Waves

$\phi>$ Electrons (and other particles) exhibit both particle and wave properties

- Particles are described by classical or relativistic mechanics
- Waves will be described by wave mechanics = quantum mechanics

Waves

$>$ Something disturbing we'll have to address
deBroglie relations $p=\frac{h}{\lambda}$ and $E=h f$ wave velocity $v=\lambda f$

$$
\text { so } v=\frac{h}{p} \frac{E}{h}=\frac{E}{p}=\frac{m V^{2} / 2}{m V}=\frac{V}{2}
$$

$>$ The wave and particle seem to be moving at different velocities

Waves

$>$ We'll use $\Psi(\mathrm{x}, \mathrm{t})$ to represent the wave function of a particle (electron)
$>$ In lecture 1, we wrote down the classical wave equation that describes a propagating disturbance

$$
\frac{d^{2} \Psi}{d x^{2}}=\frac{1}{v^{2}} \frac{d^{2} \Psi}{d t^{2}}
$$

\Rightarrow A solution to the classical wave equation is

$$
\Psi(x, t)=A \sin \left[\frac{2 \pi}{\lambda}(x-v t)\right]
$$

Waves

© 2006 Brooks/Cole - Thomson

Waves

$$
\begin{aligned}
& \frac{d \Psi}{d x}=A \frac{2 \pi}{\lambda} \cos \left[\frac{2 \pi}{\lambda}(x-v t)\right] \\
& \frac{d^{2} \Psi}{d x^{2}}=-A\left(\frac{2 \pi}{\lambda}\right)^{2} \sin \left[\frac{2 \pi}{\lambda}(x-v t)\right] \\
& \frac{d \Psi}{d t}=-v A \frac{2 \pi}{\lambda} \cos \left[\frac{2 \pi}{\lambda}(x-v t)\right] \\
& \frac{d^{2} \Psi}{d t^{2}}=-A v^{2}\left(\frac{2 \pi}{\lambda}\right)^{2} \sin \left[\frac{2 \pi}{\lambda}(x-v t)\right] \\
& \text { so } \frac{d^{2} \Psi}{d x^{2}}=\frac{1}{v^{2}} \frac{d^{2} \Psi}{d t^{2}} \text { is satisfied }
\end{aligned}
$$

Waves

$>$ We normally write

$$
\Psi(x, t)=A \sin \left[\frac{2 \pi}{\lambda}(x-v t)\right]
$$

as

$$
\Psi(x, t)=A \sin (k x-\omega t)
$$

where

$$
k=\frac{2 \pi}{\lambda} \text { and } \omega=2 \pi f=\frac{2 \pi}{T}
$$

Waves

$>$ More generally we write

$$
A \sin (k x-\omega t+\phi)
$$

$>$ Thus for $\varphi=\Pi / 2$ we have

$$
A \cos (k x-\omega t)
$$

$>$ The phase velocity is defined as the velocity of a point on wave with a given phase (e.g the velocity of the peak of the wave)

$$
v_{\text {phase }}=\lambda f=\frac{\lambda}{T}=\frac{\omega}{k}
$$

Waves

$>$ The general harmonic wave can also be written as

$$
\begin{aligned}
& A \sin (k x-\omega t+\phi)=B \sin (k x-\omega t)+C \cos (k x-\omega t) \\
& \text { where } B=\cos \phi \text { and } C=\sin \phi
\end{aligned}
$$

Waves

Using Euler's formula
$e^{i \theta}=\cos \theta+i \sin \theta$
we can write
$\cos \theta=\frac{1}{2}\left(e^{i \theta}+e^{-i \theta}\right)$
$\sin \theta=\frac{1}{2 i}\left(e^{i \theta}-e^{-i \theta}\right)$
Then other solutions to the wave equation are
$\operatorname{Im}\{A \exp [i(k x-\omega t+\phi)]\}$ or $\operatorname{Re}\{\ldots\}$
$\frac{1}{2 i} A \exp [i(k x-\omega t+\phi)]+$ complex conjugate (c.c. $)$

Waves

- $>$ Notation

We often write these solutions without the $\operatorname{Re}, \operatorname{Im}, \frac{1}{2}$, or $\frac{1}{2 \mathrm{i}}$ $\operatorname{Im}\{A \exp [i(k x-\omega t+\phi)]\}$ becomes just
$A \exp [i(k x-\omega t+\phi)]$
and furthermore
$A \exp [i(k x-\omega t+\phi)]=A \exp [i \phi] \exp [i(k x-\omega t)]$
can be written
$\tilde{A} \exp [i(k x-\omega t)]$ where \tilde{A} is complex
Again, the \sim is usually understood so the solution becomes
$A \exp [i(k x-\omega t)]$

Waves

$\psi>$ How can we represent a (localized) particle by a (non-localized) wave?

- Moire pattern

Waves

$>$ We can form a wave packet by summing waves of different wavelengths or frequencies

$>$ Summing over an infinitely large number of waves between a range of k values will eliminate the auxiliary wave packets

Waves

$>$ Let's start by adding two waves together
$\Psi(x, t)=\Psi_{1}(x, t)+\Psi_{2}(x, t)$
$\Psi(x, t)=A \cos \left(k_{1} x-\omega_{1} t\right)+A \cos \left(k_{2} x-\omega_{2} t\right)$
using $\cos A+\cos B=2 \cos \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right)$
$\Psi(x, t)=2 A \cos \left(k_{a v} x-\omega_{a v} t\right) \cos \left(\frac{\Delta k}{2} x-\frac{\Delta \omega}{2} t\right)$
where $k_{a v}=\frac{k_{1}+k_{2}}{2}$ and $\Delta k=k_{1}-k_{2}$
and similarly for ω

Waves

$>$ The first term is the wave and the second term is the envelope

$$
\Psi(x, t)=2 A \cos \left(k_{a v} x-\omega_{a v} t\right) \cos \left(\frac{\Delta k}{2} x-\frac{\Delta \omega}{2} t\right)
$$

Waves

\rightarrow The combined wave has phase velocity

$$
v_{p h a s e}=\frac{\omega_{a v}}{k_{a v}}
$$

$>$ The group (envelope) has group velocity

$$
v_{\text {group }}=\frac{\Delta \omega}{\Delta k}
$$

\rightarrow More generally the group velocity is

$$
v_{\text {group }}=\frac{d \omega(k)}{d k}
$$

Waves

$>$ Recall our problem with the wave velocity being slower than the particle velocity
$>$ Using the group velocity we find

$$
\begin{aligned}
& v_{\text {group }}=\frac{d \omega}{d k}=\frac{d \hbar \omega}{d \hbar k}=\frac{d E}{d p} \\
& E=\frac{p^{2}}{2 m}
\end{aligned}
$$

$$
v_{\text {group }}=\frac{p}{m}=V
$$

> Problem solved

Waves

$>$ The relation between ω and k is called the dispersion relation
> Examples

- Photon in vacuum

$$
\begin{aligned}
& f=\frac{c}{\lambda} \\
& 2 \pi f=\frac{2 \pi c}{\lambda} \\
& \omega=k c \\
& \frac{d \omega}{d k}=c
\end{aligned}
$$

Waves

Rock

Waves

> Examples

- Photon in a medium

$$
\begin{aligned}
& f=\frac{c}{n(\lambda) \lambda} \\
& 2 \pi f=\frac{2 \pi c}{n(\lambda) \lambda} \\
& \omega=\frac{k c}{n(k)} \\
& \frac{d \omega}{d k}=\frac{c}{n(k)}+k c \frac{d}{d k} \frac{1}{n(k)}
\end{aligned}
$$

Waves

> Examples

- de Broglie waves

$$
\begin{aligned}
& E=h f=\hbar \omega \\
& E=\frac{p^{2}}{2 m}=\frac{(\hbar k)^{2}}{2 m} \\
& \omega=\frac{\hbar k^{2}}{2 m} \\
& \frac{d \omega}{d k}=\frac{\hbar k}{m}
\end{aligned}
$$

Waves

$\varphi>$ Because the group velocity $=\mathrm{d} \omega / \mathrm{dk}$ depends on k , the wave packet will disperse with time

- This is because each of the waves is moving at a slightly different velocity
- Just as white light will be dispersed as it travels through a prism
$>$ That's why $\omega(\mathrm{k})$ is called a dispersion relation

Waves

$>$ Spreading of a wave packet with time

> Does this mean matter waves disperse with time?

