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Lecture Outline

• Nuclide Imaging Overview

• Review of Radioactive Decay

• Planar Scintigraphy

– Scintillation camera

– Imaging equation

• Single Photon Emission Computed Tomography 

(SPECT)

• Positron Emission Tomography (PET)

• Image Quality consideration

– Resolution, noise, SNR, blurring
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What is Nuclear Medicine

• Also known as nuclide imaging

• Introduce radioactive substance into 
body

• Allow for distribution and 
uptake/metabolism of compound

⇒ Functional Imaging!

• Detect regional variations of 
radioactivity as indication of 
presence or absence of specific 
physiologic function

• Detection by “gamma camera” or 
detector array

• (Image reconstruction)

From H. Graber, Lecture Note for BMI1, F05 
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Examples: PET vs. CT

• X-ray projection and 
tomography: 

– X-ray transmitted through a 

body from a outside source to 

a detector (transmission 

imaging)

– Measuring anatomic structure

• Nuclear medicine: 

– Gamma rays emitted from 

within a body (emission 

imaging)

– Imaging of functional or 

metabolic contrasts (not 

anatomic)

• Brain perfusion, function

• Myocardial perfusion

• Tumor detection 

(metastases) 

From H. Graber, Lecture Note, F05 
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What is Radioactivity?
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Positron Decay and Electron Capture 

• Also known as Beta Plus decay

– A proton changes to a neutron, a positron (positive electron), and a 

neutrino

– Mass number A does not change, proton number Z reduces

• The positron may later annihilate a free electron, generate two 
gamma photons in opposite directions

– These gamma rays are used for medical imaging (Positron Emission

Tomography)

From: http://www.lbl.gov/abc/wallchart/chapters/03/2.html
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Gamma Decay (Isometric Transition)

• A nucleus (which is unstable) changes from a higher energy state to 
a lower energy state through the emission of electromagnetic 
radiation (photons) (called gamma rays). The daughter and parent 
atoms are isomers. 

– The gamma photon is used in Single photon emission computed 

tomography (SPECT)

• Gamma rays have the same property as X-rays, but are generated 
different:

– X-ray through energetic electron interactions

– Gamma-ray through isometric transition in nucleus 

From: http://www.lbl.gov/abc/wallchart/chapters/03/3.html
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Measurement of Radioactivity

Bq=Bequerel

Ci=Curie: 

(orig.: activity of 1 g of 226Ra)

Naturally occurring radioisotopes discovered 1896 by Becquerel

First artificial radioisotopes produced by the Curies 1934 (32P)

The intensity of radiation incident on a detector at range r from a radioactive 

source is

A: radioactivity of the material; E: energy of each photon

24 r

AE
I

π
=
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Radioactive Decay Law

• N(t): the number of radioactive atoms at a given time

• A(t): is proportional to N(t)

• From above, we can derive

• The number of photons generated (=number of disintegrations) 
during time T is

•
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Common Radiotracers

Thyroid function

Kidney function

Oxygen metabolism

Most commonly used
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Overview of Imaging Modalities

• Planar Scintigraphy
– Use radiotracers that generate gammay decay, which generates one 

photon in random direction at a time

– Capture photons in one direction only, similar to X-ray, but uses emitted 
gamma rays from patient

– Use an Anger scintillation camera

• SPECT (single photon emission computed tomography)
– Use radiotracers that generate gammay decay

– Capture photons in multiple directions, similar to X-ray CT

– Uses a rotating Anger camera to obtain projection data from multiple 
angles

• PET (Positron emission tomography)
– Uses radiotracers that generate positron decay

– Positron decay produces two photons in two opposite directions at a 
time

– Use special coincidence detection circuitry to detect two photons in 
opposite directions simultaneously

– Capture projections on multiple directions
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Planar Scintigraphy

• Capture the emitted gamma 
photons (one at a time) in a 

single direction

• Imaging principle: 

– By capturing the emitted 
gamma photons in one 
particular direction, determine 
the radioactivity distribution 
within the body

– On the contrary,  X-ray 
imaging tries to determine the 
attenuation coefficient to the 
x-ray
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Anger Scintillation Camera

Absorb scattered photons

Convert detected photons to lights

Convert light to electrical currents

Compute the location with highest activity

Compare the detected signal to a threshold
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Collimators
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Scintillation Detector

• Scintillation crystal:

– Emit light photons after deposition of energy in the crystal by 
ionizing radiation

– Commonly used crystals: NaI(Tl), BGO, CsF, BaF2

– Criteria: Stopping power, response time, efficiency, energy 
resolution

• Detectors used for planar scintigraphy
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Photomultiplier Tubes

• Each tube converts a light signal to an electrical signal 
and amplifies the signal
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Inside a Photomultiplier Tube

For every 7-10 
photons incident upon 
the photocathode, an 
electron is released

Dynode: positively 
charged
For each electron 
reaching a dynode, 3-4 
electrons are released

10^6-10^8 electrons 
reach anode for each 
electron liberated from 
the cathode

Increasing in voltage,
Repeatedly generates more 
electrons, 10-14 steps

Outputs a current pulse each time a gamma photon hits the scintillation crystal. 
This current pulse is then converted to a voltage pulse through a preamplifier circuit.
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Positioning Logic

Each incident photon causes responses at all PMTs, but the amplitude of 

the response is proportional to its distance to the location where the photon 

originates. Positioning logic is used to estimate this location.
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Pulse Height Calculation
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Pulse Height Analysis
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Acquisition Modes
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List Mode
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Single Frame Mode

The value in each pixel indicates the number of events happened in that location over the 

entire scan time
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Dynamic Frame Mode
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Multiple Gated Acquisition
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Imaging Geometry and Assumption

(x,y)

z
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Imaging Equation
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Planar Source
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Examples

• Example 1: Imaging of a slab 

• Example 2: Imaging of a two-layer slab

• Go through on the board
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SPECT 

• Instrumentation

• Imaging Principle
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SPECT Instrumentation

• Similar to CT, uses a rotating Anger camera to detect 
photons traversing paths with different directions

• Recent advances uses multiple Anger cameras (multiple 
heads), reducing scanning time (below 30 minutes)

• Anger cameras in SPECT must have significantly better 

performances than for planar scintigraphy to avoid 
reconstruction artifacts
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A typical SPECT system

Fig. 9.1 A dual head system
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Imaging Equation: θ=0

R

Replace x by l

(z,l)
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General Case: Imaging Geometry

s
l

R
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General Case: Imaging Equation
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Approximation

Under this assumption, A can be reconstructed using the filtered
backprojection approach
The reconstructed signal needs to be corrected!
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Correction for Attenuation Factor

• Use co-registered anatomical image (e.g., MRI, x-ray 
CT) to generate an estimate of the tissue µ at each 

location

• Use known-strength γ-emitting standards (e.g., 153Gd 

(Webb, §2.9.2, p. 79) or 68Ge (§ 2.11.4.1, p. 95)) in 

conjunction with image data collection, to estimate µ at 
each tissue location

• Iterative image reconstruction algorithms

– In “odd-numbered” iterations, treat µ(x,y) as known and fixed, and solve 

for A(x,y)

– In “even-numbered” iterations, treat A(x,y) as known and fixed, and 

solve for µ(x,y)

• From Graber, Lecture Slides for BMI1,F05
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Example

• Imaging of a rectangular region, with the following 
structure. Derive detector readings in 4 positions 

(A,B,C,D)

Α1, µ1

Α2,µ2

A

B

C

D

Do you expect the reading at B and D be the same? What about at A and C?
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SPECT applications

• Brain: 

– Perfusion (stroke, epilepsy, 

schizophrenia, dementia 

[Alzheimer])

– Tumors

• Heart:

– Coronary artery disease

– Myocardial infarcts

• Respiratory

• Liver

• Kidney

•From Graber, Lecture Slides for BMI1,F05

•See Webb Sec. 2.10
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PET Principle
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Annihilation Coincidence Detection

• Detect two events in opposite directions occurring 
“simultaneously”

• Time window is 2-20 ns, typically 12 ns

• No detector collimation is required

– Higher sensitivity
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Detected PET Events
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Coincidence Timing
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PET Detector Block

BGO is chosen because of the higher 

energy (511KeV) of the photons 
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Multiple Ring Detector
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PET Detector Configuration
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A Typical PET Scanner
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Combined PET/CT Systems

• CT: provides high resolution anatomical information

• PET: Low resolution functional imaging

• Traditional approach:

– Obtain CT and PET images separately

– Registration of CT and PET images, to help interpretation of PET
images

• Combined PET/CT: Performing PET and CT 

measurements within the same system without moving 

the patient relative to the table

– Make the registration problem easier

– But measurement are still taken separately with quite long time 
lag 
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Imaging Equation
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Attenuation Correction

• One can apply filtered backprojection algorithm to 
reconstruct A(x,y) from the corrected sinogram
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Reconstruction from Corrected Sinogram
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Example

• Imaging of a rectangular region, with the following 
structure. Derive detector readings in 2 paired positions 

(A-C, B-D)

Α1, µ1

Α2,µ2

A

B

C

D

How does the approach and results differ from SPECT?
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PET resolution compared to MRI

• Modern PET ~ 2-3 mm resolution 
(1.3 mm)

MRI

PET

From H. Graber, lecture slides for BMI1,F05
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PET evolution

From H. Graber, lecture slides for BMI1,F05
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PET applications

• Brain:
– Tumor detection

– Neurological function (pathologic, neuroscience app.)

– Perfusion

• Cardiac
– Blood flow 

– Metabolism 

• Tumor detection (metastatic cancer)

• From H. Graber, lecture slides for BMI1,F05

• See Webb Sec. 2.11.7
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PET Application: See and Hear
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Image Quality Consideration

• We will consider the following for scintigraphy, SPECT, 
and PET together

– Resolution: collimator, detector intrinsic

– Noise

– SNR

• Ref: Sec. 8.4 in Textbook
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Relation between True Image and 
Reconstructed Image in SPECT/PET
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Collimator Resolution

2* Rc(z) is the maximum width 

that a point source at distance z 

can reach w/o being absorbed 

by the collimator.

A single photon at distance z 

produces a circle with radius= 

Rc(z) in the detector plane

Rc(z) equal to FWHM of the PSF 

of the detector

Note that this resolution is 

dependent on z: targets farther 

away are blurred more.

Increase l can reduce Rc and 

hence increase the resolution, 

but also reduces sensitivity

Rc(z)

z
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Equivalent Blurring Function
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Intrinsic Resolution

E) dz’ }
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Collimator Sensitivity
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Detector Efficiency
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Signal to Noise

• Similar to X-ray imaging

• Model the number of detected photons as a random variable following the 
Poisson distribution

• For a single detector:

• Frame mode detector with JxJ pixels

• Contrast  SNR
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Summary

• Three major imaging modalities:

– Planar scintigraphy

– SPECT

– PET

• Principle of Anger camera: collimator, scintillation crystal, photomultiplier

• Imaging principles of planar scintigraphy and SPECT

– Both based on gamma decay

– Very similar to X-ray projection and CT, except for the attenuation factor

– Practical systems mostly ignore the attenuation factor

• Imaging principle of PET:

– Coincidence detection: detect two photons reaching two opposite detectors 

simultaneously (within a short time window)

– Detected signal is the product of two terms, depending on the radioactivity A 

and attenuation µ separately

– Can reconstruct radioactivity more accurately if µ can be measured 
simultaneously 

• Image Quality
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Reference

• Prince and Links, Medical Imaging Signals and Systems, Chap 8,9.

• A. Webb, Introduction to Biomedical Imaging, Chap. 2

• Handouts from Webb: Sec. 2.5 for Technetium generation; Sec. 
2.10, Sec. 2.11.7 for Clinical applications of nuclear medicine.

• Recommended readings:

– K. Miles, P. Dawson, and M. Blomley (Eds.), Functional Computed 
Tomography (Isis Medical Media, Oxford, 1997).

– R. J. English, SPECT: Single Photon Emission Computed Tomography: 
A Primer (Society of Nuclear Medicine, Reston, VA, 1995).

– M. Reivich and A. Alavi (Eds.), Positron Emission Tomography (A. R. 

Liss, NY, 1985).
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Homework 

• Reading: 

– Prince and Links, Medical Imaging Signals and Systems, Ch. 

8,9.

– Handouts

• Note down all the corrections for Ch. 8,9 on your copy of 

the textbook based on the provided errata.

• Problems for Chap 8,9 of the text book

– P8.2

– P8.7

– P8.8

– P9.2 (part a only)

– P9.4


