Newtonian Relativity

© $>$ A reference frame in which Newton's laws are valid is called an inertial frame
$>$ Newtonian principle of relativity or Galilean invariance

- If Newton's laws are valid in one reference frame, then they are also valid in a reference frame moving at uniform velocity relative to the first system
- Thus this moving frame is also an inertial frame

Newtonian Relativity

Newtonian Relativity

>Galilean transformation

$$
\begin{array}{ll}
x^{\prime}=x-\vec{v} t & x=x^{\prime}+\vec{v} t \\
y^{\prime}=y & y=y^{\prime} \\
z^{\prime}=z & z=z^{\prime} \\
t^{\prime}=t & t=t^{\prime}
\end{array}
$$

$>$ Note time is the same in both systems

Newtonian Relativity

$>$ Note Newton's laws are valid in both frames

- The force and acceleration are the same in both frames
- There is no way to detect which frame is moving and which is at rest

$$
\begin{aligned}
& F_{y}^{\prime}=m a_{y}^{\prime}=m \frac{d^{2} y^{\prime}}{d t^{\prime 2}}=m \frac{d^{2} y}{d t^{2}}=m a_{y}=F_{y} \\
& F_{x}^{\prime}=m a_{x}^{\prime}=m \frac{d^{2} x^{\prime}}{d t^{\prime 2}}=m \frac{d^{2}(x-v t)}{d t^{2}}=m \frac{d^{2} x}{d t^{2}}=F_{x}
\end{aligned}
$$

Lorentz Transformation

© $>$ We immediately see the Galilean transformation is inconsistent with
Einstein's postulates

- If the velocity of light $=c$ in frame K, the velocity of light $=c-V$ in frame K^{\prime}
$>$ The Lorentz transformation satisfies Einstein's postulates and also reduces to the Galilean transformation at low velocities
>A derivation is given in Thornton and Rex p30-31

Lorentz Transformation

$$
\begin{array}{ll}
x^{\prime}=\gamma(x-v t) & x=\gamma\left(x^{\prime}+v t^{\prime}\right) \\
y^{\prime}=y & y=y^{\prime} \\
z^{\prime}=z & z=z^{\prime} \\
t^{\prime}=\gamma\left(t-v x / c^{2}\right) & t=\gamma\left(t^{\prime}+v x^{\prime} / c^{2}\right)
\end{array}
$$

$$
\text { where } \gamma=\frac{1}{\sqrt{1-\beta^{2}}}=\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}}
$$

Lorentz Transformation

$>$ Time dilation revisited

- Let $\Delta t^{\prime}=t_{2}^{\prime}-t_{1}^{\prime}$ be the proper time interval measured by a clock fixed at x_{0}^{\prime} in K^{\prime}

$$
\begin{aligned}
& t_{2}=\gamma\left(t_{2}^{\prime}+\frac{x_{2}^{\prime} V}{c^{2}}\right)=\gamma\left(t_{2}^{\prime}+\frac{x_{0}^{\prime} V}{c^{2}}\right) \\
& t_{1}=\gamma\left(t_{1}^{\prime}+\frac{x_{1}^{\prime} V}{c^{2}}\right)=\gamma\left(t_{1}^{\prime}+\frac{x_{0}^{\prime} V}{c^{2}}\right) \\
& \Delta t=t_{2}-t_{1}=\gamma \Delta t^{\prime}
\end{aligned}
$$

$>$ The clocks in S read a time longer than the proper time. The moving clock in S^{\prime} runs slow.

Lorentz Transformation

$>$ Length contraction revisited

- Consider a measuring rod with proper length $\Delta x^{\prime}=$ $x_{2}{ }^{\prime}-x_{1}{ }^{\prime}$. The interval Δx as viewed in S must have the positions measured at the same time t_{0} in S.

$$
\begin{aligned}
& x_{2}^{\prime}=\gamma\left(x_{2}-V t_{2}\right)=\gamma\left(x_{2}-V t_{0}\right) \\
& x_{1}^{\prime}=\gamma\left(x_{1}-V t_{1}\right)=\gamma\left(x_{1}-V t_{0}\right) \\
& \Delta x=\Delta x^{\prime} / \gamma
\end{aligned}
$$

$>$ The length of the moving object as measured in S is shorter than the proper length

Lorentz Transformation

>Clock synchronization revisited

- Consider two clocks synchronized in S'. Clock B' at x_{2}^{\prime} and clock A^{\prime} at x_{1}^{\prime}. What times do they read at time t_{0} in S ?

$$
\begin{aligned}
& t_{B}^{\prime}=\gamma\left(t_{0}-\frac{x_{2} V}{c^{2}}\right) \\
& t_{A}^{\prime}=\gamma\left(t_{0}-\frac{x_{1} V}{c^{2}}\right) \\
& t_{B}^{\prime}-t_{A}^{\prime}=-\gamma\left(x_{2}-x_{1}\right) \frac{V}{c^{2}}=-\left(x_{2}^{\prime}-x_{1}^{\prime}\right) \frac{V}{c^{2}}=-\frac{L_{0} V}{c^{2}}
\end{aligned}
$$

- Agrees with results from the homework

Beta and Gamma

Invariants

$>$ Invariant quantities have the same value in all inertial frames

- In the next homework, you'll show

$$
\begin{aligned}
& s^{2}=x^{2}+y^{2}+z^{2}-(c t)^{2} \\
& s^{\prime 2}=x^{\prime 2}+y^{\prime 2}+z^{\prime 2}-\left(c t^{\prime}\right)^{2} \\
& s^{2}=s^{\prime 2}
\end{aligned}
$$

- s^{2} is the same for all inertial frames

Invariants

$>$ Consider two events 1 and 2
$>$ We define the spacetime interval as

- $\Delta s^{2}=\Delta x^{2}-(c \Delta t)^{2}$
$>$ Three cases
- Lightlike ($\Delta \mathrm{s}^{2}=0$)
- The two events can be connected only by a light signal
- Spacelike ($\Delta s^{2}>0$)
- The two events are not causally connected. We can find an inertial frame where the events occur at the same time but at different positions in space
- Timelike ($\Delta s^{2}<0$)
- The two events are causally connected. We can find an inertial frame where the events occur at the same position in space but at different times

Addition of Velocities

$>$ Recall the Galilean transformation between two frames K and K^{\prime} where K^{\prime} moves with velocity v with respect to K

- Consider an object moving with velocity u in K and u^{\prime} in K^{\prime}

$$
\begin{aligned}
& x^{\prime}=x-v t \\
& \frac{d x^{\prime}}{d t^{\prime}}=\frac{d(x-v t)}{d t}=\frac{d x}{d t}-v \\
& u^{\prime}=u-v
\end{aligned}
$$

Galilean Transformation

$$
\begin{array}{ll}
x^{\prime}=x-v t & x=x^{\prime}+v t \\
y^{\prime}=y & y=y^{\prime} \\
z^{\prime}=z & z=z^{\prime} \\
t^{\prime}=t & t=t^{\prime}
\end{array}
$$

$>$ Note time is the same in both systems

Addition of Velocities

$>$ We know the Lorentz transformation should be used instead so

$$
u_{x}=\frac{d x}{d t}=\frac{\gamma\left(d x^{\prime}+v d t^{\prime}\right)}{\gamma\left[d t^{\prime}+\left(\frac{v}{c^{2}}\right) d x^{\prime}\right]}=\frac{u_{x}^{\prime}+v}{1+\left(\frac{v}{c^{2}}\right) u_{x}^{\prime}}
$$

similarly

$$
\begin{aligned}
& u_{y}=\frac{u_{y}^{\prime}}{\gamma\left[1+\left(\frac{v}{c^{2}}\right) u_{x}^{\prime}\right]} \\
& u_{z}=\frac{u_{z}^{\prime}}{\gamma\left[1+\left(\frac{v}{c^{2}}\right) u_{x}^{\prime}\right]}
\end{aligned}
$$

Lorentz Transformation

$$
\begin{array}{ll}
x^{\prime}=\gamma(x-v t) & x=\gamma\left(x^{\prime}+v t^{\prime}\right) \\
y^{\prime}=y & y=y^{\prime} \\
z^{\prime}=z & z=z^{\prime} \\
t^{\prime}=\gamma\left(t-v x / c^{2}\right) & t=\gamma\left(t^{\prime}+v x^{\prime} / c^{2}\right)
\end{array}
$$

$$
\text { where } \gamma=\frac{1}{\sqrt{1-\beta^{2}}}=\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}}
$$

Addition of Velocities

$>$ Swapping primed and unprimed variables and letting v go to -v

$$
\begin{aligned}
& u_{x}^{\prime}=\frac{u_{x}-v}{1-\left(\frac{v}{c^{2}}\right) u_{x}} \\
& u_{y}^{\prime}=\frac{u_{y}}{\gamma\left[1-\left(\frac{v}{c^{2}}\right) u_{x}\right]} \\
& u_{z}^{\prime}=\frac{u_{z}}{\gamma\left[1-\left(\frac{v}{c^{2}}\right) u_{x}\right]}
\end{aligned}
$$

Addition of Velocities

\rightarrow Example - let $u_{x}^{\prime}=c, u_{y}^{\prime}=0, u_{z}^{\prime}=0$

$$
u_{x}=\frac{(c+V)}{\left(1+\frac{c V}{c^{2}}\right)}=c, u_{y}=0, u_{z}=0
$$

\rightarrow Example - let $u_{x}^{\prime}=0, u_{y}^{\prime}=c, u_{z}^{\prime}=0$

$$
\begin{aligned}
& u_{x}=V, u_{y}=\frac{c}{\gamma}, u_{z}=0 \\
& \tan \theta=\frac{u_{x}}{u_{y}}=\frac{\gamma V}{c}
\end{aligned}
$$

Addition of Velocities

$\rightarrow>$ A rocket blasts off from the earth at $\mathrm{v}=0.90 \mathrm{c}$
$>A$ second rocket follows in the same direction at velocity 0.98 c
$>$ What is the relative velocity of the rockets using a Galilean transformation
$>$ What is the relative velocity of the rockets using a Lorentz transformation?

Lorentz Transformation

$>$ Last time we argued that

$$
y=y^{\prime} \text { and } z=z^{\prime}
$$

$>$ The most general linear transformation for $x=f\left(x^{\prime}, t^{\prime}\right)$ is

$$
x=\gamma x^{\prime}+\alpha t^{\prime}=\gamma\left(x^{\prime}+\frac{\alpha}{\gamma} t^{\prime}\right)
$$

\rightarrow At low velocities, $\mathrm{Y} \rightarrow 1$ and $\mathrm{a} / \mathrm{Y} \rightarrow \mathrm{V}$

$$
x=\gamma\left(x^{\prime}+V t^{\prime}\right)
$$

$>$ The inverse transformation is the same except for the sign of relative motion

$$
x^{\prime}=\gamma(x-V t)
$$

Lorentz Transformation

\rightarrow For a light pulse in S we have $x=c t$
$>$ For a light pulse in S^{\prime} we have $x^{\prime}=c t^{\prime}$
$>$ Then

$$
\begin{aligned}
& x=c t=\gamma\left(c t^{\prime}+V t^{\prime}\right)=\gamma(c+V) t^{\prime} \\
& x^{\prime}=c t^{\prime}=\gamma(c t-V t)=\gamma(c-V) t \\
& c t^{\prime}=\gamma(c-V) \frac{\gamma}{c}(c+V) t^{\prime} \\
& \gamma=\frac{1}{\sqrt{1-\frac{V^{2}}{c^{2}}}}
\end{aligned}
$$

Lorentz Transformation

$>$ For the t transformation

$$
\begin{aligned}
& x^{\prime}=\gamma(x-V t) \\
& x^{\prime}=\gamma\left[\gamma\left(x^{\prime}+V t^{\prime}\right)-V t\right] \\
& t={t^{\prime}}^{\prime}+\left(\gamma-\frac{1}{\gamma}\right) \frac{x^{\prime}}{V} \\
& t=\gamma\left(t^{\prime}+\frac{V x^{\prime}}{c^{2}}\right)
\end{aligned}
$$

