Schrodinger Equation

$\measuredangle>$ The equation describing the evolution of $\Psi(x, t)$ is the Schrodinger equation

$$
i \hbar \frac{\partial \Psi(x, t)}{\partial t}=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \Psi(x, t)}{\partial x^{2}}+V(x) \Psi(x, t)
$$

- Given suitable initial conditions $(\Psi(x, 0))$ Schrodinger's equation determines $\Psi(x, t)$ for all time
$>$ This is analogous Newton's $2^{\text {nd }}$ law

$$
m \frac{d^{2} x}{d t^{2}}=-\frac{\partial V(x)}{\partial x}
$$

- Given suitable initial conditions (x(0), v(0)) Newton's $2^{\text {nd }}$ law determines $x(\mathrm{t})$ for all time

Schrodinger Equation

$\rightarrow>$ We take Schrodinger's equation as one of the postulates of quantum mechanics
$>$ Schrodinger himself just "figured it out"
$>$ Thus there is no formal proof

- We rely on comparison of its predictions with experiment to validate it
>But we'll briefly try to motivate it

Schrodinger Equation

$\phi>$ We'd like the quantum wave equation

- To be consistent with de Broglie-Einstein relations
- To be consistent with $\mathrm{E}=\mathrm{T}+\mathrm{V}=\mathrm{p}^{2} / 2 \mathrm{~m}+\mathrm{V}$
- To be linear in $\Psi(x, t)$
- This means if Ψ_{1} and Ψ_{2} are solutions, then $c_{1} \Psi_{1}+c_{2} \Psi_{2}$ is a solution
- To have traveling wave solutions for a free particle (the case where $\mathrm{V}(\mathrm{x}, \mathrm{t})=0$)

Schrodinger Equation

$>$ The first two assumptions can be combined into

$$
\begin{aligned}
& E=\frac{p^{2}}{2 m}+V \\
& \hbar \omega=\frac{\hbar^{2} k^{2}}{2 m}+V
\end{aligned}
$$

$>$ The third assumption means that the wave equation can only contain terms like Ψ or its derivatives (no constants or higher order powers)

Schrodinger Equation

$>$ Recall some of our solutions to the classical wave equation

$$
\sin (k x-\omega t) \text { or } e^{i(k x-\omega t)}
$$

$>$ Note that

$$
\begin{aligned}
& \frac{\partial^{2}}{\partial x^{2}} \text { gives a factor of } \mathrm{k}^{2} \\
& \frac{\partial}{\partial t} \text { gives a factor of } \omega
\end{aligned}
$$

$>$ Thus we might guess a wave equation that looks like

$$
\alpha \frac{\partial \Psi}{\partial t}=\beta \frac{\partial^{2} \Psi}{\partial x^{2}}+V \Psi
$$

Schrodinger Equation

\rightarrow We could evaluate the constants α and β using the exponential free particle solution and find

$$
i \hbar \frac{\partial \Psi(x, t)}{\partial t}=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \Psi(x, t)}{\partial x^{2}}+V(x) \Psi(x, t)
$$

$>$ But we normally take Schrodinger's equation as one of the postulates of quantum mechanics

Schrodinger Equation

$>$ Does $\Psi(x, t)=$ Asin $(k x-\omega t)$ satisfy the Schrodinger equation?

- No

$$
\begin{aligned}
& \frac{\partial \Psi}{\partial t}=-\omega A \cos (k x-\omega t) \\
& \frac{\partial \Psi}{\partial x}=k A \cos (k x-\omega t) \\
& \frac{\partial^{2} \Psi}{\partial x^{2}}=-k^{2} A^{2} \cos (k x-\omega t) \\
& -i \hbar \omega A \cos (k x-\omega t)=\left(\frac{\hbar^{2} k^{2}}{2 m}+V\right) A \sin (k x-\omega t)
\end{aligned}
$$

- And recall Asin(kx- $\omega \mathrm{t})$ was a solution to the classical wave equation

Schrodinger Equation

$>$ Does $\Psi(\mathrm{x}, \mathrm{t})=\operatorname{Aexp}\{\mathrm{i}(k x-\omega \mathrm{t})\}$ satisfy the Schrodinger equation?

- Yes

$$
\begin{aligned}
& \frac{\partial \Psi}{\partial t}=-i \omega A e^{i(k x-\omega t)} \\
& \frac{\partial \Psi}{\partial x}=i k A e^{i(k x-\omega t)} \\
& \frac{\partial^{2} \Psi}{\partial x^{2}}=-k^{2} A e^{i(k x-\omega t)} \\
& -i \hbar(i \omega)=\left(\frac{\hbar^{2} k^{2}}{2 m}+V\right) \\
& E=\frac{p^{2}}{2 m}+V
\end{aligned}
$$

- We'll see later if this solution can represent a physical state of the particle

Quantum Mechanics

↔ $>$ Postulate 1

- Describes the system
- The state of a physical system is defined by specifying the wave function $\psi(x, t)$

Wave Function

$\leftrightarrow>$ Properties of $\Psi(x, t)$

- $\Psi(\mathrm{x}, \mathrm{t})$ must satisfy the Schrodinger equation
- $\Psi(\mathrm{x}, \mathrm{t})$ must be defined everywhere, finite, and single-valued
- $\Psi(\mathrm{x}, \mathrm{t}), \mathrm{d} \Psi(\mathrm{x}, \mathrm{t}) / \mathrm{dx}$ must be continuous (except when $V(x)$ is infinite)
- $\Psi(x, t) \rightarrow 0$ as $x \rightarrow \pm \infty$ so that $\Psi(x, t)$ can be normalized
- Or $\int \mathrm{dx}|\Psi(\mathrm{x}, \mathrm{t})|^{2}$ must be finite

Wave Function

$\measuredangle>$ In quantum mechanics, we are working with the set of square integrable functions
$>$ This set is called L^{2} and has the structure of a Hilbert space
$>$ If we further restrict the functions to be regular (defined everywhere, ...), the set is called F (a subspace of L^{2}) and it is a vector space
$>$ Thus you can apply your knowledge of vector spaces to wave functions

Wave Function

$>$ It is easy to see that if $\Psi(x, t)$ is a solution to the Schrodinger equation then $A \Psi(x, t)$ is also a solution

$$
\begin{aligned}
& \int_{-\infty}^{\infty} d x P(x, t)=1 \\
& \text { if } \int_{-\infty}^{\infty} d x|\Psi(x, t)|^{2}=C, \text { then } \mathrm{A}^{2}=\frac{1}{C}
\end{aligned}
$$

$>$ We can use A to normalize $\Psi(x, t)$ in cases where it isn't already
$>$ This is always possible if $\Psi(x, t)$ is square integrable

$$
\int_{-\infty}^{\infty} d x|\Psi(x, t)|^{2}<\infty
$$

Wave Function

\rightarrow What is the normalization constant for $\Psi(x, t)=A \exp \left(-x^{2} / 2 a^{2}\right)$?

$$
\begin{aligned}
\int_{-\infty}^{\infty} d x|\Psi(x, t)|^{2} & =A^{2} \int_{-\infty}^{\infty} d x e^{-\frac{x^{2}}{a^{2}}}=1 \\
A^{2} a \sqrt{\pi} & =1 \\
A & =a^{-1 / 2} \pi^{-1 / 4}
\end{aligned}
$$

Wave Function

$>$ Will the wave function normalization change with time?

$$
\begin{aligned}
& i \hbar \frac{\partial \Psi}{\partial t}=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \Psi}{\partial x^{2}} \\
& -i \hbar \frac{\partial \Psi^{*}}{\partial t}=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \Psi^{*}}{\partial x^{2}}(\text { take the complex conjugate }) \\
& \text { now } P(x, t)=\Psi^{*} \Psi \text { so } \\
& \frac{\partial P}{\partial t}=\frac{\partial \Psi^{*}}{\partial t} \Psi+\Psi^{*} \frac{\partial \Psi}{\partial t} \\
& \text { then }
\end{aligned}
$$

$$
\frac{\partial P}{\partial t}=\frac{1}{i \hbar}\left(\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \Psi^{*}}{\partial x^{2}} \Psi-\frac{\hbar^{2}}{2 m} \Psi^{*} \frac{\partial^{2} \Psi}{\partial x^{2}}\right)
$$

Wave Function

$>$ Continuing on

$$
\frac{\partial P}{\partial t}=-\frac{\partial}{\partial x}\left[\frac{\hbar}{2 i m}\left(\Psi^{*} \frac{\partial \Psi}{\partial x}-\frac{\partial \Psi^{*}}{\partial x} \Psi\right)\right]
$$

we define the probability current $j(x, t)$ as
$j(x, t)=\left[\frac{\hbar}{2 i m}\left(\Psi^{*} \frac{\partial \Psi}{\partial x}-\frac{\partial \Psi^{*}}{\partial x} \Psi\right)\right]$
we define the probability density $P(x, t)=\Psi^{*} \Psi$
Thus we are led to the continuity equation
$\frac{\partial}{\partial t} P(x, t)+\frac{\partial}{\partial x} j(x, t)=0$

Wave Function

$>$ To answer the question note

$$
\begin{aligned}
& \frac{\partial}{\partial t} \int_{-\infty}^{\infty} d x P(x, t)=-\int_{-\infty}^{\infty} d x \frac{\partial}{\partial x} j(x, t)=0 \\
& \text { since for square integrable functions } \\
& j(x, t) \rightarrow 0 \text { as } x \rightarrow \pm \infty
\end{aligned}
$$

\Rightarrow This means if $\Psi(x, t)$ is normalized at $t=0$, it stays normalized for all future times (even though the wave function is evolving through Schrodinger's equation)

Quantum Mechanics

$\rightarrow>$ Postulate 2

- Describes physical quantities
- Every measurable physical quantity O is described by an operator O-hat that acts on the wave function ψ

Operators

$>$ Some examples of operators are

$$
\begin{array}{ll}
\text { energy } \mathrm{E} & i \hbar \frac{\partial}{\partial t} \\
\text { momentum } \mathrm{p} & -i \hbar \frac{\partial}{\partial x} \\
\text { position } \mathrm{x} & x \\
\text { parity } \mathrm{P} & P \Psi(x)=\Psi(-x)
\end{array}
$$

$>$ And remember, each physical observable is described by some operator

Operators

\rightarrow Momentum operator

$$
\begin{aligned}
& \text { let } \Psi=e^{i(k x-\omega x)} \\
& \frac{\partial \Psi}{\partial x}=\frac{\partial}{\partial x}\left(e^{i(k x-\omega x)}\right)=i k e^{i(k x-\omega x)}=i k \Psi=i \frac{p}{\hbar} \Psi \\
& p \Psi=-i \hbar \frac{\partial \Psi}{\partial x} \\
& \hat{p}=-i \hbar \frac{\partial}{\partial x}
\end{aligned}
$$

Operators

$>$ Energy operator

$$
\begin{aligned}
& \text { let } \Psi=e^{i(k x-\omega x)} \\
& \frac{\partial \Psi}{\partial t}=\frac{\partial}{\partial t}\left(e^{i(k x-\omega x)}\right)=-i \omega e^{i(k x-\omega x)}=-i \omega \Psi=-i \frac{E}{\hbar} \Psi \\
& E \Psi=i \hbar \frac{\partial \Psi}{\partial t} \\
& \hat{E}=i \hbar \frac{\partial}{\partial t}
\end{aligned}
$$

Operators

$>$ An easy way to remember the Schrodinger equation is

$$
\begin{aligned}
& E=T+V \\
& E=\frac{p^{2}}{2 m}+V \\
& i \hbar \frac{\partial \Psi}{\partial t}=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \Psi}{\partial x^{2}}+V \Psi
\end{aligned}
$$

\Rightarrow The Hamiltonian operator is

$$
\begin{aligned}
& \hat{H}=\hat{T}+\hat{V} \\
& \hat{H}=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}+\hat{V}
\end{aligned}
$$

Operators

$>$ Most of the operators we will study are linear

$$
\begin{aligned}
& \text { If } \Psi \in F \text {, then } \Psi^{\prime}=\hat{O} \Psi \in F \\
& \text { and } \hat{O}\left(c_{1} \Psi_{1}+c_{2} \Psi_{2}\right)=\mathrm{c}_{1} \hat{O} \Psi_{1}+\mathrm{c}_{2} \hat{O} \Psi_{2}
\end{aligned}
$$

$>$ The product of two linear operators is defined to be

$$
\hat{A} \hat{B} \Psi=\hat{A}(\hat{B} \Psi)
$$

$>$ In general

$$
\begin{aligned}
& \hat{A} \hat{B} \neq \hat{B} \hat{A} \\
& {[\hat{A}, \hat{B}] \equiv \hat{A} \hat{B}-\hat{B} \hat{A} \neq 0} \\
& {[\hat{A}, \hat{B}] \text { is called the commutator of } \hat{A} \text { and } \hat{B}}
\end{aligned}
$$

Quantum Mechanics

\uparrow >Postulate 3

- Describes measurement
- The only possible result of a measurement of a physical quantity O is one of the eigenvalues of the corresponding operator O-hat

Measurement

$>$ The eigenvalue equation looks like

$$
\begin{aligned}
& \hat{O} u_{n}=o_{n} u_{n} \\
& o_{n} \text { are the eigenvalues } \\
& u_{n} \text { are the eigenvectors } \\
& u_{n} \text { are wave functions like } \Psi
\end{aligned}
$$

$>$ A Hermitian operator is defined by the property

$$
\int d x \Psi^{*} \hat{O} \Psi=\int d x(\hat{O} \Psi)^{*} \Psi
$$

Measurement

$\leftrightarrow>$ Two properties of Hermitian operators are

- Eigenvalues of Hermitian operators are real
- This is good since the eigenvalues correspond to the result of a physical measurement!
- Eigenvectors of Hermitian operators corresponding to different eigenvalues are orthogonal

Measurement

$>$ Proof that eigenvalues are real

$$
\begin{aligned}
& \text { let } \hat{A} u_{a}=a u_{a} \\
& \int u_{a}^{*} A u_{a} d x=\int\left(A u_{a}\right)^{*} u_{a} d x \\
& a \int u_{a}^{*} u_{a} d x=a^{*} \int u_{a}^{*} u_{a} d x \\
& a=a^{*}
\end{aligned}
$$

Measurement

$>$ Proof that eigenvectors are orthogonal

$$
\begin{aligned}
& \text { let } \hat{A} u_{a}=a u_{a} \text { and } \hat{A} u_{b}=b u_{b}, a \neq b \\
& \int u_{a}^{*} A u_{b} d x=\int\left(A u_{a}\right)^{*} u_{b} d x \\
& b \int u_{a}^{*} u_{b} d x=a^{*} \int u_{a}^{*} u_{b} d x \\
& (b-a) \int u_{a}^{*} u_{b} d x=0 \\
& \int u_{a}^{*} u_{b} d x=0
\end{aligned}
$$

$>\int \mathrm{u}_{\mathrm{a}}{ }^{*} \mathrm{u}_{\mathrm{b}} \mathrm{dx}$ is called the scalar or inner product
$\Rightarrow \int u_{a}{ }^{*} u_{b} d x=0$ is the orthogonality condition

Expectation Values

$>$ Recall from probability the definition of mean

$$
\langle x\rangle=\int_{-\infty}^{\infty} d x x P(x)
$$

$>$ In quantum mechanics we define

$$
\langle x\rangle=\int_{-\infty}^{\infty} d x x|\Psi(x, t)|^{2}
$$

$>$ More generally we define the expectation value $\langle\hat{O}\rangle=\int_{-\infty} d x \Psi^{*} \hat{O} \Psi$

Expectation Values

$>$ The expectation value tells you the average value of the observable that has been measured

Expectation Values

Consider
$\hat{O} u_{n}=o_{n} u_{n}$
Then
$\langle\hat{O}\rangle=\int d x u_{n}^{*} \hat{O} u_{n}=o_{n} \int d x u_{n}^{*} u_{n}=o_{n}$
Moreover let
$\hat{O} u_{a}=a u_{a}$
$\hat{O} u_{b}=b u_{b}$
Then if $\Psi=c_{a} u_{a}+c_{b} u_{b}$
$\langle\hat{O}\rangle=a\left|c_{a}\right|^{2}+b\left|c_{b}\right|^{2}$

