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Quantum Mechanics
Postulate 4

Describes expansion
In the eigenvalue equation                    the 
eigenfunctions {ui} constitute a complete, 
orthonormal set

The set of eigenfunctions {ui} form a basis:  any 
wave function Ψ can be expanded as a coherent 
superposition of the complete set
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Expansion
Thus you can write any wave function in terms 
of wave functions you already know.  The 
coefficients can be evaluated as 
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Expansion
The expectation value can be written using the 
{ui} basis

Thus the probability of observing oj when O is 
measured is |cj|2
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Quantum Mechanics

Postulate 5
Describes reduction
After a given measurement of an 
observable O that yields the value oi, the 
system is left in the eigenstate ui
corresponding to that eigenvalue
This is called the collapse of the 
wavefunction
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Reduction

Before measurement of a particular 
observable of a quantum state 
represented by the wave function Ψ, 
many possibilities exist for the outcome 
of the measurement
The wave function before measurement 
represents a coherent superposition of 
the eigenfunctions of the observable 
Ψ = (ucat dead + ucat alive)



6

Reduction

The wave function immediately after 
the measurement of O is ui if oi is 
observed

|cj|2 = δij

Another measurement of O will yield oi
since the wave function is now oi, not Ψ

If you look at the cat again it’s still dead 
(or alive)
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Quantum Mechanics
Postulate 6

Describes time evolution
Between measurements, the time evolution of the 
wave function is governed by the Schrodinger 
equation
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Time Independent 
Schrodinger Equation

How do we solve Schrodinger’s equation?
In many cases, V(x,t) = V(x) only
Apply the method of separation of variables
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Time Independent 
Schrodinger Equation

The last equation shows that both sides must equal a 
constant (since one is a function of t only and the 
other a function of x only)

Thus we’ve turned one PDE into two ODE’s
using separation of variables
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Time Independent 
Schrodinger Equation

Time dependent piece

Note the e-iωt has the same time dependence 
as the free particle solution

Thus we see 
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Time Independent 
Schrodinger Equation

Time independent piece

Comment 1
Recall our definition Hamiltonian operator H
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Time Independent 
Schrodinger Equation

Comment 2

The allowed (quantized) energies are the 
eigenvalues of the Hamiltonian operator H
In quantum mechanics, there exist well-
determined energy states
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Time Independent 
Schrodinger Equation

Comment 3
Wave functions that are products of the separable 
solutions form stationary states

The probability density is time independent
All the expectation values are time independent
Nothing ever changes in a stationary state
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Time Independent 
Schrodinger Equation

Comment 4

In stationary states, every measurement of the 
total energy is a well-defined energy E
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Time Independent 
Schrodinger Equation

Comment 5
A general solution to the time dependent 
Schrodinger equation is 
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Free Particle
Free particle means V=0 everywhere
You’d think that this would be the easiest 
problem to solve
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Free Particle
Let’s look at the momentum eigenvalue
equation
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Properties of the δ Function
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Free Particle
This is the orthonormality condition for 
continuous eigenfunctions
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Free Particle
Back to our eikx normalization dilemma

Solution 1 - Confine the particle in a very large 
box

We’ll work this problem next time
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Free Particle
Back to our eikx normalization dilemma

Solution 2 – Use wave packets 

Look familiar?  Remember

Thus by using a sufficiently peaked momentum 
distribution, we can make space distribution so 
broad so as to be essentially constant
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