Schrodinger Equation

+,»The equation describing the evolution of W(x,t)

is the Schrodinger equation

oY (x,t) n he 07 (x,t)
ot 2m  Ox°

= Given suitable initial conditions (W(x,0))
Schrodinger’s equation determines W(x,t) for all

ih

+V(x)¥(x,t)

time
» This is analogous Newton'’s 2nd |aw
2
- d x - oV (x)
dt’ Ox

= Given suitable initial conditions (x(0), v(0))
Newton’s 2" law determines x(t) for all time X




Schrodinger Equation

- »We take Schrodinger’s equation as one
of the postulates of quantum mechanics

»Schrodinger himself just “figured it out”

» Thus there is no formal proof

= We rely on comparison of its predictions
with experiment to validate it

»But we'll briefly try to motivate it




Schrodinger Equation

<»We'd like the guantum wave equation

= [0 be consistent with de Broglie-Einstein
relations

= To be consistent with E = T+V = p?/2m+V

= T0 be linear in W(x,t)
» This means if W, and W, are solutions, then
c,¥; + ¢,W, is a solution
= [0 have traveling wave solutions for a free
particle (the case where V(x,t)=0)




Schrodinger Equation
_—»The first two assumptions can be combined

INto 2
E=L 4p
2m
2-F-2
ha):h k +V
2m

» The third assumption means that the wave
equation can only contain terms like W or its
derivatives (no constants or higher order
DOWers)




Schrodinger Equation

> Recall some of our solutions to the classical

wave equation

sin(kx — at) or ')

» Note that _,
o~ . >
— gives a factor of k
Ox

0

=~ gives a factor of w
l

» Thus we might guess a wave equation that
looks like




Schrodinger Equation

«—»We could evaluate the constants a and B using
the exponential free particle solution and find

8‘If(x,t) he 07 (x,t)
ot dm ax?

in

+V(x)¥(x,t)

» But we normally take Schrodinger’s equation
as one of the postulates of quantum
mechanics




Schrodinger Equation
<« »Does W(x,t) = Asin(kx-wt) satisfy the

Schrodinger equation?

= NO o

— = —wAcos(kx — ar)
ot

or = kA cos(kx — ax)

Ox

2

g Ej = —k* A” cos(kx — at)
Ox

W'k’
2m

= And recall Asin(kx-wt) was a solution to the classical
wave equation

—ihwAcos(kx — ar) = ( + VJA sin(kx — ax)
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Schrodinger Equation
- »Does W(x,t) = Aexp{i(kx-wt)} satisfy the

Schrodinger equation?
= Yes ov
o

oY

ox

0¥

2

= —icde’ )

— ikAe' )

— _kZAei(kx—a)t)

Ox

~ihliw)= Lhzkz + Vj

2m

2

E=L 4y
2m

= We'll see later if this solution can represent a
physical state of the particle




Quantum Mechanics
~—»Postulate 1

m Describes the system

m [he state of a physical system is defined
by specifying the wave function p(x,t)




Wave Function
<—»Properties of W(x,t)

s Y(X,t) must satisfy the Schrodinger
equation

» Y(x,t) must be defined everywhere, finite,
and single-valued

s Y(xt) , dW(x,t)/dx must be continuous
(except when V(x) is infinite)

s Y(x,t) — 0 as x — xoo so that W(x,t) can
be normalized

*Or [dx|W(x,t)|[?2 must be finite
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Wave Function

—»Inguantum mechanics, we are working with
the set of square integrable functions

» This set is called L2 and has the structure of a
Hilbert space

» If we further restrict the functions to be
regular (defined everywhere, ...), the set is
called F (a subspace of L2) and it is a vector
space

» Thus you can apply your knowledge of vector
spaces to wave functions
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Wave Function

«—»Itis easy to see that if W(x,t) is a solution to
the Schrodinger equation then AW(x,t) is also a

solution <
Ide(x, 1) =1

=C, then A° :l
C

2

if de\\ll(x, t)

» We can use A to normalize W(x,t) in cases
where it isn't already
» This is always possible if W(x,t) is square

integrable <
j dx|P (x, 1)

2
< 00
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Wave Function

- »What is the normalization constant for
W(x,t)=Aexp(-x2/2a2)?

X2

]gdx“{’(x,t)‘z = A’ ]?a’xe_a2 =

Azax/; =1

—-1/2 _—-1/4
A=a ‘&
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Wave Function

-—»Will- the wave function normalization change

with time?
SOV _ W oW
ot 2m Ox°
o W oty
—ih—=— take the complex conjugate
ot 2m Ox* ( b jugate)

now P(x,t) =¥ ¥ so
oP oY Ly OF
Ot Ot Ot
then

2 Nrr* 2 2
8P:.1 h@‘PZT hSU*('?Sz”
ot ih\2m Ox 2m Ox
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Wave Function

» Continuing on
oP 0| (T*asv_asv Tj

ot ox | 2im )
we define the probability current j(x,?) as

Ox Ox

B e OGP
xt)=| —|¥ ———V
JY _2im£ ox  0Ox j
we define the probability density P(x,t) =¥ ¥

Thus we are led to the continuity equation

9, 9,
— P(x,t)+— j(x,t) =0
Py (x,1) 8x]()
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Wave Function
«—»To answer the question note

6 00 00 a .
5_[0 dxP(x,t) = __L dx— j(x,1) =0

since for square integrable functions

j(x,t) > 0 as x — oo

» This means if W(x,t) is normalized at t=0, it
stays normalized for all future times (even
though the wave function is evolving through
Schrodinger’s equation)
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Quantum Mechanics
~»Postulate 2

m Describes physical quantities

m Every measurable physical quantity O is
described by an operator O-hat that acts
on the wave function y
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Operators

o, »Some examples of operators are
0
energy E ih—
gy Py
o,
momentump  -ih—
Ox
position X X
parity P PY(x)=Y(—x)

» And remember, each physical observable is
described by some operator
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Operators
_—»Momentum operator

let \P _ ei(kx—a)x)

oY - 0 (ei(kx—a)x)) - ikei(kx'wx) — kY = ZE\P
ox  Ox
oY

VY =—h—

P Ox
0

p = —ih—
P Ox
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Operators

-—»Energy operator
let P = &'t
oV _ 0 (ei(kx-wx)) _ _l-a)ei(kx-a)x)
ot Ot
EY = ihé—\lj
ot
E = ihg

Ot

=—io¥Y =—1—Y
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Operators

_—»An-easy way to remember the Schrodinger
equation is
E=T+V

2

E=L 4y
2m

2 2
mgg:—h af+VT
ot 2m Ox

» The Hamiltonian operator is
H=T+V
2 2
. 62+V
2m Ox
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Operators

«—»Most of the operators we will study are linear
IfWeF,then W =0%¥ e F
and O(c,¥, +¢,¥,) =c,0%¥, +¢,0¥,

» The product of two linear operators is defined
to be

ABY = A(Bv)
» In general
AB # BA

>
&>

= AB—BA+#0

b

"
&>

[1s called the commutator of Aand B 2
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Quantum Mechanics
~»Postulate 3

s Describes measurement

= The only possible result of a measurement
of a physical quantity O is one of the
eigenvalues of the corresponding operator
O-hat
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Measurement
_—» The eigenvalue equation looks like

Ou, =o,u,

o, are the eigenvalues

u, are the eigenvectors

u, are wave functions like ‘¥

» A Hermitian operator is defined by the property
[axvOv = [axlOw] ¥
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Measurement

~—»Two properties of Hermitian operators
are

= Eigenvalues of Hermitian operators are real
*» This is good since the eigenvalues correspond
to the result of a physical measurement!
= Eigenvectors of Hermitian operators
corresponding to different eigenvalues are
orthogonal
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Measurement
«—»Proof that eigenvalues are real

let Izlua =au,

juZAuadx = j(Aua )*uadx

* * *
ajuauadx =a juauadx

a=a
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Measurement
—»Proof that eigenvectors are orthogonal

let flua = qu, and zzlub =bu,,a #b

ju:Aubdx = j(Aua )*uba’x

bj U u, dx = a*ju:ubdx
(b— a)j uu,dx =0
juZubdx =0

» [u,"u dx is called the scalar or inner product
» [u,"u,dx=0 is the orthogonality condition
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Expectation Values
,—»Recall from probability the definition of mean

<x> = ]9 dx xP(x)

» In quantum mechanics we define

<x> = ]idx x“{’(x,t)(z

» More generally we define the expectation
value <é> = j dx¥ O¥

28




Expectation Values

~»The expectation value tells you the
average value of the observable that
has been measured
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N

Expectation Values

Consider

Ou =ou,
Then

<0> = jdx uZOun = onjdx uu =o,

Moreover let
Ou, =au,
Ou, = bu,

Thenit W =c u, +c,u,

<O> =dlc | +b‘cb‘2

a
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