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Bohr Model

In addition to the atomic line spectra of 
single electron atoms, there were other 
successes of the Bohr Model

X-ray spectra
Frank-Hertz experiment
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X-ray Spectra

Recall the x-ray spectra shown a few 
lectures ago
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X-ray Spectra
Moseley found experimentally that the 
wavelengths of characteristic x-ray lines of 
elements followed a regular pattern

A similar formula described the L-series x-rays
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X-ray Spectra
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X-ray Spectra
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X-ray Spectra
Moseley’s law can be easily understood in terms of 
the Bohr model

If a K (n=1) shell electron is ejected, an electron in 
the L (n=2) shell will feel an effective charge of Z-
1 (Z from the nucleus – 1 electron remaining in the 
K shell)
We have then for the n=2 to n=1 transition

Exactly agreeing with Moseley’s law
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X-ray Spectra
Applying the Bohr model to the L-series

Now there are two electrons in the K shell and 
several in the L shell thus we might expect a 
(Z-2-several)2 dependence

The data show Zeff = (Z - 7.4)
Aside, based on the regular patterns in his 
data he showed

The periodic table should be ordered by Z not A
Elements with Z=43,61, and 75 were missing

2
22

2

36
5

3
1

2
1

effeffL ZcRcRZf =⎟
⎠
⎞

⎜
⎝
⎛ −=

α



8

Franck-Hertz Experiment
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Franck-Hertz Experiment
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Franck-Hertz Experiment
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Franck-Hertz Experiment

The data show
The current increases with increasing 
voltage up to V=4.9V followed by a sudden 
drop in current

This is interpreted as a significant fraction of 
electrons with this energy exciting the Hg atoms 
and hence losing their kinetic energy
We would expect to see a spectral line associated 
with de-excitation of 
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Franck-Hertz Experiment
As the voltage is further increased there is 
again an increase in current up to V=9.8V 
followed by a sharp decrease

This is interpreted as the electron possessing 
enough kinetic energy to generate two 
successive excitations from the Hg ground 
state to the first excited state
Excitations from the ground state to the second 
excited state are possible but less probable

The observation of discrete energy 
levels was an important confirmation of 
the Bohr model
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Frank-Hertz Experiment
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Correspondence Principle
There were difficulties in reconciling the new 
physics in the Bohr model and classical 
physics

When does an accelerated charge radiate?

Bohr developed a principle to try to bridge 
the gap

The predictions of quantum theory must agree 
with the predictions of classical physics in the limit 
where the quantum numbers n become large
A selection rule holds true over the entire range of 
quantum numbers n (both small and large n)
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Correspondence Principle
Consider the frequency of emitted radiation by 
atomic electrons

Classical
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Correspondence Principle
Quantum
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Wilson-Sommerfeld Quantization

Quantization appears to play an 
important role in this “new physics”

Planck, Einstein invoked energy 
quantization
Bohr invoked angular momentum 
quantization

Wilson and Sommerfeld developed a 
general rule for the quantization of 
periodic systems
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Wilson-Sommerfeld Quantization

∫ = nhPdq

cycle oneover  integrate means and
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Wilson-Sommerfeld Quantization
For a particle moving in a central field (like the 
Coulomb field)

P = L
q = φ

Then

Which is just the Bohr condition
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Wilson-Sommerfeld Quantization
For a particle undergoing simple harmonic 
motion

P = pX

q = x
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Wilson-Sommerfeld Quantization
Continuing on

Which is just the Planck condition

nhfnhE

nhEdE

nhtdtE

AmkAE

nhtdtAmdxpPdq x

==

==

=

==

===

∫

∫

∫∫ ∫

π
ω

π
ω

θθ
ω

ω

ω

ωω

π

2

2cos2

cos2
2
1

2
1

oscillator harmonic simplea  from Recalling

cos

2

0

2

2

222

222


