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Square Barrier

Barrier with E>V0

What is the classical motion of the particle?
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Square Barrier
In regions I and III we need to solve

In region II we need to solve
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Square Barrier
The solution in Region I contains the incident 
and reflected wave

The solution in Region III contains the 
transmitted wave

The solution in Region II is

ikxikx BeAe −+=Iψ

xikxik IIII DeCe −+=IIψ

ikxikxikx EeFeEe →+= −
IIIψ
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Square Barrier
As usual we require continuity of ψ and dψ/dx
at the boundaries

At x=0 this gives A and B in terms of C and D
At x=L this gives C and D in terms of E

The results are
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Square Barrier
We define reflection R and transmission T 
coefficients

And I’ll leave it to you to show that R+T=1
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Square Barrier
Using relations for k and kII, we can rewrite 
the transmission coefficient T as
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Square Barrier
There is one interesting feature

With E and V0 fixed, the transmission coefficient T 
oscillates between 1 and a minimum value as the 
barrier width is varied

We call the wave in the case of T=1 a resonance 
A resonance is obtained when kIIL=nπ

This means T=1 at values of L=λ/2 in region II
That is, a standing wave will exist in region II
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Square Barrier

Barrier with E<V0

What is the classical motion of the particle?
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Square Barrier
In regions I and III we need to solve

In region II we need to solve
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Square Barrier
The solution in Region I contains the incident 
and reflected wave

The solution in Region III contains the 
transmitted wave

The solution in Region II is

ikxikx BeAe −+=Iψ

xx DeCe κκψ −+=II

ikxikxikx EeFeEe →+= −
IIIψ
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Square Barrier
We could again apply boundary conditions on 
ψ and dψ/dx
But it’s easier to note the difference between 
this case and the one previous is

Thus for E < V0, T becomes
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Square Barrier
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Square Barrier
Thus we get a finite transmission 
probability T even though E < V0

This is called tunneling
You can think of tunneling in terms of the 
uncertainty principle

As shown in Thornton and Rex, when the 
particle is in region II, the uncertainty in kinetic 
energy is V0 – E
The uncertainty in energy is comparable to the 
barrier height and there is a probability that 
particles could have sufficient energy to cross 
the barrier
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Square Barrier
For κL >> 1, the tunneling probability T becomes

For rough estimates we can further approximate this 
as (see example 6.15 in Thornton and Rex)

The exponential shows the importance of the barrier 
width L over the barrier height V0
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Scanning Tunneling Microscope
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STM
Invented by Gerd Binnig and Heinrich Rohrer 
in 1982
Nobel prize in 1986!
The basic idea makes use tunneling

When a sharp needle tip is placed less than 1 nm 
from a conducting material surface and a voltage 
applied between them, electrons can tunnel 
between the tip and surface
Since the tunnel current varies exponentially with 
the tip-surface distance, sub-nm changes in 
distance can be detected
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STM
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STM
STM tip
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STM
Tunneling through the potential barrier
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STM

Raster scanning 
with constant Z

Raster scanning 
with constant 
tunneling current
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STM
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STM
The STM tip is attached to piezoelectric 
elements (usually a tube) that precisely control 
the position in x-y-z

Used to control tip-surface distance (z) 
Used to raster scan (x-y)
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STM
STM can also be used to manipulate atoms 
via van der Waals, tunneling, or electric field 
forces

TIPTIP
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STM



26

STM
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Quantum Corrals
Electron in a corral of iron atoms on copper
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Quantum Corrals
Electron in a corral of iron atoms
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Alpha Decay
Geiger-Nuttall law

Nuclei with A > 150 are unstable with respect to 
alpha decay

An alpha particle (α) consists of a bound state of 2 protons 
and 2 neutrons (4He nucleus)
A(Z,N) → A(Z-2,N-2) + α
Effectively all of the energy released goes into the kinetic 
energy of the α
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Alpha Decay
Geiger-Nuttall law

Radioactive half lives vary from ~10-6s to ~1017s 
but the alpha decay energies only vary from 4 to 9 
MeV
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Alpha Decay
Geiger-Nuttall law

The experimental data follow the Geiger-Nuttall law

A calculation of the quantum mechanic tunneling 
probability explained this law and was one of the 
early successes of quantum mechanics
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Alpha Decay
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Alpha Decay
Calculation of the decay probability W

Do this for 238U alpha decay with rN=7 F and 
Tα =4.2 MeV
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Alpha Decay
Calculation of P and ν
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Alpha Decay
Calculation of transmission probability T

Preliminaries
Calculate the height of the Coulomb barrier

Calculate the tunneling distance
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Alpha Decay
The Coulomb barrier is not a square well

There is a way in quantum mechanics to calculate T 
correctly (called the WKB approximation) but for 
today we’ll just estimate the equivalent height and 
width of a square well
Use VC=20 MeV and r’=25 F
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Alpha Decay
Calculation of T
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Alpha Decay
Calculation of t1/2
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