Waves

$>$ The first term is the wave and the second term is the envelope

$$
\Psi(x, t)=2 A \cos \left(k_{a v} x-\omega_{a v} t\right) \cos \left(\frac{\Delta k}{2} x-\frac{\Delta \omega}{2} t\right)
$$

Waves

$>$ What is the size in space and time of the wave packet?
$>$ For the moment, let's define the size of the localized wave to be $\Delta x=x_{2}-x_{1}$ where points 1 and 2 are points where the envelope is zero

$$
\begin{aligned}
& \frac{\Delta k}{2} x_{2}-\frac{\Delta k}{2} x_{1}=\pi \\
& \Delta k \Delta x=2 \pi \\
& \text { and similarly }
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\Delta t}{2} \omega_{2}-\frac{\Delta t}{2} \omega_{1}=\pi \\
& \Delta \omega \Delta t=2 \pi
\end{aligned}
$$

Waves

\rightarrow We learned a lot from just summing two waves, but to localize the particle and remove the auxillary waves we must sum/integrate over many waves
$>$ This can be written as a Fourier integral

$$
\Psi(x, t)=\int^{\infty} d k A(k) e^{i(k x-\omega t)}
$$

$>$ The above form is ${ }^{-\infty}$ equivalent to the one used in your book

$$
\Psi(x, t)=\int_{-\infty}^{\infty} d k A(k) \cos (k x-\omega t)
$$

Waves

>Problem 5.31

$$
\text { let } \begin{aligned}
\tilde{A}(k) & =A_{0} \text { for } k=k_{0} \mp \Delta k \\
& =0 \text { otherwise }
\end{aligned}
$$

Sketch the envelope term, the oscillating term, and $|\Psi(x, 0)|^{2}$
Defining Δx to be the FWHM, find $\Delta x \Delta k$

Waves

Waves

$\leftrightarrow>$ These $\Delta x \Delta k$ relations mean

- If you want to localize the wave to a small position Δx you need a large range of wave numbers $\Delta \mathrm{k}$
- If you want to localize the wave to a small time domain Δt you need a large range of frequencies (bandwidth) $\Delta \omega$

Waves

$>$ Consider the wave packet at $\mathrm{t}=0$

$$
\begin{aligned}
& \Psi(x, 0)=\int_{-\infty}^{\infty} d k A(k) e^{i k x} \\
& \text { then } A(k) \text { is the Fourier transform of } \Psi(x, 0) \\
& A(k)=\int d x \Psi(x, 0) e^{-i k x}
\end{aligned}
$$

$>$ The Fourier transform just transforms one function into another

- Position space is transformed into wave number space
- Time space is transformed into frequency space

Waves

$>$ Some simple examples

- Space (cosine)
- Wave number (delta function)

- Space (gaussian)

- Wave number (gaussian)

Waves

\rightarrow A particularly useful wave packet is the gaussian wave packet

- Both the wave packet and the Fourier transform are gaussian functions
- It's useful because the math is easier

$$
\begin{aligned}
& \Psi(x, 0)=\int_{-\infty}^{\infty} d k A(k) e^{i k x} \\
& \text { with } A(k)=e^{-\alpha\left(k-k_{0}\right)^{2} / 2}
\end{aligned}
$$

- A(k) is centered at k_{0} and falls away rapidly from the center

Waves

$>$ Doing the integral (by first changing variables to $q=k-k_{0}$) gives

$$
\begin{aligned}
& \Psi(x, 0)=\int_{-\infty}^{\infty} d k A(k) e^{i k x} \\
& \text { with } A(k)=e^{-\alpha\left(k-k_{0}\right)^{2} / 2} \text { gives }
\end{aligned}
$$

$$
\Psi(x, 0)=\sqrt{\frac{2 \pi}{\alpha}} e^{i k_{0} x} e^{-\frac{x^{2}}{2 \alpha}}
$$

$>$ The factors represent an oscillating wave with wave number k_{0} and a modulating envelope

- The wave function $\Psi(x, 0)$ and its Fourier transform A(k) are both gaussians

Waves

- >An idealized wave packet

$>$ A gaussian wave packet

(a)

(b)

Waves

$>$ We can define the width Δx of the gaussian to be the width between which the gaussian function is reduced to $1 / \sqrt{ }$ e

$$
\begin{aligned}
& e^{-\frac{1}{2}}=\frac{1}{\sqrt{e}} \\
& -\frac{1}{2}=-\frac{x^{2}}{2 \alpha} \text { or } \Delta \mathrm{x}=2 \sqrt{\alpha}
\end{aligned}
$$

and doing the same for the k -space gaussian
$-\frac{1}{2}=-\alpha \frac{(\Delta k)^{2}}{2}$ or $\Delta \mathrm{k}=\frac{2}{\sqrt{\alpha}}$
then $\Delta x \Delta k=4$

Waves

$\measuredangle>$ Slightly different definitions of the width would give slightly different results

- Still, the more localized the wave packet, the larger the spread of associated wave numbers
$>$ A general result of Fourier integrals is

$$
\begin{aligned}
& \Delta x \Delta k>\frac{1}{2} \text { and since } p=\hbar k \\
& \Delta x \Delta p>\frac{\hbar}{2}
\end{aligned}
$$

$>$ This is the Heisenberg uncertainty principle

- This is a QM result arising from a property of Fourier transforms and de Broglie waves

Waves

$>$ Time evolution of the wave packet

The wave function at $\mathrm{t}=0$ is

$$
\Psi(x, 0)=\int_{-\infty}^{\infty} d k A(k) e^{i k x}
$$

The wave function at later times is

$$
\Psi(x, t)=\int_{-\infty}^{\infty} d k A(k) e^{i(k x-o t)}
$$

One can show (and we won't)

$$
\Delta x(t)=\sqrt{(\Delta x(0))^{2}+\left(\frac{\hbar t}{2 m \Delta x(0)}\right)^{2}}
$$

This means the wave is dispersing with time

Waves

$>$ Consider an electron confined to 0.1 nm with $\mathrm{k}_{0}=0$ (at rest). When will the wave packet expand to $\sqrt{ } 2$ times its initial size

$$
\begin{aligned}
& \Delta x^{2}(0)=\left(\frac{\hbar t}{2 m \Delta x(0)}\right)^{2} \\
& t=\frac{(\Delta x)^{2} 2 \mathrm{~m}}{\hbar} \\
& t=\frac{(0.1 \mathrm{~nm})^{2}(2)\left(0.511 \times 10^{6} \mathrm{eV}\right)}{(197.33 \mathrm{eVnm})\left(3 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)\left(10^{9} \frac{\mathrm{~nm}}{\mathrm{~m}}\right)} \\
& t=1.7 \times 10^{-16} \mathrm{~s}
\end{aligned}
$$

