Units

$>$ The work done in accelerating an electron across a potential difference of 1 V is

- W = charge \times potential
- $\mathrm{W}=\left(1.602 \times 10^{-19} \mathrm{C}\right)(1 \mathrm{~V})=1.602 \times 10^{-19} \mathrm{~J}$
- $W=(1 e)(1 V)=1 \mathrm{eV}$
$>1 \mathrm{eV}=1.602 \times 10^{-19} \mathrm{~J}$
- In particle and nuclear physics, MeV is more common
- $\mathrm{MeV}=10^{6} \mathrm{eV}$
- $\mathrm{GeV}=10^{9} \mathrm{eV}$
- $\mathrm{TeV}=10^{12} \mathrm{eV}$

Units

$\Rightarrow E^{2}=p^{2} c^{2}+m^{2} c^{4}$

- Units of energy $=\mathrm{MeV}$
- Units of momentum $=\mathrm{MeV} / \mathrm{c}$
- Units of mass $=\mathrm{MeV} / \mathrm{c}^{2}$
$>$ Rest energy of a proton $=m c^{2}=938 \mathrm{MeV}$
- $\mathrm{E}=\left(1.67 \times 10^{-27} \mathrm{~kg}\right)\left(3 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)^{2}=1.5 \times 10^{-10} \mathrm{~J}$
- $\mathrm{E}=\left(1.5 \times 10^{-10} \mathrm{~J}\right)\left(1 \mathrm{eV} / 1.602 \times 10^{-19} \mathrm{~J}\right)=938 \mathrm{MeV}$
$>$ Mass of a proton $=938 \mathrm{MeV} / \mathrm{c}^{2}$
$>$ Mass of an electron $=0.511 \mathrm{MeV} / \mathrm{c}^{2}$

Relativistic Energy

- $>$ Photons
- $m=0$ so $E=p c$
- $E=y m c^{2}=p c=y m u c$ so $u=c$ for a massless particle

Binding Energy

$>$ Of course, any potential energy must be added to the kinetic energy and rest mass energy
$>$ One common potential energy in atomic and nuclear physics is called the binding energy

- Binding energy is the potential energy associated with the force that holds a system together
- Binding energy is the energy needed to separate the system into its constituent parts

Binding Energy

$>$ Binding energy B

$$
B=\sum_{i} m_{i} c^{2}-M_{b o u n d} c^{2}
$$

> Hydrogen atom

- proton + electron = hydrogen atom
- 938.272 MeV + 0.511 MeV - 938.791 MeV = 13.6eV
$>$ Deuteron
- proton + neutron = deuteron
. $938.27 \mathrm{MeV}+939.57 \mathrm{MeV}-1875.61 \mathrm{MeV}=2.23 \mathrm{MeV}$

Relativistic Energy

$\leftrightarrow>E=\gamma m c^{2}$ means mass and energy are equivalent
>Commonplace in nuclear and particle physics
>Einstein's box

Relativistic Energy

$\measuredangle>$ The laser fires a burst of photons

- The photons carry momentum p
- The box of mass Mrecoils (nonrelativistically)
- $M v=p=E / C$
- When the photons are absorbed on the far side of the box the motion stops
$>$ But there are no external forces on the box hence we would expect the center-of-mass of the box to remain unchanged

Relativistic Energy

$\rightarrow>$ For the center-of-mass to remain unchanged we must have

- $M x_{1}=m x_{2}=m L$
\Rightarrow The box will move to the left x_{1}
- $x_{1}=v t=v L / c=E L / M c^{2}$
$>$ Thus
- MEL/Mc² $=m L$ or $m=E^{2} / c$
$>$ The energy of the photons is equivalent to a mass $m, E=m c^{2}$

Four-Vectors

$>$ Given the intimate connection between space and time it is natural to group ct and \boldsymbol{x} into a vector
$>$ We define any four quantities that transform like ($c t, \boldsymbol{x}$) under a Lorentz transformation to be a four-vector
$>$ We use the notation

$$
\begin{aligned}
& (c t, \vec{x})=\left(x^{0}, x^{1}, x^{2}, x^{3}\right)=x^{\mu} \\
& \left(\frac{E}{c}, \vec{p}\right)=\left(p^{0}, p^{1}, p^{2}, p^{3}\right)=p^{\mu}
\end{aligned}
$$

Four-Vectors

$>$ Four-vectors follow the usual rules for vector addition, multiplication, ...
$>$ We also define

$$
\left(x_{0},-x_{1},-x_{2},-x_{3}\right)=x_{\mu}
$$

> Upper index vectors == contravariant vectors
$>$ Lower index vectors == covariant vectors
$>$ If there is an upper and lower index of the same type (e.g. μ) a sum over repeated indices is implied

Four-Vectors

$>$ We define the usual scalar product of two four-vectors

$$
A \cdot B=A_{\mu} B^{\mu}=A^{\mu} B_{\mu}=A^{0} B^{0}-\vec{A} \cdot \vec{B}
$$

$>$ Scalar products are Lorentz invariant

$$
\begin{aligned}
& x^{\mu} x_{\mu}=c^{2} t^{2}-x^{2}-y^{2}-z^{2}=-s^{2} \\
& p^{\mu} p_{\mu}=\frac{E^{2}}{c^{2}}-\vec{p}^{2}=m^{2} c^{2}
\end{aligned}
$$

Lorentz Transformation

$$
\begin{array}{ll}
p_{x}^{\prime}=\gamma\left(p_{x}-V E / c^{2}\right) & p_{x}=\gamma\left(p_{x}^{\prime}+V E^{\prime} / c^{2}\right) \\
p_{y}^{\prime}=p_{y} & p_{y}=p_{y}^{\prime} \\
p_{z}^{\prime}=p_{z} & p_{z}=p_{z}^{\prime} \\
E^{\prime}=\gamma\left(E-V p_{x}\right) & E=\gamma\left(E^{\prime}+V p_{x}^{\prime}\right)
\end{array}
$$

$$
\text { where } \gamma=\frac{1}{\sqrt{1-\beta^{2}}}=\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}}
$$

Lorentz Transformation

$$
\begin{array}{ll}
x^{\prime}=\gamma(x-v t) & x=\gamma\left(x^{\prime}+v t^{\prime}\right) \\
y^{\prime}=y & y=y^{\prime} \\
z^{\prime}=z & z=z^{\prime} \\
t^{\prime}=\gamma\left(t-v x / c^{2}\right) & t=\gamma\left(t^{\prime}+v x^{\prime} / c^{2}\right)
\end{array}
$$

$$
\text { where } \gamma=\frac{1}{\sqrt{1-\beta^{2}}}=\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}}
$$

Particle Production

$\measuredangle>$ In particle physics we transform kinetic energy into mass on a daily basis

- $E=m c^{2}$ (when $p=0$) so the higher the energy the larger the mass
$>$ Consider the reaction $p p \rightarrow p p \pi^{0}$
$>$ We have for masses
- $M_{p}=938 \mathrm{MeV} / \mathrm{c}^{2}$
- $M_{n}=135 \mathrm{MeV} / \mathrm{c}^{2}$
$>$ Can you create a Π^{0} by colliding a 135 MeV proton with a proton at rest?

Particle Production

$>$ Though one can determine the threshold kinetic energy for Π^{0} production from energy and momentum conservation considerations, it is easier to use the invariant s

- $s^{2}=(\text { center-of-mass energy })^{2}$

$$
\begin{aligned}
& s^{2}=\left(P_{1}+P_{2}\right)^{2}=\left(P_{3}+P_{4}\right)^{2} \text { any frame } \\
& s^{2}=\left(E_{1}+E_{2}+\ldots\right)^{2}-c^{2}\left(\vec{p}_{1}+\vec{p}_{2}+\ldots\right)^{2} \\
& s^{2}=\left(E_{3}+E_{4}+\ldots\right)^{2}-c^{2}\left(\vec{p}_{3}+\vec{p}_{4}+\ldots\right)^{2}
\end{aligned}
$$

Particle Production

$>$ In the center-of-mass frame, the $р р п^{0}$ can be produced at rest

$$
\begin{aligned}
& s^{2}=\left(E_{3}+E_{4}+E_{5}\right)^{2}=\left(m_{p} c^{2}+m_{p} c^{2}+m_{\pi^{0}} c^{2}\right)^{2} \\
& s^{2}=(938+938+135)^{2} M e V^{2}=2011^{2} M e V^{2}
\end{aligned}
$$

$>$ In the lab frame (where one of the protons is at rest)

$$
\begin{aligned}
s^{2}= & \left(E_{1}+E_{2}\right)^{2}-c^{2}\left(p_{1}+p_{2}\right)^{2} \\
s^{2}= & \left(E_{1}+m_{p} c^{2}\right)^{2}-c^{2} p_{1}^{2}=\left(E_{1}+m_{p} c^{2}\right)^{2}-\left(E_{1}^{2}-m_{p}^{2} c^{4}\right) \\
s^{2}= & 2 E_{1} m_{p} c^{2}+2 m_{p}^{2} c^{4}=\left(m_{p} c^{2}+m_{p} c^{2}+m_{\pi^{0}} c^{2}\right)^{2} \\
& (2 \times 938) E_{1}+2(938)^{2}=(938+938+135)^{2} \\
& E_{1}=1217.7 \mathrm{MeV} \\
& T_{1}=E_{1}-m_{p} c^{2}=279 \mathrm{MeV}
\end{aligned}
$$

Particle Production

$>$ Thus it takes a proton with $\mathrm{T}=280 \mathrm{MeV}$ to collide with a proton at rest to produce a Π^{0}
$>$ Taking a closer look at

$$
\begin{aligned}
& s^{2}=2 E_{1} m_{p} c^{2}+2 m_{p}^{2} c^{4}=\left(m_{p} c^{2}+m_{p} c^{2}+m_{\pi^{0}} c^{2}\right)^{2} \\
& m^{*}=\sqrt{2 E_{1} m_{p} c^{2}+2 m_{p}^{2} c^{4}}
\end{aligned}
$$

> The energy available for particle production goes as the square root of the beam energy (in the lab frame)
$>$ This is because energy goes into the motion of the center-of-mass

Particle Production

© $>$ In the center-of-mass frame there is no "wasted" energy

$$
\begin{aligned}
& s^{2}=\left(P_{1}+P_{2}\right)^{2}=m_{1}^{2} c^{4}+m_{2}^{2} c^{4}+2\left(E_{1} E_{2}-\vec{p}_{1} \cdot \vec{p}_{2}\right) \\
& m^{*} \approx \sqrt{4 E_{1} E_{2}}=2 E_{1}
\end{aligned}
$$

-This is why particle physics experiments are performed in the center-of-mass frame (i.e. using colliding beams of particles)

Large Hadron Collider at CERN

$\leftrightarrow>7 \mathrm{TeV}$ protons colliding with 7 TeV protons

Electromagnetism

↔ $>$ What led Einstein to special relativity was the conviction that Maxwell's equations were invariant in all inertial frames

- This is called Lorentz covariance
- It means that the fundamental equations have the same form in all inertial frames

Maxwell's Equations

- In differential form
$>$ Gauss's law (E field): $\vec{\nabla} \cdot \vec{E}=\rho / \varepsilon_{0}$
> Gauss's law (B field):

$$
\vec{\nabla} \cdot \vec{B}=0
$$

> Faraday's law:

$$
\vec{\nabla} \times \vec{E}=-\frac{\partial \vec{B}}{\partial t}
$$

> Ampère's law:

$$
\vec{\nabla} \times \vec{B}=\mu_{0} \varepsilon_{0} \frac{\partial \vec{E}}{\partial t}+\mu_{0} \vec{J}
$$

Electromagnetism

\square^{\square}
(a)

Positive charges in wire at rest
(b)

Positive charges in wire at rest
$q_{0} \oplus$ At rest
(c)

Negative charges in wire at rest
$\otimes \vec{B}($ in $) \uparrow \vec{F}_{E}$
$\otimes \vec{B}$
$q_{0} \oplus$ At rest
$\otimes \vec{B} \quad \uparrow \vec{E} \quad \uparrow \quad \uparrow \vec{E} \otimes \vec{B}$
(d)

Negative charges
in wire at rest

Electromagnetism

$\leftrightarrow>$ In frame K (Figure (a)), what is the force on q_{0} ?

- Pay attention to the orientation of the positive and negative charges. The wire is neutral.
- The answer is

$$
\vec{F}=\frac{q \mu_{0} \lambda v^{2}}{2 \pi r} \hat{i}
$$

Electromagnetism

$$
\begin{aligned}
& \vec{F}=q(\vec{E}+\vec{v} \times \vec{B}) \\
& \vec{E}=0 \\
& B=\frac{\mu_{0} I}{2 \pi r}=\frac{\mu_{0} \lambda v}{2 \pi r}(\text { Ampere' s law }) \\
& \text { thus } \vec{F}=\frac{q \mu_{0} \lambda v^{2}}{2 \pi r} \hat{i}
\end{aligned}
$$

Electromagnetism

$\star>$ In frame K^{\prime} (Figure (c)), what is the force on q_{0} ?

- Pay attention to the orientation of the positive and negative charges. The wire is neutral.
- The answer is

$$
\vec{F}^{\prime}=\gamma \frac{q \mu_{0} \lambda v^{2}}{2 \pi r} \hat{i}
$$

Electromagnetism

$$
\begin{aligned}
& \vec{F}^{\prime}=q\left(\vec{E}^{\prime}+\vec{v}^{\prime} \times \vec{B}^{\prime}\right) \\
& \vec{v}^{\prime} \times \vec{B}^{\prime}=0 \\
& \lambda_{+}^{\prime}=\lambda \gamma \text { and } \lambda_{-}^{\prime}=-\lambda / \gamma
\end{aligned}
$$

$$
\lambda^{\prime}=\lambda_{+}^{\prime}+\lambda_{-}^{\prime}=\frac{\lambda}{\sqrt{1-\frac{v^{2}}{c^{2}}}}-\lambda \sqrt{1-\frac{v^{2}}{c^{2}}}=\gamma \lambda \frac{v^{2}}{c^{2}}
$$

$$
E^{\prime}=\gamma \lambda \frac{v^{2}}{c^{2}} \frac{1}{2 \pi r} \frac{1}{\varepsilon_{0}}(\text { Gauss' law })
$$

$$
\vec{F}^{\prime}=\gamma \frac{q \mu_{0} \lambda v^{2}}{2 \pi r} \hat{i}\left(\text { since } \frac{1}{\mathrm{c}^{2}}=\mu_{0} \varepsilon_{0}\right)
$$

Electromagnetism

$>$ It turns out that in this example (only) where the force is perpendicular to the velocity of the frame AND the test particle is at rest in the K^{\prime} frame then

$$
F_{T}=F_{T}^{\prime} / \gamma
$$

$>$ The electrostatic force in the K^{\prime} frame is identical in magnitude (after transformation) to the magnetic force in the K frame
$>$ Whether you observe a magnetic or electric force is frame dependent
$>$ Electrostatics plus relativity implies a magnetic field must exist

