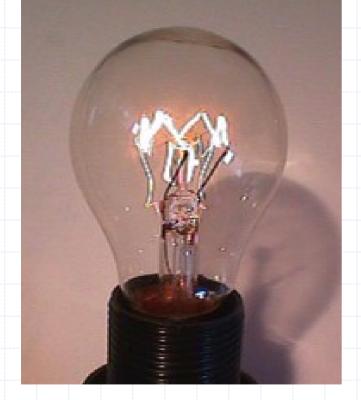
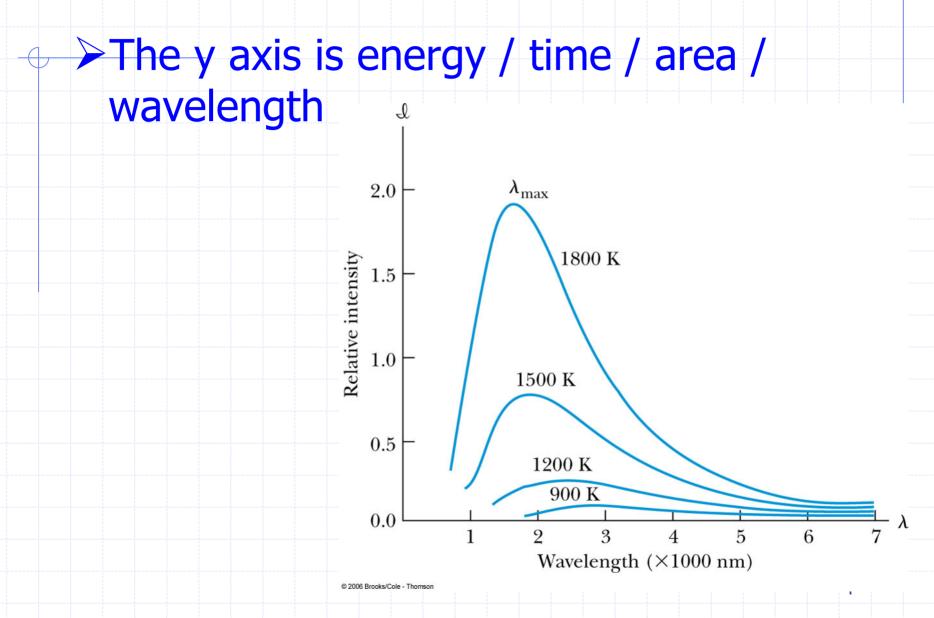
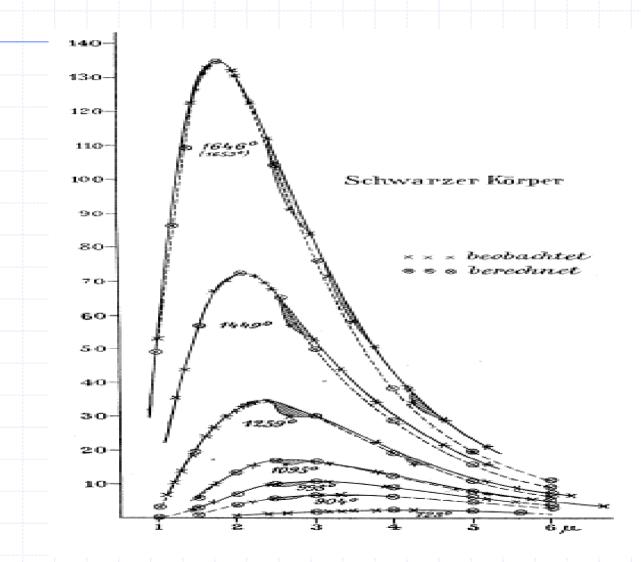
- All bodies at a temperature T emit and absorb thermal electromagnetic radiation
 - Blackbody radiation
 - In thermal equilibrium, the power emitted equals the power absorbed

How is blackbody radiation absorbed and emitted?



- A blackbody is a perfect absorber of radiation
 A simple blackbody is given by a hole in a wall of some enclosure
 Both absorption and emission can occur
 - The radiation properties of the cavity are independent of the enclosure material





$$\lambda_{\rm max}T = 2.898 \times 10^{-3} mK$$

Wavelength decreases as T increases Stefan-Boltzmann law

$$R(T) = \varepsilon \sigma T^{4}$$

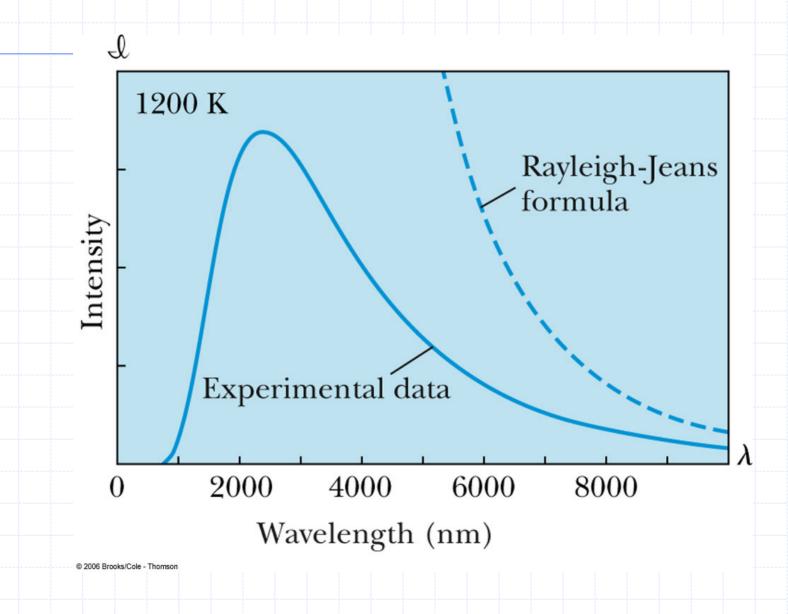
$$\sigma = 5.6705 \times 10^{-8} W / (m^{2} K^{4})$$

Total power / area radiated increases as T⁴

- Attempts to calculate the spectral distribution of blackbody radiation from first principles failed
- The best description was given by the Rayleigh-Jeans formula

$$I(\lambda,T) = \frac{2\pi ckT}{\lambda^4}$$

 ➤ This described the distribution at long wavelengths but increased without limit as λ→0
 ■ Ultraviolet catastrophe



- Planck was able to calculate the correct distribution by assuming energy was quantized (he was desperate)
 - Microscopic (atomic) oscillators can only have certain discrete energies

 $E_n = nhf$

 $h = 6.6261 \times 10^{-34} Js$

The oscillators can only absorb or emit energy in multiples of

$$\Delta E = hf$$

Planck's radiation law agreed with data

$$I(\lambda,T) = \frac{2\pi c^2 h}{\lambda^5} \frac{1}{e^{hc/\lambda kT} - 1}$$

- It leads directly to Wien's displacement law and the Stefan-Boltzmann law
- It agrees with Rayleigh-Jeans formula for large wavelengths
 - See derivations for both in Thornton and Rex

- We represent a blackbody by a cavity heated to temperature T and connected to the outside by a small hole
- We'll assume a metal cavity in the form of a cube (an oven with a pinhole)
- Thermal agitation causes the electrons in the wall to oscillate (accelerate) thus producing electromagnetic radiation
- The electromagnetic radiation forms standing waves inside the cavity with nodes at the metallic surfaces

The calculation of Planck's law has five parts

- N(f)df = Number of standing waves with frequencies between f and f+df
 - We'll do the one-dimensional case and just write down the result for the three-dimensional case

ε = average energy per standing wave

- We'll do the calculation
- Divide by the volume
- Change variables from frequency to wavelength
- Multiply by c/4 to change from energy/volume/wavelength to energy/time/area/wavelength

- We first calculate the number of standing waves in the frequency interval from f to f+df
- Consider a one-dimensional "cavity" of length a (think of possible waves on a string with fixed endpoints)
- The electric field is given by

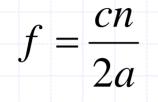
$$E(x,t) = E_0 \sin\left(\frac{2\pi x}{\lambda}\right) \sin\left(2\pi ft\right)$$

where $f\lambda = c$

So the amplitude has a sinusoidal space variation which is oscillating in time sinusoidally

- We want the amplitude of the electric field to vanish at x=0 and x=a
 - At x=0, this is satisfied automatically
 - At x=a, we must have $\frac{2a}{\lambda} = n$, n = 1, 2, 3, ...
 - This determines the allowed values for the wavelength
 - What do possible standing waves look like?

 \rightarrow It's a bit easier to work in terms of frequency



We represent the allowed values of frequency on a line where we plot a point at every integral value of n

→ d=(2a/c)f

We'll use this line to find N(f)df, the number of allowed frequencies (standing waves) in the range f to f+df

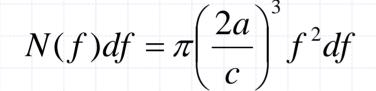
n

Looking at the line, the number of points between *f* and *f+df* is

 $N(f)df = 2 \times \frac{2a}{c}df$

Where we multiplied x2 to account for the two possible polarizations of the electromagnetic wave

- The calculation for a three-dimensional cavity is similar but somewhat more complicated
- We'll just write down the result

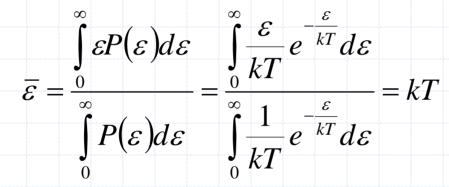


> And for later use note

$$\frac{df}{d\lambda} = -\frac{c}{\lambda^2} \text{ since } f = \frac{c}{\lambda}$$

Next we calculate the average energy per standing wave

Classically this is just



where $P(\varepsilon)$ is the Boltzmann factor $\frac{1}{kT}e^{-\frac{\varepsilon}{kT}}$

and we used $\int xe^{cx} = \frac{e^{cx}}{c^2}(cx-1)$

This is the same result the equipartition theorem gives for two degrees of freedom

18

Kinetic Theory of Gases

Based on "atomic" theory of matter ➢ Results include Speed of a molecule in a gas • $V_{rms} = (\langle v^2 \rangle)^{1/2} = (3kT/m)^{1/2}$ Equipartion theorem • Internal energy U = f/2 NkT = f/2 nRTHeat capacity • $C_V = (dU/dT)_V = f/2 R$ Maxwell speed distribution

$$f(v) = 4\pi N \left(\frac{m}{2\pi kT}\right)^{3/2} v^2 e^{-mv^2/2kT}$$

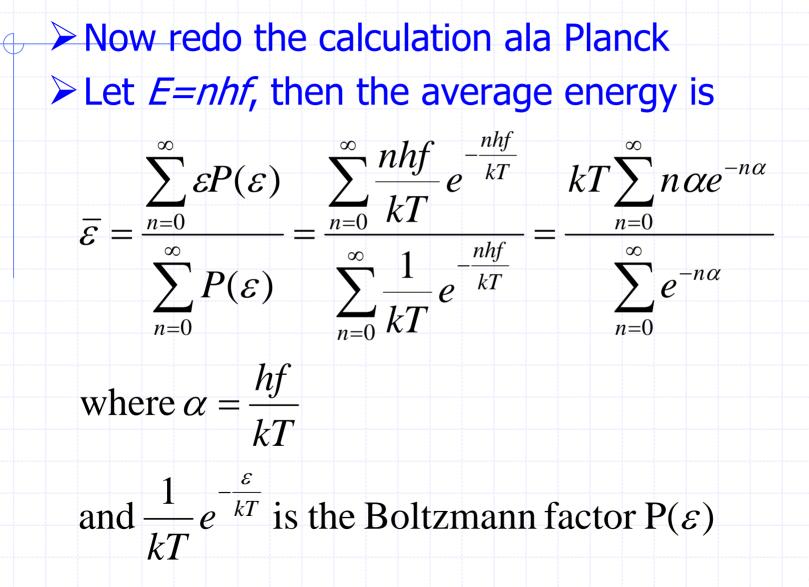
Continuing with classical calculation we have

$$u(f)df = \pi \left(\frac{2a}{c}\right)^3 f^2 df \times kT \times \frac{1}{a^3} = \frac{8\pi f^2 kT}{c^3} df$$

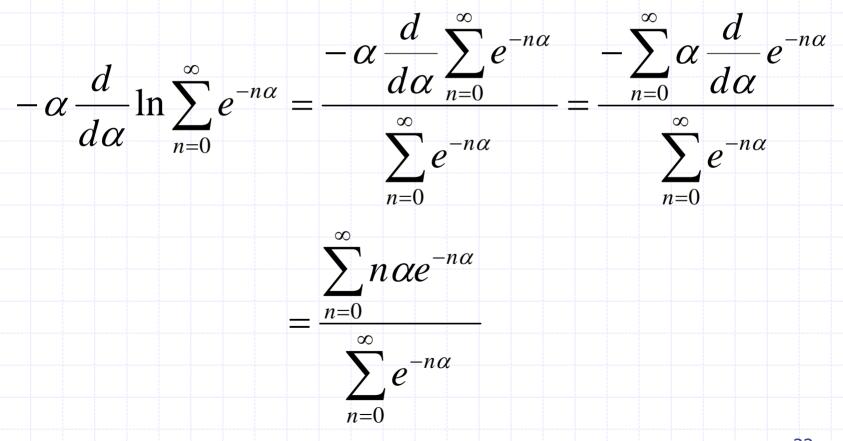
And changing variables from frequency to wavelength

$$u(\lambda)d\lambda = \frac{8\pi kT}{\lambda^4}d\lambda$$

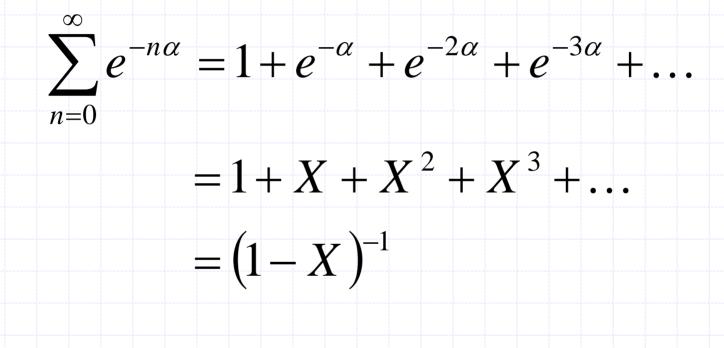
> Multiply by c/4 to find the Rayleigh-Jeans formula $I(\lambda,T) = \frac{2\pi ckT}{\lambda^4}$



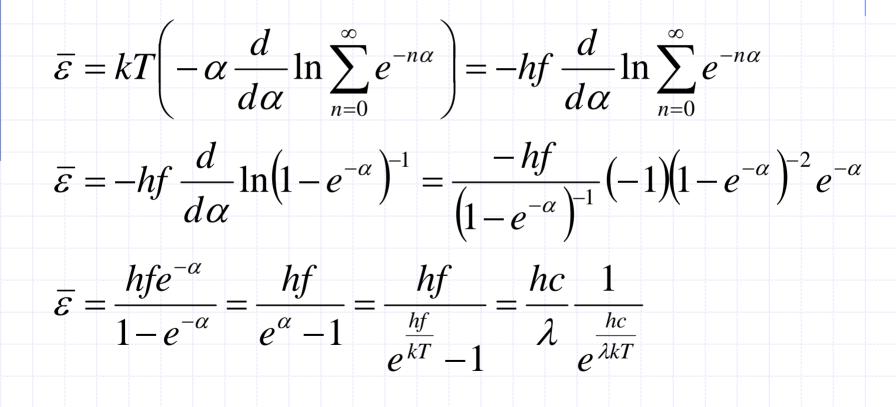
To evaluate this we use standard "tricks" from statistical mechanics



← ≻And note



Putting these together we have



We already know the number of standing waves per volume

$$N(\lambda)d\lambda = \frac{8\pi}{\lambda^4}d\lambda$$

 \succ So the energy per volume is

 $u(\lambda)d\lambda = \frac{hc}{\lambda} \frac{1}{e^{\frac{hc}{\lambda kT}} - 1} \frac{8\pi}{\lambda^4} d\lambda$

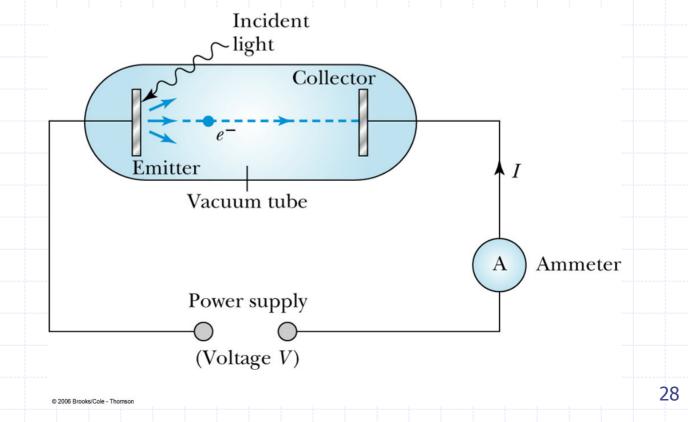
And changing units to spectral intensity (multiply by c/4) gives Planck's formula $I(\lambda,T) = \frac{2\pi c^2 h}{\lambda^5} \frac{1}{\frac{hc}{e^{\lambda kT}} - 1}$

- You can see how Planck avoided the ultraviolet catastrophe
 - Because the energy is proportional to the frequency
 - The average energy is kT when the possible energies are small compared to kT
 - The average energy is extremely small when the possible energies are large compared to kT (because P(ε) is extremely small)

- Planck's paper is generally considered to be the birthplace of quantum mechanics
 - Revisionist history?
 - Planck did not pay too much attention to energy quantization
 - Neither did anyone else
 - There is controversy of whether he even intended the energy of an oscillator to be nhf

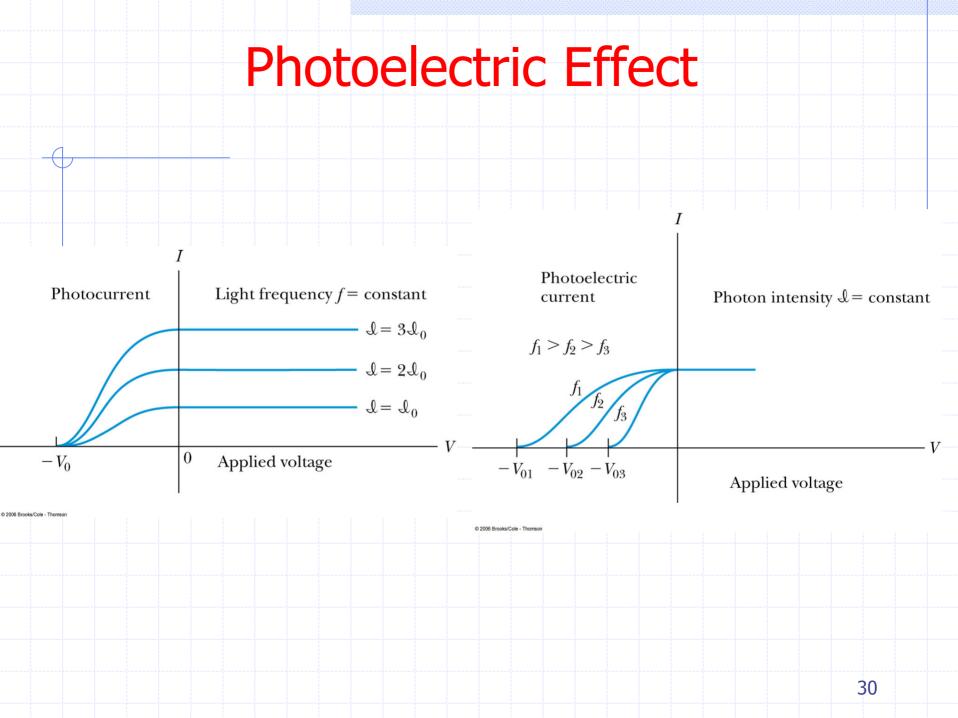
Light incident on a metal will eject electrons

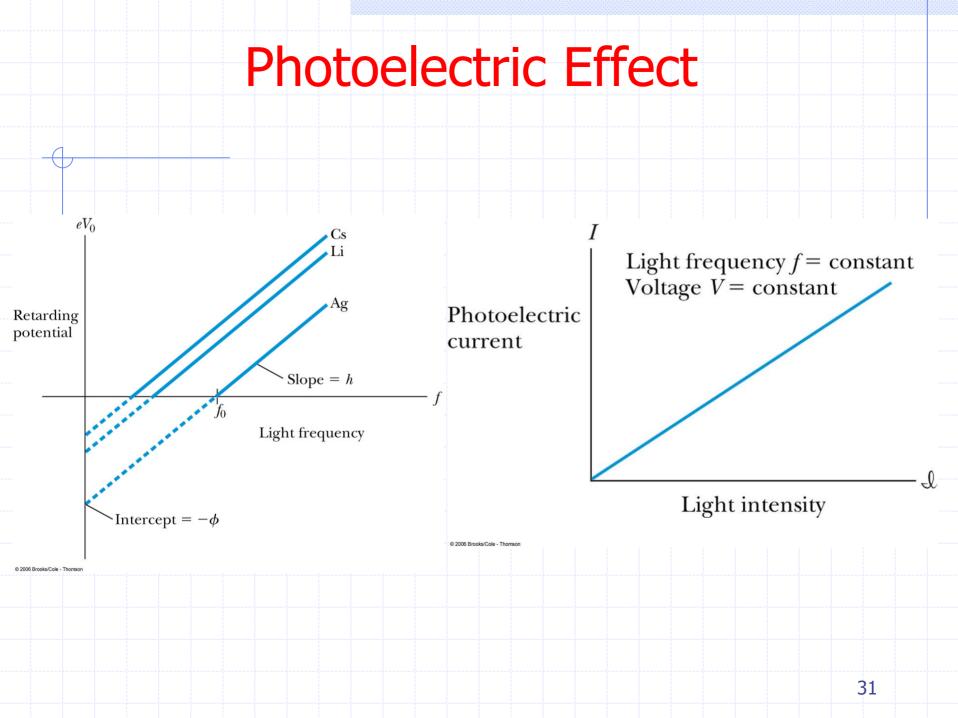
 Aside, other means of doing this are with temperature, electric fields, and particle bombardment



Experiments showed

- The kinetic energy of the photoelectrons are independent of the light intensity
- The maximum kinetic energy of the photoelectrons depends on the light frequency
- The smaller the work function φ the smaller the threshold frequency to produce photoelectrons
- The number of photoelectrons is proportional to light intensity
- The photoelectrons are emitted instantaneously (on the order of nanoseconds)





- Explained by Einstein in one of his annus mirabilis papers
- In his paper he assumed
 - Electromagnetic field was quantized
 - Light quanta were localized in space (like particles) == photons
 - Energy E = hf
 - In the photoelectric process, the energy quanta (photons) are completely absorbed

Thus photons penetrate the surface of the metal and are absorbed by electrons \succ The electrons overcome attractive forces that normally hold them in the material and escape \succ Conservation of energy gives • $hf = 1/2mv_{max}^2 + \phi$ >And consequently he predicted • $1/2mv_{max}^2 = eV_0 = hf - \phi$ Note h/e can be measured from the slope

- This was strange since it involved Planck's constant h
 - This was a difficult experiment to carry out
 - It took almost a decade to verify
 - Millikan was the principle experimenter (who was trying to prove Einstein's theory wrong)
 - The end result was proof that light energy is quantized and E=hf

