

2kk,




Square Barrier
- »We define reflection R and transmission T

coefficients
P 52 (k2 kﬁ,)Z sin” k,, L
Al 4k + (K -k ) sin’ &, L
El 4k*k>
T = |—| =
Al 4kl + (2 - k2 Y sin*k, L

» And I'll leave it to you to show that R+T=1




Square Barrier

-—»Using relations for k and k;;, we can rewrite
the transmission coefficient T as

with k = Y22 and k, = sz(ﬁ il

i 4E(E~1,)

AE(E—V,)+V sin’ \/2m(E—VO);




Square Barrier

«—»There is one interesting feature

» With E and V, fixed, the transmission coefficient T
oscillates between 1 and a minimum value as the
barrier width is varied

Tmax =1

__4E(E-V)
" 4E(E-V,)+ V)

s We call the wave in the case of T=1 a resonance

= A resonance is obtained when k;L=nn
» This means T=1 at values of L=A/2 in region II
+ That is, a standing wave will exist in region II




Square Barrier
~—»Barrier with E<V,

= What is the classical motion of the particle?
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Square Barrier

o, » Inregions I and III we need to solve

n d’y,

_ - F
2m dx’ Al

d’ 2mE

dxwzl +k’y, =0wherek, =k, =k = ]

» In region II we need to solve

neody

- 2 dxzﬂ +Voy, =Ly,

d2'7”11 \/2m(VO il E)

20, .
——kyw,; =0wherex, =k =
dx h



Square Barrier

_—»The solution in Region I contains the incident
and reflected wave

v, = Ae™ + Be™™

» The solution in Region III contains the
transmitted wave

v = Ee™ + Fe ™ — Ee™

» The solution in Region II is

v, =Ce" +De™
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Square Barrier

_—»We could again apply boundary conditions on
Y and dy/dx

» But it's easier to note the difference between
this case and the one previous is

k, > —ix
and thus sink,, L — sin(—ixL) = —sinh(xL )

» Thus for E < V,, T becomes
4E(V, - E)

T =

AE(V,—E)+V; sinh{\/Zm(VO — E)ﬂ

11




N

Square Barrier
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Square Barrier

-»Thus we get a finite transmission
probability T even though E <V,

= This is called tunneling

= You can think of tunneling in terms of the
uncertainty principle

* As shown in Thornton and Rex, when the
particle is in region II, the uncertainty in kinetic
energy is Vy— E

» The uncertainty in energy is comparable to the
barrier height and there is a probability that
particles could have sufficient energy to cross
the barrier
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Square Barrier

_» For kL >> 1, the tunneling probability T becomes
T = 16£ 1—£ e >

ol W
where we used sinh(x )= (¢* —¢™)/2

» For rough estimates we can further approximate this
as (see example 6.15 in Thornton and Rex)

T =2e

» The exponential shows the importance of the barrier
width L over the barrier height V,,
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Scanning Tunneling Microscope
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STM

«—»Invented by Gerd Binnig and Heinrich Rohrer
in 1982

» Nobel prize in 1986!

» The basic idea makes use tunneling

= When a sharp needle tip is placed less than 1 nm
from a conducting material surface and a voltage
applied between them, electrons can tunnel
between the tip and surface

= Since the tunnel current varies exponentially with
the tip-surface distance, sub-nm changes in
distance can be detected
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STM
» Tunneling through the potential barrier
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»Raster scanning
with constant Z

» Raster scanning
with constant
tunneling current

tunmneling
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STM
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STM

-« »The STM tip is attached to piezoelectric
elements (usually a tube) that precisely control
the position in x-y-z

= Used to control tip-surface distance (z)

= Used to raster scan (x-y)

high voltage
amplifier

feed-bhack
regulator
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STM

—»STM can also be used to manipulate atoms
via van der Waals, tunneling, or electric field
forces




N

Fiz. 7. OU logo writing sequence using individual silver atoms on a
Ag(111) surface at 6 K (upper) and a three-dimensional representation
(middle) (42 nm 26 nm area. 51 silver atoms are used). “Atomic smiley™
image is written by using silver atoms on a Ag(111) surface at 5 K (32 nm
diameater).
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STM
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Quantum Corrals

'ron in a corral of iron atoms on copper
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Quantum Corrals

> Electron in a corral of iron atoms
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Alpha Decay
> Geiger-Nuttall law

= Nuclei with A > 150 are unstable with respect to
alpha decay

+ An alpha particle (a) consists of a bound state of 2 protons
and 2 neutrons (*He nucleus)

* A(ZN) — A(Z-2,N-2) + a
+» Effectively all of the energy released goes into the kinetic
energy of the a
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Alpha Decay
- » Geiger-Nuttall law

= Radioactive half lives vary from ~10%s to ~10s
but the alpha decay energies only vary from 4 to 9
MeV 18

i | | I ]
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Alpha Decay
. »Geiger-Nuttall law

= The experimental data follow the Geiger-Nuttall law

D

= C ——=— where
JT,
W 1s the decay probability

Ty =102/ W

C, D are constants

log,, W

T, 1s the alpha kinetic energy

= A calculation of the quantum mechanic tunneling
probability explained this law and was one of the
early successes of quantum mechanics
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Alpha Decay
-, » Calculation of the decay probability W

[his 1s just a rough estimate
V = PvT

vhere

| . < N [ |

P 1s the probability of finding an alpha in a nucleus

v 1s the frequency that an alpha appears at the surface of the nucleus

T’ 1s the transmission probability

» Do this for 238U alpha decay with ry=7 F and
T,=4.2 MeV
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Alpha Decay

_» Calculation of P and v

Guess P=0.1

v A2T/M,
V= =
2R 2R

N2x42MeV /3727MeV | ¢
2x7x10"m
v=10""/s

V
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Alpha Decay
,—» Calculation of transmission probability T

= Preliminaries
+ Calculate the height of the Coulomb barrier

2
- YAVAN:
dre,r,

=37MeV

Ve

+ Calculate the tunneling distance
Z.Z,e
A v’
r'=62%x10""m=62F
L=62-T7=55F

T =42Mel =
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Alpha Decay
- »The Coulomb barrier is not a square well

= There is a way in quantum mechanics to calculate T
correctly (called the WKB approximation) but for
today we'll just estimate the equivalent height and
width of a square well

s Use V=20 MeV and r'=25 F
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Alpha Decay
. »Calculation of T

_ \/ZMa(VC_E)
il 7

o N2x3T27MeV [ (20 - 4.2)MeV
6.58 x10™** MeVs
k=1.7x10"/m

then
T —Dp 2 _ 26—(2)(1.7x1015)(25><10—15) _24x107Y
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Alpha Decay

> Caleulation of t;/,

W =PvT
W =(0.1)10)2.4x107 )= 2.4x10"7 /s
In2

71/2(”’6073/) = W —2.8x%x10"%s

T1/s (exp eriment) =1.4x10"s
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