Quantization

In spite of the many successes of classical physics, experiments began to discover phenomena that were difficult to understand

Electron e/m

← ► Cathode ray tube

Electron e/m

This experiment established the electron as a particle ➤The present value of e/m is e/m=1.76x10¹¹ C/kg 5

Line Spectra

Recall from optics how a diffraction grating works

Line Spectra

 $\lambda = 354.56 \frac{k^2}{k^2 - 4} nm$ (Balmer series)

Line Spectra

Hydrogen Series of Spectral Lines

Discoverer (year)	Wavelength	n	k
Lyman (1916)	Ultraviolet	1	>1
Balmer (1885)	Visible, ultraviolet	2	>2
Paschen (1908)	Infrared	3	>3
Brackett (1922)	Infrared	4	>4
Pfund (1924)	Infrared	5	>5

$$\frac{1}{\lambda} = R_H \left(\frac{1}{n^2} - \frac{1}{k^2} \right), \ R_H = 1.096776m^{-1}$$

The oil drop experiences a downward gravitational force (mg) and an upward frictional force (bv)

The terminal velocity of the falling oil drop is $\frac{dv}{dv}$

$$-mg+bv=m\frac{du}{dt}$$

$$v_f = \frac{mg}{b} \text{ for } \frac{dv}{dt} = 0$$

The viscous force is given by Stokes' law with

11

 $b = 6\pi\eta r$

The mass is given by $m = \frac{4}{3}\pi r^{3}\rho$

Charge Quantization > With the addition of an electric field we have $q_n E - mg - bv = m \frac{dv}{dt}$ The terminal velocity for rising is just $v_r = \frac{q_n E - mg}{h}$ > And thus $q_n = \frac{mg}{Ev_f} \left(v_f + v_r \right)$ 12

Millikan observed that the charge on the drops was always ne where n is an integer

➤The present value of e is 1.602x10⁻¹⁹C

- Some charge he only used the "best" data
 - This is almost exactly right & the best one I ever had!!!
 - Exactly right
 - Publish this Beautiful one
 - Error high will not use
 - Too high by 1½%

 His graduate student came up with the idea of using oil (but was not co-author on the paper)