## Relativistic Momentum

$>$ Question: Would you expect Newton's second law $\mathrm{F}=\mathrm{ma}$ to hold at high velocity?
$>$ Answer: No, a constant force can accelerate a particle to $v>c$
$>$ Answer: No, certainly something is different since in a Galilean transformation the force and acceleration are the same. This is not true for a Lorentz transformation.

## Newtonian Relativity

$>$ Note Newton's laws are valid in both frames

- The force and acceleration are the same in both frames
- There is no way to detect which frame is moving and which is at rest

$$
\begin{aligned}
& F_{y}^{\prime}=m a_{y}^{\prime}=m \frac{d^{2} y^{\prime}}{d t^{\prime 2}}=m \frac{d^{2} y}{d t^{2}}=m a_{y}=F_{y} \\
& F_{x}^{\prime}=m a_{x}^{\prime}=m \frac{d^{2} x^{\prime}}{d t^{\prime 2}}=m \frac{d^{2}(x-v t)}{d t^{2}}=m \frac{d^{2} x}{d t^{2}}=F_{x}
\end{aligned}
$$

## Relativistic Momentum

$>$ Galilean transformation

- We showed $a=a^{\prime}$ and $F=F^{\prime}$
$>$ Lorentz transformation

$$
\begin{aligned}
& u_{x}=\frac{u_{x}^{\prime}+V}{1+\frac{V u_{x}^{\prime}}{c^{2}}} \\
& a_{x}=\frac{d u_{x}}{d t}=\frac{a_{x}^{\prime}}{\gamma^{3}\left(1+\frac{V u_{x}^{\prime}}{c^{2}}\right)^{3}}
\end{aligned}
$$

$>$ We might try starting with $F=d p / d t$

## Relativistic Momentum

$\leftrightarrow>$ Frank ( F ) is in K with a ball of mass m
$>$ Mary ( $M$ ) is in $K^{\prime}$ with a ball of mass $m$
$>$ Frank throws his ball along y with
velocity $u_{0}$
$>$ Mary throws her ball along -y' with velocity $u_{0}$
$>$ The balls collide elastically

## Relativistic Momentum


© 2006 Brooks/Cole - Thomson

## Relativistic Momentum

$>$ Frank sees the momentum change of his ball

$$
\Delta p_{F y}=-2 m u_{0}
$$

> Frank sees for Mary's ball

$$
u_{x}^{\prime}=0 \text { and } u_{y}^{\prime}=-u_{0}
$$

$$
\text { thus } u_{x}=V \text { and } u_{y}=-u_{0} \sqrt{1-\frac{V^{2}}{c^{2}}}
$$

> Frank sees the momentum change of Mary's ball

$$
\begin{aligned}
\Delta p_{M x} & =m V-m V=0 \\
\Delta p_{M y} & =m u_{0} \sqrt{1-\frac{V^{2}}{c^{2}}}+m u_{0} \sqrt{1-\frac{V^{2}}{c^{2}}} \\
& =2 m u_{0} \sqrt{1-\frac{V^{2}}{c^{2}}}
\end{aligned}
$$

## Addition of Velocities

$>$ Recall the addition of velocities in special relativity

$$
u_{x}=\frac{d x}{d t}=\frac{\gamma\left(d x^{\prime}+v d t^{\prime}\right)}{\gamma\left[d t^{\prime}+\left(\frac{v}{c^{2}}\right) d x^{\prime}\right]}=\frac{u_{x}^{\prime}+v}{1+\left(\frac{v}{c^{2}}\right) u_{x}^{\prime}}
$$

similarly

$$
\begin{aligned}
& u_{y}=\frac{u_{y}^{\prime}}{\gamma\left[1+\left(\frac{v}{c^{2}}\right) u_{x}^{\prime}\right]} \\
& u_{z}=\frac{u_{z}^{\prime}}{\gamma\left[1+\left(\frac{v}{c^{2}}\right) u_{x}^{\prime}\right]}
\end{aligned}
$$

## Relativistic Momentum

$>$ Momentum is not conserved in the $y$ direction!
>Because we strongly believe in the conservation of momentum, let's modify the definition of momentum

$$
\begin{aligned}
\vec{p} & =\gamma m \vec{u} \\
\gamma= & \frac{1}{\sqrt{1-\frac{u^{2}}{c^{2}}}}
\end{aligned}
$$

## Relativistic Momentum

$\Rightarrow$ Frank sees the momentum change of his ball

$$
\Delta p_{\text {Fy }}=\frac{-2 m u_{0}}{\sqrt{1-\frac{u_{0}^{2}}{c^{2}}}}
$$

> Frank sees the momentum change of Mary's ball

$$
\begin{align*}
& \Delta p_{M y}=2 \gamma m u_{0} \sqrt{1-\frac{V^{2}}{c^{2}}} \\
& \text { where } \gamma=\frac{1}{\sqrt{1-\frac{\mathrm{V}^{2}+u_{0}^{2}\left(1-\frac{V^{2}}{c^{2}}\right)}{\mathrm{c}^{2}}}}=\frac{1}{\sqrt{\left(1-\frac{u_{0}^{2}}{c^{2}}\right)\left(1-\frac{V^{2}}{c^{2}}\right)}} \\
& \Delta p_{M y}=\frac{2 m u_{0}}{\sqrt{1-\frac{u_{0}^{2}}{c^{2}}}} \tag{9}
\end{align*}
$$

## Relativistic Momentum

$>$ Thus Frank sees that momentum is conserved in the x and y directions using $\vec{p}=\gamma m \vec{u}$

$$
\gamma=\frac{1}{\sqrt{1-\frac{u^{2}}{c^{2}}}}
$$

>Likewise Mary would see that momentum conservation holds in her frame as well

## Relativistic Momentum

## $\rightarrow>$ Notes

- Unfortunately $y$ is used for both

$$
\gamma=\frac{1}{\sqrt{1-\frac{V^{2}}{c^{2}}}} \text { and } \gamma=\frac{1}{\sqrt{1-\frac{u^{2}}{c^{2}}}}
$$

- Usually we write them out when they both come into play
- In these equations $m=m_{0}$ is the rest mass
- Sometime we interpret $y m$ as the relativistic mass but that is not standard


## Relativistic Energy

$>$ Let's assume that the relativistically correct form of Newton's law is given by

$$
\vec{F}=\frac{d \vec{p}}{d t}=\frac{d(\gamma m \vec{u})}{d t}
$$

$>$ The validity of this assumption can be determined by examining its consequences
$>$ Aside, are Newton's first and third laws relativistically correct?

## Relativistic Energy

$>$ In classical mechanics the work done by a force in moving a particle from one position to another equals the change in kinetic energy

$$
\begin{aligned}
& T=\int_{u=0}^{u} F d s=\int_{0}^{u} \frac{d(\gamma m u)}{d t} d s=\int_{0}^{u} u d(\gamma m u) \\
& d(\gamma m u)=m \gamma d u+m u d \gamma
\end{aligned}
$$

## Relativistic Energy

$>$ We can evaluate the integral by writing

$$
\begin{aligned}
& d \gamma=d\left(1-\frac{u^{2}}{c^{2}}\right)^{-1 / 2}=\frac{u}{c^{2}}\left(1-\frac{u^{2}}{c^{2}}\right)^{-3 / 2} d u \\
& d(\gamma m u)=m \gamma d u+m u d \gamma
\end{aligned}
$$

$$
\begin{aligned}
& =m\left[\left(1-\frac{u^{2}}{c^{2}}\right)^{-1 / 2} d u+\frac{u^{2}}{c^{2}}\left(1-\frac{u^{2}}{c^{2}}\right)^{-3 / 2} d u\right] \\
& =m\left(1-\frac{u^{2}}{c^{2}}\right)^{-3 / 2} d u
\end{aligned}
$$

## Relativistic Energy

>Then

$$
\begin{aligned}
& T=\int_{0}^{u} u d(\gamma m u)=\int_{0}^{u} m\left(1-\frac{u^{2}}{c^{2}}\right)^{-3 / 2} u d u \\
& T=m c^{2}\left[\left(1-\frac{u^{2}}{c^{2}}\right)^{-1 / 2}-1\right]
\end{aligned}
$$

$>$ Thus $T=\gamma m c^{2}-m c^{2}$

## Relativistic Energy

$>$ Now at low speeds we can use the binomial expansion

$$
\gamma=\left(1-\frac{u^{2}}{c^{2}}\right)^{-1 / 2} \approx 1+\frac{1}{2} \frac{u^{2}}{c^{2}}+\ldots
$$

$>$ To find as expected

$$
T=m c^{2}\left(1+\frac{1}{2} \frac{u^{2}}{c^{2}}+\ldots-1\right)=\frac{1}{2} m u^{2}
$$

## Relativistic Energy

$>$ We define the total energy E

- $E=$ kinetic energy plus rest energy
- $E=T+m c^{2}$
- $E=y m c^{2}$


## Relativistic Energy

$>$ We also have for $E$

$$
\begin{aligned}
& E^{2}=\gamma^{2} m^{2} c^{4} \\
& p^{2} c^{2}=\gamma^{2} m^{2} u^{2} c^{2}=\gamma^{2} m^{2} \frac{u^{2}}{c^{2}} c^{4} \\
& E^{2}-p^{2} c^{2}=\gamma^{2} m^{2} c^{4}\left(1-\frac{u^{2}}{c^{2}}\right)=m^{2} c^{4}
\end{aligned}
$$

$>$ Thus
$-E^{2}=p^{2} c^{2}+m^{2} c^{4}$

- $E=m c^{2}$ for $p=0$

