The first term is the wave and the second term is the envelope

 $\Psi(x,t) = 2A\cos(k_{av}x - \omega_{av}t)\cos\left(\frac{\Delta k}{2}x - \frac{\Delta \omega}{2}t\right)$

1

What is the size in space and time of the wave packet?

For the moment, let's define the size of the localized wave to be Δx=x₂-x₁ where points 1 and 2 are points where the envelope is zero

$$\frac{\Delta k}{2} x_2 - \frac{\Delta k}{2} x_1 = \pi$$

$$\Delta k \Delta x = 2\pi$$
and similarly
$$\frac{\Delta t}{2} \omega_2 - \frac{\Delta t}{2} \omega_1 = \pi$$

 $\Delta \omega \Delta t = 2\pi$

We learned a lot from just summing two waves, but to localize the particle and remove the auxillary waves we must sum/integrate over many waves

This can be written as a Fourier integral

$$\Psi(x,t) = \int_{0}^{\infty} dk A(k) e^{i(kx - \omega t)}$$

The above form is equivalent to the one used in your book

$$\Psi(x,t) = \int_{-\infty}^{\infty} dk A(k) \cos(kx - \omega t)$$

3

\rightarrow These $\Delta x \Delta k$ relations mean

 If you want to localize the wave to a small position Δx you need a large range of wave numbers Δk

 If you want to localize the wave to a small time domain Δt you need a large range of frequencies (bandwidth) Δω

Consider the wave packet at t=0

$$\Psi(x,0) = \int dk A(k) e^{ikx}$$

 $-\infty$

then A(k) is the Fourier transform of $\Psi(x,0)$

$$A(k) = \int dx \Psi(x,0) e^{-ikx}$$

The Fourier transform just transforms one function into another

 Position space is transformed into wave number space

Time space is transformed into frequency space

A particularly useful wave packet is the gaussian wave packet

- Both the wave packet and the Fourier transform are gaussian functions
- It's useful because the math is easier

$$\Psi(x,0) = \int_{-\infty}^{\infty} dk A(k) e^{ikx}$$

with $A(k) = e^{-\alpha (k-k_0)^2/2}$

 A(k) is centered at k₀ and falls away rapidly from the center

9

Doing the integral (by first changing variables to q=k-k₀) gives

$$\Psi(x,0) = \int dk A(k) e^{ikx}$$

 $-\infty$

with
$$A(k) = e^{-\alpha(k-k_0)^2/2}$$
 gives

$$\Psi(x,0) = \sqrt{\frac{2\pi}{\alpha}} e^{ik_0 x} e^{-\frac{x^2}{2\alpha}}$$

The factors represent an oscillating wave with wave number k₀ and a modulating envelope

The wave function Ψ(x,0) and its Fourier transform
 A(k) are both gaussians

We can define the width Δx of the gaussian to be the width between which the gaussian function is reduced to $1/\sqrt{e}$

and doing the same for the k - space gaussian

$$-\frac{1}{2} = -\alpha \frac{(\Delta k)^2}{2} \text{ or } \Delta k = \frac{2}{\sqrt{\alpha}}$$

then $\Delta x \Delta k = 4$ 12

Slightly different definitions of the width would give slightly different results

Still, the more localized the wave packet, the larger the spread of associated wave numbers

➤ A general result of Fourier integrals is

 $\Delta x \Delta k > \frac{1}{2}$ and since $p = \hbar k$

 $\Delta x \Delta p > \frac{\hbar}{2}$

 This is the Heisenberg uncertainty principle
 This is a QM result arising from a property of Fourier transforms and de Broglie waves

Time evolution of the wave packet

The wave function at t = 0 is

$$\Psi(x,0) = \int dk A(k) e^{ikx}$$

 $-\infty$

 $-\infty$

 ∞

The wave function at later times is

$$\Psi(x,t) = \int dk A(k) e^{i(kx-\omega t)}$$

One can show (and we won't)

$$\Delta x(t) = \sqrt{(\Delta x(0))^2 + \left(\frac{\hbar t}{2m\Delta x(0)}\right)^2}$$

This means the wave is dispersing with time

