Quantum Mechanics
«—»>Postulate 4

= Describes expansion

= In the eigenvalue equation éui =o.u, the
eigenfunctions {u.} constitute a complete,
orthonormal set

j dx u; (x ), (x)= &, is called the orthonormality relation

= The set of eigenfunctions {u.} form a basis: any
wave function W can be expanded as a coherent
superposition of the complete set

Forany W (x) € F, It can be written as

Y(x) = Zciui (x)




Expansion

,—»Thus you can write any wave function in terms
of wave functions you already know. The
coefficients can be evaluated as

Ofdx uj\P = Ofdx ”;ZCi”i




Expansion

_—» The expectation value can be written using the

U228 ) T

o0
= jdeciuiOchuj
S j
o0
=Z ZCicj_[dxul.Ojuj
i o,
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_Z‘Cj‘ O;

» Thus the probability of observing o; when O is
measured is || ;




Quantum Mechanics
<—»Postulate 5

m Describes reduction

» After a given measurement of an
observable O that yields the value o, the
system is left in the eigenstate u.
corresponding to that eigenvalue

= This is called the collapse of the
wavefunction




Reduction

- »Before measurement of a particular
observable of a quantum state
represented by the wave function W,
many possibilities exist for the outcome
of the measurement

» The wave function before measurement
represents a coherent superposition of
the eigenfunctions of the observable

n U= (ucat dead T Ucat aIive)




Reduction

~—»The wave function immediately after
the measurement of O is u; if 0, is
observed
n |G|2 = Oy
»Another measurement of O will yield o
since the wave function is now o, not W

= If you look at the cat again it's still dead
(or alive)




Quantum Mechanics
-—»>Postulate 6

s Describes time evolution

= Between measurements, the time evolution of the
wave function is governed by the Schrodinger

equation
2 2
Ot 2m Ox
+0Y oy
Ot

~2

H is the Hamiltonian operator H=T+V = % LV
m
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Time Independent
Schrodinger Equation

«—»How-do we solve Schrodinger’s equation?
= In many cases, V(x,t) = V(x) only
= Apply the method of separation of variables

Y(x,1) =w(x)f ()

2 2
thena—\{’_wdf and g \f 2 "2”
ot dt ox dx
and Schrodinger's equation now reads
df he dy
i +V
Y dt  2m dx’ i
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hla’f h° 1 doy Ly
f dt 2m vy dx’




Time Independent
Schrodinger Equation

__» The last equation shows that both sides must equal a
constant (since one is a function of t only and the
other a function of x only)

1 df
dt

df iE

or Z=-—
dt f

2
(right) - y
2m dx’

» Thus we've turned one PDE into two ODE'’s
using separation of variables

(left) in— — E

+Vy =FEy




Time Independent
Schrodinger Equation

<—» Time dependent piece
@ _ ik
dt  h 4

ikt
hassolution f=Ce " = Ce™

We can absorb C into the i so
iEt

ft)=e "

» Note the et has the same time dependence
as the free particle solution
= Thuswesee £ =hw
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Time Independent
Schrodinger Equation

«—»Time independent piece
-+ ne dy

2

+Vy =FE
2m dx # 4

» Comment 1
= Recall our definition Hamiltonian operator H
~ 2 2
H=T+V =P ! 82 +V
2m 2m Ox

Then we have
ﬁszw
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Time Independent
Schrodinger Equation

<»Comment 2

ﬁw = Fy Is an eigenvalue equation
E are the eigenvalues
 are the eigenvectors

= The allowed (quantized) energies are the
eigenvalues of the Hamiltonian operator H

= In quantum mechanics, there exist well-
determined energy states
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Time Independent
Schrodinger Equation

o »Comment 3

Wave functions that are products of the separable
solutions form stationary states

Always remember the full wave function is
iEt

P(x,t)=y(x)e
Note the probability density
iEt iEt

‘S”(x, t)(2 =YY = t,u*e+7:,ue_7 = ‘t//(x)(z

The probability density is time independent
All the expectation values are time independent

Nothing ever changes in a stationary state
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Time Independent
Schrodinger Equation

o,—»Comment 4
<H> = jdxw*ﬁt// = Ejdxw*w =F

Alsoﬁzw:f[(ﬁw):ﬁszEﬁw:Ez

Then <H2> = dew*ﬁzw = F? ]?dxw*w = F?
Soof, =(H*)-(H) =0

» In stationary states, every measurement of the
total energy is a well-defined energy E
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Time Independent
Schrodinger Equation

_ »Comment 5

= A general solution to the time dependent
Schrodinger equation is

LP()C, t) = i cy, (Xk_iEnt/h
n=1
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Free Particle

,—» Free particle means V=0 everywhere

» You'd think that this would be the easiest
problem to solve

ne dy
_ —F
2m dx* 4
2 /
62 "2” = —k°y where k = 2mk
X

General solution can be written as
—ikx

w = Ae™ + Be
While this wave function is a solution it 1s not normalizable
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Free Particle

> lLet's look at the momentum eigenvalue

equation
ou,, (x)

u (x) = —in 22y (2)

There is no constraint on p so the eigenvalues are continuous
The solutionisu, (x)=Ce™"" = Ce™

We expect these eigenfunctions to satisfy the orthonormality condition

[ e (xle, (x) = [cf [ et

= ‘C‘227Z'h5(p—p')

letting C =

1
Vet
Ja (b, ()= (=)
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Properties of the 0 Function

5(x)={0for x # 0, o for x = 0}

de5(x) =1

Jasf (x)(sa) = /1)

Slx—ps )= Idkeik(x_xO)
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Free Particle

_—»This is the orthonormality condition for
continuous eigenfunctions

de u; (xu,(x)= 5, (discrete)

Ta’x w,(xu,(x)=35(p—p') (continuous)
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Free Particle

_»Back to our e** normalization dilemma

= Solution 1 - Confine the particle in a very large
box
+ We'll work this problem next time
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Free Particle

o »Back to our e** normalization dilemma
= Solution 2 — Use wave packets

Since the u (x) form a complete set

( 1 ipx
w(x)= | dp a(P)mep "

s Look familiar? Remember
¥(x,0)= [ dkA(k)e™

then A(k) is the Fourier transform of P(x,0)

A(k) = j dx¥ (x,0) ™
= Thus by using a sufficiently peaked momentum

distribution, we can make space distribution so
broad so as to be essentially constant 21




