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Schrodinger Equation
The equation describing the evolution of Ψ(x,t) 
is the Schrodinger equation

Given suitable initial conditions (Ψ(x,0)) 
Schrodinger’s equation determines Ψ(x,t) for all 
time 

This is analogous Newton’s 2nd law 

Given suitable initial conditions (x(0), v(0)) 
Newton’s 2nd law determines x(t) for all time
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Schrodinger Equation

We take Schrodinger’s equation as one 
of the postulates of quantum mechanics
Schrodinger himself just “figured it out”
Thus there is no formal proof

We rely on comparison of its predictions 
with experiment to validate it

But we’ll briefly try to motivate it 
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Schrodinger Equation

We’d like the quantum wave equation
To be consistent with de Broglie-Einstein 
relations
To be consistent with E = T+V = p2/2m+V
To be linear in Ψ(x,t)

This means if Ψ1 and Ψ2 are solutions, then 
c1Ψ1 + c2Ψ2 is a solution

To have traveling wave solutions for a free 
particle (the case where V(x,t)=0)



4

Schrodinger Equation
The first two assumptions can be combined 
into

The third assumption means that the wave 
equation can only contain terms like Ψ or its 
derivatives (no constants or higher order 
powers)
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Schrodinger Equation
Recall some of our solutions to the classical 
wave equation

Note that

Thus we might guess a wave equation that 
looks like
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Schrodinger Equation
We could evaluate the constants α and β using 
the exponential free particle solution and find

But we normally take Schrodinger’s equation 
as one of the postulates of quantum 
mechanics
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Schrodinger Equation
Does Ψ(x,t) = Asin(kx-ωt) satisfy the 
Schrodinger equation?

No

And recall Asin(kx-ωt) was a solution to the classical 
wave equation
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Schrodinger Equation
Does Ψ(x,t) = Aexp{i(kx-ωt)} satisfy the 
Schrodinger equation?

Yes

We’ll see later if this solution can represent a 
physical state of the particle
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Quantum Mechanics

Postulate 1 
Describes the system
The state of a physical system is defined 
by specifying the wave function ψ(x,t)
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Wave Function

Properties of Ψ(x,t)
Ψ(x,t) must satisfy the Schrodinger
equation
Ψ(x,t) must be defined everywhere, finite, 
and single-valued
Ψ(x,t) , dΨ(x,t)/dx must be continuous 
(except when V(x) is infinite)
Ψ(x,t) → 0 as x → ±∞ so that Ψ(x,t) can 
be normalized

Or ∫dx|Ψ(x,t)|2 must be finite
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Wave Function
In quantum mechanics, we are working with 
the set of square integrable functions
This set is called L2 and has the structure of a 
Hilbert space
If we further restrict the functions to be 
regular (defined everywhere, …), the set is 
called F (a subspace of L2) and it is a vector 
space
Thus you can apply your knowledge of vector 
spaces to wave functions
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Wave Function
It is easy to see that if Ψ(x,t) is a solution to 
the Schrodinger equation then AΨ(x,t) is also a 
solution

We can use A to normalize Ψ(x,t) in cases 
where it isn’t already
This is always possible if Ψ(x,t) is square 
integrable
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Wave Function
What is the normalization constant for 
Ψ(x,t)=Aexp(-x2/2a2)?
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Wave Function
Will the wave function normalization change 
with time?
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Wave Function
Continuing on
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Wave Function
To answer the question note

This means if Ψ(x,t) is normalized at t=0, it 
stays normalized for all future times (even 
though the wave function is evolving through 
Schrodinger’s equation)
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Quantum Mechanics

Postulate 2
Describes physical quantities
Every measurable physical quantity O is 
described by an operator O-hat that acts 
on the wave function ψ
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Operators
Some examples of operators are

And remember, each physical observable is 
described by some operator
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Operators
Momentum operator
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Operators
Energy operator
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Operators
An easy way to remember the Schrodinger
equation is

The Hamiltonian operator is
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Operators
Most of the operators we will study are linear

The product of two linear operators is defined 
to be

In general
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Quantum Mechanics

Postulate 3
Describes measurement
The only possible result of a measurement 
of a physical quantity O is one of the 
eigenvalues of the corresponding operator 
O-hat
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Measurement
The eigenvalue equation looks like

A Hermitian operator is defined by the property
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Measurement

Two properties of Hermitian operators 
are

Eigenvalues of Hermitian operators are real
This is good since the eigenvalues correspond 
to the result of a physical measurement!

Eigenvectors of Hermitian operators 
corresponding to different eigenvalues are 
orthogonal
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Measurement
Proof that eigenvalues are real
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Measurement
Proof that eigenvectors are orthogonal

∫ua
*ubdx is called the scalar or inner product

∫ua
*ubdx=0 is the orthogonality condition
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Expectation Values
Recall from probability the definition of mean

In quantum mechanics we define

More generally we define the expectation 
value

( )∫
∞

∞−

= xxPdxx  

( )∫
∞

∞−

Ψ= 2, txxdxx

ΨΨ= ∫
∞

∞−

OdxO ˆˆ *



29

Expectation Values

The expectation value tells you the 
average value of the observable that 
has been measured
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Expectation Values
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