Quantum Mechanics

- $>$ Postulate 4

- Describes expansion
- In the eigenvalue equation $\hat{O} u_{i}=o_{i} u_{i}$ the eigenfunctions $\left\{\mathrm{u}_{\mathrm{i}}\right\}$ constitute a complete, orthonormal set

$$
\int_{-\infty}^{\infty} d x u_{i}^{*}\left(x u_{j}(x)=\delta_{i j}\right. \text { is called the orthonormality relation }
$$

- The set of eigenfunctions $\left\{u_{i}\right\}$ form a basis: any wave function Ψ can be expanded as a coherent superposition of the complete set

For any $\Psi(x) \in F$, it can be written as

$$
\Psi(x)=\sum_{i} c_{i} u_{i}(x)
$$

Expansion

$>$ Thus you can write any wave function in terms of wave functions you already know. The coefficients can be evaluated as

$$
\begin{aligned}
\int_{-\infty}^{\infty} d x u_{j}^{*} \Psi & =\int_{-\infty}^{\infty} d x u_{j}^{\infty} \sum_{i}^{*} c_{i} u_{i} \\
& =\sum_{i}^{\infty} C_{i} \int_{-\infty}^{\infty} d x u_{j} u_{i} \\
& =\sum_{i} C_{i} \delta_{j i} \\
& =C_{j}
\end{aligned}
$$

Expansion

$>$ The expectation value can be written using the $\left\{u_{i}\right\}$ basis

$$
\begin{aligned}
\langle\hat{O}\rangle & =\int_{-\infty}^{\infty} d x \Psi^{*} \hat{O} \Psi \\
& =\int_{-\infty}^{\infty} d x \sum_{i} c_{i}^{*} u_{i}^{*} \hat{O} \sum_{j} c_{j} u_{j} \\
& =\sum_{i} \sum_{j} c_{i}^{*} c_{j} \int_{-\infty}^{\infty} d x u_{i}^{*} o_{j} u_{j} \\
& =\left.\sum_{j} c_{j}\right|^{2} o_{j}
\end{aligned}
$$

$>$ Thus the probability of observing o_{j} when O is measured is $\left|c_{j}\right|^{2}$

Quantum Mechanics

$\rightarrow>$ Postulate 5

- Describes reduction
- After a given measurement of an observable O that yields the value o_{i}, the system is left in the eigenstate u_{i} corresponding to that eigenvalue
- This is called the collapse of the wavefunction

Reduction

$\star>$ Before measurement of a particular observable of a quantum state represented by the wave function Ψ, many possibilities exist for the outcome of the measurement
$>$ The wave function before measurement represents a coherent superposition of the eigenfunctions of the observable

- $\Psi=\left(\mathrm{u}_{\text {cat dead }}+\mathrm{u}_{\text {cat alive }}\right)$

Reduction

$\rightarrow>$ The wave function immediately after the measurement of O is u_{i} if o_{i} is observed

- $\left|c_{j}\right|^{2}=\delta_{i j}$
$>$ Another measurement of O will yield o_{i} since the wave function is now o_{i}, not Ψ
- If you look at the cat again it's still dead (or alive)

Quantum Mechanics

$>$ Postulate 6

- Describes time evolution
- Between measurements, the time evolution of the wave function is governed by the Schrodinger equation
$i \hbar \frac{\partial \Psi}{\partial t}=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \Psi}{\partial x^{2}}+V \Psi$
$i \hbar \frac{\partial \Psi}{\partial t}=\hat{H} \Psi$
\hat{H} is the Hamiltonian operator $\hat{H}=\hat{T}+\hat{V}=\frac{\hat{p}^{2}}{2 m}+\hat{V}$

Time Independent Schrodinger Equation

$>$ How do we solve Schrodinger's equation?

- In many cases, $\mathrm{V}(\mathrm{x}, \mathrm{t})=\mathrm{V}(\mathrm{x})$ only
- Apply the method of separation of variables

$$
\begin{aligned}
& \Psi(x, t)=\psi(x) f(t) \\
& \text { then } \frac{\partial \Psi}{\partial t}=\psi \frac{d f}{d t} \text { and } \frac{\partial^{2} \Psi}{\partial x^{2}}=\frac{d^{2} \psi}{d x^{2}} f
\end{aligned}
$$

and Schrodinger's equation now reads

$$
\begin{aligned}
& i \hbar \psi \frac{d f}{d t}=-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi}{d x^{2}} f+V \psi f \\
& i \hbar \frac{1}{f} \frac{d f}{d t}=-\frac{\hbar^{2}}{2 m} \frac{1}{\psi} \frac{d^{2} \psi}{d x^{2}}+V
\end{aligned}
$$

Time Independent Schrodinger Equation

$>$ The last equation shows that both sides must equal a constant (since one is a function of t only and the other a function of x only)

$$
\begin{aligned}
& \text { (left) } i \hbar \frac{1}{f} \frac{d f}{d t}=E \\
& \text { or } \quad \frac{d f}{d t}=-\frac{i E}{\hbar} f \\
& \text { (right) }-\frac{\hbar^{2}}{2 \mathrm{~m}} \frac{d^{2} \psi}{d x^{2}}+V \psi=E \psi
\end{aligned}
$$

> Thus we've turned one PDE into two ODE's using separation of variables

Time Independent Schrodinger Equation

$>$ Time dependent piece

$$
\frac{d f}{d t}=-\frac{i E}{\hbar} f
$$

has solution $f=C e^{-\frac{i E t}{\hbar}}=C e^{-i o t}$
We can absorb C into the ψ so

$$
f(t)=e^{-\frac{i E t}{\hbar}}
$$

$>$ Note the $\mathrm{e}^{-i \omega t}$ has the same time dependence as the free particle solution

- Thus we see $E=\hbar \omega$

Time Independent Schrodinger Equation

$>$ Time independent piece

$$
-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi}{d x^{2}}+V \psi=E \psi
$$

$>$ Comment 1

- Recall our definition Hamiltonian operator H

$$
\hat{H}=\hat{T}+\hat{V}=\frac{\hat{p}^{2}}{2 m}+\hat{V}=-\frac{\hbar^{2}}{2 m} \frac{\partial}{\partial x^{2}}+\hat{V}
$$

Then we have
$\hat{H} \psi=E \psi$

Time Independent Schrodinger Equation

Comment 2

$$
\begin{aligned}
& \hat{H} \psi=E \psi \text { is an eigenvalue equation } \\
& E \text { are the eigenvalues } \\
& \psi \text { are the eigenvectors }
\end{aligned}
$$

- The allowed (quantized) energies are the eigenvalues of the Hamiltonian operator H
- In quantum mechanics, there exist welldetermined energy states

Time Independent Schrodinger Equation

Comment 3

- Wave functions that are products of the separable solutions form stationary states
Always remember the full wave function is

$$
\Psi(x, t)=\psi(x) e^{\frac{-i E t}{\hbar}}
$$

Note the probability density

$$
|\Psi(x, t)|^{2}=\Psi^{*} \Psi=\psi^{*} e^{+\frac{i E t}{\hbar}} \psi e^{-\frac{i E t}{\hbar}}=|\psi(x)|^{2}
$$

- The probability density is time independent
- All the expectation values are time independent
- Nothing ever changes in a stationary state

Time Independent Schrodinger Equation

$>$ Comment 4

$$
\langle H\rangle=\int_{-\infty}^{\infty} d x \psi^{*} \hat{H} \psi=E \int_{-\infty}^{\infty} d x \psi^{*} \psi=E
$$

$$
\text { Also } \hat{H}^{2} \psi=\hat{H}(\hat{H} \psi)=\hat{H} E \psi=E \hat{H} \psi=E^{2}
$$

$$
\text { Then }\left\langle H^{2}\right\rangle=\int_{-\infty}^{\infty} d x \psi^{*} \hat{H}^{2} \psi=E^{2} \int_{-\infty}^{\infty} d x \psi^{*} \psi=E^{2}
$$

$$
\text { So } \sigma_{\mathrm{H}}^{2}=\left\langle H^{2}\right\rangle-\langle H\rangle^{2}=0
$$

$>$ In stationary states, every measurement of the total energy is a well-defined energy E

Time Independent Schrodinger Equation

$>$ Comment 5

- A general solution to the time dependent Schrodinger equation is

$$
\Psi(x, t)=\sum_{n=1}^{\infty} c_{n} \psi_{n}(x) e^{-i E_{n} t / \hbar}
$$

Free Particle

\rightarrow Free particle means V=0 everywhere
$>$ You'd think that this would be the easiest problem to solve

$$
\begin{aligned}
& -\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi}{d x^{2}}=E \psi \\
& \frac{d^{2} \psi}{d x^{2}}=-k^{2} \psi \text { where } k=\frac{\sqrt{2 m E}}{\hbar}
\end{aligned}
$$

General solution can be written as
$\psi=A e^{i k x}+B e^{-i k x}$
While this wave function is a solution it is not normalizable

Free Particle

$>$ Let's look at the momentum eigenvalue

 equation$$
\hat{p} u_{p}(x)=-i \hbar \frac{\partial u_{p}(x)}{\partial x}=p u_{p}(x)
$$

There is no constraint on p so the eigenvalues are continuous
The solution is $u_{p}(x)=C e^{i p x / \hbar}=C e^{i k x}$
We expect these eigenfunctions to satisfy the orthonormality condition

$$
\begin{aligned}
\int_{-\infty}^{\infty} d x u_{p^{\prime}}^{*}(x) u_{p}(x) & =|C|^{2} \int_{-\infty}^{\infty} d x e^{i\left(p-p^{\prime}\right) x / \hbar} \\
& =|C|^{2} 2 \pi \hbar \delta\left(p-p^{\prime}\right)
\end{aligned}
$$

letting $C=\frac{1}{\sqrt{2 \pi \hbar}}$

$$
\int_{-\infty}^{\infty} d x u_{p^{\prime}}^{*}(x) u_{p}(x)=\delta\left(p-p^{\prime}\right)
$$

Properties of the δ Function

$$
\begin{aligned}
& \delta(x)=\{0 \text { for } x \neq 0, \infty \text { for } \mathrm{x}=0\} \\
& \int_{-\infty}^{\infty} d x \delta(x)=1 \\
& \int_{-\infty}^{\infty} d x f(x) \delta(x-a)=f(a) \\
& \delta\left(x-x_{0}\right)=\int_{-\infty}^{\infty} d k e^{i k\left(x-x_{0}\right)}
\end{aligned}
$$

Free Particle

$>$ This is the orthonormality condition for continuous eigenfunctions

$$
\begin{aligned}
& \int_{-\infty}^{\infty} d x u_{i}^{*}(x) u_{j}(x)=\delta_{i j} \text { (discrete) } \\
& \int_{-\infty}^{\infty} d x u_{p^{\prime}}^{*}(x) u_{p}(x)=\delta\left(p-p^{\prime}\right) \text { (continuous) }
\end{aligned}
$$

Free Particle

$>$ Back to our e eikx normalization dilemma

- Solution 1 - Confine the particle in a very large box
- We'll work this problem next time

Free Particle

$>$ Back to our e ${ }^{\mathrm{ikx}}$ normalization dilemma

- Solution 2 - Use wave packets

Since the $u_{p}(x)$ form a complete set

$$
\psi(x)=\int_{-\infty}^{\infty} d p a(p) \frac{1}{\sqrt{2 \pi \hbar}} e^{i p x / \hbar}
$$

- Look familiar? Remember

$$
\Psi(x, 0)=\int_{-\infty}^{\infty} d k A(k) e^{i k x}
$$

then $A(k)$ is the Fourier transform of $\Psi(x, 0)$
$A(k)=\int d x \Psi(x, 0) e^{-i k x}$

- Thus by using a sufficiently peaked momentum distribution, we can make space distribution so broad so as to be essentially constant

