Nuclide Imaging: Planar Scintigraphy, SPECT, PET

Yao Wang
Polytechnic University, Brooklyn, NY 11201

Based on J. L. Prince and J. M. Links, Medical Imaging Signals and Systems, and lecture notes by Prince. Figures are from the textbook except otherwise noted.
Lecture Outline

• Nuclide Imaging Overview
• Review of Radioactive Decay
• Planar Scintigraphy
 – Scintillation camera
 – Imaging equation
• Single Photon Emission Computed Tomography (SPECT)
• Positron Emission Tomography (PET)
• Image Quality consideration
 – Resolution, noise, SNR, blurring
What is Nuclear Medicine

- Also known as nuclide imaging
- Introduce radioactive substance into body
- Allow for distribution and uptake/metabolism of compound ⇒ *Functional Imaging*
- Detect regional variations of radioactivity as indication of presence or absence of specific physiologic function
- Detection by “gamma camera” or detector array
- (Image reconstruction)

From H. Graber, Lecture Note for BMI1, F05
Examples: PET vs. CT

- X-ray projection and tomography:
 - X-ray transmitted through a body from an outside source to a detector (transmission imaging)
 - Measuring anatomic structure
- Nuclear medicine:
 - Gamma rays emitted from within a body (emission imaging)
 - Imaging of functional or metabolic contrasts (not anatomic)
 - Brain perfusion, function
 - Myocardial perfusion
 - Tumor detection (metastases)

From H. Graber, Lecture Note, F05
What is Radioactivity?

- Radioactive decay: rearrangement of nucleii to lower energy states = greater mass defect
- Parent atom decays to daughter atom
- Daughter has higher binding energy/nucleon than parent
- A radioatom is said to decay when its nucleus is rearranged
- A disintegration is a radioatom undergoing radioactive decay.
- Energy is released with disintegration.
Positron Decay and Electron Capture

• Also known as Beta Plus decay
 – A proton changes to a neutron, a positron (positive electron), and a neutrino
 – Mass number A does not change, proton number Z reduces
• The positron may later annihilate a free electron, generate two gamma photons in opposite directions
 – These gamma rays are used for medical imaging (Positron Emission Tomography)

From: http://www.lbl.gov/abc/wallchart/chapters/03/2.html
Gamma Decay (Isometric Transition)

- A nucleus (which is unstable) changes from a higher energy state to a lower energy state through the emission of electromagnetic radiation (photons) (called gamma rays). The daughter and parent atoms are isomers.
 - The gamma photon is used in Single photon emission computed tomography (SPECT)
- Gamma rays have the same property as X-rays, but are generated different:
 - X-ray through energetic electron interactions
 - Gamma-ray through isometric transition in nucleus

From: http://www.lbl.gov/abc/wallchart/chapters/03/3.html
Measurement of Radioactivity

- Radioactivity, \(A \), \# disintegrations per second

\[
1 \text{ Bq} = 1 \text{ dps}
\]

\[
1 \text{ Ci} = 3.7 \times 10^{10} \text{ Bq}
\]

(orig.: activity of 1 g of 226Ra)

Naturally occurring radioisotopes discovered 1896 by Becquerel
First *artificial* radioisotopes produced by the Curies 1934 (32P)

The intensity of radiation incident on a detector at range \(r \) from a radioactive source is

\[
I = \frac{AE}{4\pi r^2}
\]

A: radioactivity of the material; E: energy of each photon

Bq=Bequerel
Ci=Curie:
Radioactive Decay Law

- N(t): the number of radioactive atoms at a given time
- A(t): is proportional to N(t)
 \[A = -\frac{dN}{dt} = \lambda N \]
 \(\lambda \): decay constant

- From above, we can derive
 \[N(t) = N_0 e^{-\lambda t} \]
 \[A(t) = A_0 e^{-\lambda t} = \lambda N_0 e^{-\lambda t} \]

- The number of photons generated (=number of disintegrations) during time T is
 \[\Delta N = \int_0^T A(t) dt = \int_0^T \lambda N_0 e^{-\lambda t} dt = N_0(1 - e^{-\lambda T}) \]
Common Radiotracers

- **Gamma Ray Emitters:**
 - Iodine-123 (13.3 h, 159 keV)
 - Iodine-131 (8.04 d, 364 keV)
 - Iodine-125 (60 d, 35 keV) (Bad. Why?)
 - Thallium-201 (73 h, 135 keV)
 - Technetium-99m (6 h, 140 keV)

- **Positron Emitters:**
 - Fluorine-18 (110 min, 202 keV)
 - Oxygen-15 (2 min, 696 keV)

Thyroid function
Kidney function
Most commonly used
Oxygen metabolism
Overview of Imaging Modalities

- **Planar Scintigraphy**
 - Use radiotracers that generate gamma decay, which generates one photon in random direction at a time
 - Capture photons in one direction only, similar to X-ray, but uses emitted gamma rays from patient
 - Use an Anger scintillation camera

- **SPECT (single photon emission computed tomography)**
 - Use radiotracers that generate gamma decay
 - Capture photons in multiple directions, similar to X-ray CT
 - Uses a rotating Anger camera to obtain projection data from multiple angles

- **PET (Positron emission tomography)**
 - Uses radiotracers that generate positron decay
 - Positron decay produces two photons in two opposite directions at a time
 - Use special coincidence detection circuitry to detect two photons in opposite directions simultaneously
 - Capture projections on multiple directions
Planar Scintigraphy

• Capture the emitted gamma photons (one at a time) in a single direction

• Imaging principle:
 – By capturing the emitted gamma photons in one particular direction, determine the radioactivity distribution within the body
 – On the contrary, X-ray imaging tries to determine the attenuation coefficient to the x-ray
Anger Scintillation Camera

1. Computer
2. Gating circuit
3. Pulse height analyzer
4. Position logic circuit
5. Photomultiplier tubes
6. Scintillation crystal
7. Collimator

- Absorb scattered photons
- Convert detected photons to lights
- Compute the location with highest activity
- Compare the detected signal to a threshold
- Convert light to electrical currents

Incorporating a computer and gating circuit allows for precise timing and processing of the detected signals, enhancing the accuracy of the imaging process.
Collimators

(a) Parallel hole
(b) Converging hole (magnifies)
(c) Diverging hole (minifies)
(d) Pin-hole (2–5 mm)
Scintillation Detector

- Scintillation crystal:
 - Emit light photons after deposition of energy in the crystal by ionizing radiation
 - Commonly used crystals: NaI(Tl), BGO, CsF, BaF$_2$
 - Criteria: Stopping power, response time, efficiency, energy resolution

- Detectors used for planar scintigraphy
 - Single large-area NaI(Tl) crystal
 - Diameters:
 - 30–50 cm in diameter
 - Mobile units: 30 cm
 - Fixed scanners: 50 cm
 - Thickness:
 - High-E emitters: 1.25 cm thick
 - Low-E emitters: 6–8 mm thick
Photomultiplier Tubes

- Each tube converts a light signal to an electrical signal and amplifies the signal
Inside a Photomultiplier Tube

Outputs a current pulse each time a gamma photon hits the scintillation crystal. This current pulse is then converted to a voltage pulse through a preamplifier circuit.

10^6-10^8 electrons reach anode for each electron liberated from the cathode.

Increasing in voltage, Repeatedly generates more electrons, 10-14 steps.

Dynode: positively charged
For each electron reaching a dynode, 3-4 electrons are released.

For every 7-10 photons incident upon the photocathode, an electron is released.
Positioning Logic

Each incident photon causes responses at all PMTs, but the amplitude of the response is proportional to its distance to the location where the photon originates. Positioning logic is used to estimate this location.

- Tube centers at \((x_k, y_k)\) \(k = 1, \ldots, K\)
- Center of mass of pulse responses is:

\[
X = \frac{1}{Z} \sum_{k=1}^{K} x_k a_k
\]

\[
Y = \frac{1}{Z} \sum_{k=1}^{K} y_k a_k
\]

- This is pulse location
Pulse Height Calculation

- PMT responses, a_k, $k = 1, \ldots, K$
- Total response of camera is Z-pulse

$$Z = \sum_{k=1}^{K} a_k$$

- Height of Z pulse is important
 - Can remove Compton photons
 - Can reject multiple hits
Pulse Height Analysis

- Discriminator circuit rejects non-photopeak events
Acquisition Modes

• How to use the camera to make images?
 – **List mode**
 – **Static frame mode**
 – **Dynamic frame mode**
 – **Multiple-gated acquisition**
 – **Whole body mode**
List Mode

\[(X_1, Y_1, Z_1, t_1)\]
\[(X_2, Y_2, Z_2, t_2)\]
\[(X_3, Y_3, Z_3, t_3)\]
\[\vdots\]
\[(X_n, Y_n, Z_n, t_n)\]

Complete information, but memory hog
Single Frame Mode

The value in each pixel indicates the number of events happened in that location over the entire scan time.

Matrix sizes: 64×64, 128×128, 256×256
Dynamic Frame Mode

Useful for imaging transient physiological processes
Multiple Gated Acquisition

Cardiac (ECG) gated. Data resorted using ECG
Imaging Geometry and Assumption

- Lines defined by (parallel) collimator holes
- Ignore Compton scattering
- Radioactivity is $A(x, y, z)$
- Monoenergetic photons, energy E
Imaging Equation

- Photon fluence on detector is
 \[
 \phi(x, y) = \int_{-\infty}^{0} \frac{A(x, y, z)}{4\pi z^2} e^{-\int_{z}^{0} \mu(x, y, z'; E) dz'} \, dz
 \]

- Depth-dependent effects from:
 - inverse square law, and
 - object-dependent attenuation

- Consequences:
 - Near activity brighter
 - Front and back are different
Planar Source

- \(A_{z_0}(x, y) \) has radioactivity on \(z = z_0 \)

\[
A(x, y, z) = A_{z_0}(x, y)\delta(z - z_0)
\]

- Detected photon fluence rate

\[
\phi(x, y) = A_{z_0}(x, y) \frac{1}{4\pi z_0^2} \exp \left\{ - \int_{z_0}^{0} \mu(x, y, z'; E) \, dz' \right\}
\]

- Two terms attenuate desired result
 - inverse square law: constant for \((x, y)\)
 - \(\mu\): not constant for \((x, y)\)
Examples

• Example 1: Imaging of a slab
• Example 2: Imaging of a two-layer slab

• Go through on the board
SPECT

- Instrumentation
- Imaging Principle
SPECT Instrumentation

• Similar to CT, uses a rotating Anger camera to detect photons traversing paths with different directions
• Recent advances uses multiple Anger cameras (multiple heads), reducing scanning time (below 30 minutes)
• Anger cameras in SPECT must have significantly better performances than for planar scintigraphy to avoid reconstruction artifacts
A typical SPECT system

Fig. 9.1 A dual head system
Imaging Equation: $\theta=0$

\[
\phi(z, \ell) = \int_{-\infty}^{R} \frac{A(x, y, z)}{4\pi(y - R)^2} \exp \left\{ - \int_{y}^{R} \mu(x, y', z; E) \, dy' \right\} \, dy
\]
General Case: Imaging Geometry

\[x(s) = \ell \cos \theta - s \sin \theta \]
\[y(s) = \ell \sin \theta + s \cos \theta \]
General Case: Imaging Equation

\[\phi(\ell, \theta) = \int_{-\infty}^{R} \frac{A(x(s), y(s))}{4\pi(s - R)^2} \exp\left\{ -\int_{s}^{R} \mu(x(s'), y(s'); E) ds' \right\} ds \]

- Two unknowns:
 - \(A(x, y) \)
 - \(\mu(x, y) \)
- Generally intractable \(\Rightarrow \)
 - ignore attenuation (often done)
 - assume constant
 - measure and apply attenuation correction
Approximation

- Bold approximations: ignore attenuation, inverse square law, and scale factors:
 \[\phi(\ell, \theta) = \int_{-\infty}^{\infty} A(x(s), y(s)) \, ds \]

- Using line impulse:
 \[\phi(\ell, \theta) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} A(x, y) \delta(x \cos \theta + y \sin \theta - \ell) \, dx \, dy \]

Under this assumption, A can be reconstructed using the filtered backprojection approach.
The reconstructed signal needs to be corrected!
Correction for Attenuation Factor

- Use co-registered anatomical image (e.g., MRI, x-ray CT) to generate an estimate of the tissue μ at each location
- Use known-strength γ-emitting standards (e.g., 153Gd (Webb, §2.9.2, p. 79) or 68Ge (§ 2.11.4.1, p. 95)) in conjunction with image data collection, to estimate μ at each tissue location
- Iterative image reconstruction algorithms
 - In “odd-numbered” iterations, treat $\mu(x,y)$ as known and fixed, and solve for $A(x,y)$
 - In “even-numbered” iterations, treat $A(x,y)$ as known and fixed, and solve for $\mu(x,y)$
- From Graber, Lecture Slides for BMI1,F05
Example

- Imaging of a rectangular region, with the following structure. Derive detector readings in 4 positions (A,B,C,D)

Do you expect the reading at B and D be the same? What about at A and C?
SPECT applications

- Brain:
 - Perfusion (stroke, epilepsy, schizophrenia, dementia [Alzheimer])
 - Tumors
- Heart:
 - Coronary artery disease
 - Myocardial infarcts
- Respiratory
- Liver
- Kidney

- From Graber, Lecture Slides for BMI1,F05
- See Webb Sec. 2.10
PET Principle

- Positron emitters
- Positron annihilation:
 - short distance from emission
 - produces two 511 keV gamma rays
 - gamma rays 180° opposite directions
- Principle: detect coincident gamma rays
Annihilation Coincidence Detection

- Detect two events in opposite directions occurring “simultaneously”
- Time window is 2-20 ns, typically 12 ns
- No detector collimation is required
 - Higher sensitivity
Detected PET Events

- True
- Scattered
- Random
Coincidence Timing

- Three classes of events
 - true coincidence
 - scattered coincidence
 - random coincidence
- Sensitivity in PET
 - measures capability of system to detect “trues” and reject “randoms”
PET Detector Block

BGO is chosen because of the higher energy (511KeV) of the photons

- Crystals plus PMTs
- BGO = Bismuth Germanate
- BGO has 3x stopping power than NaI(Tl)
Multiple Ring Detector
PET Detector Configuration

- Typical numbers:
 - 8 by 8 blocks; 2 mm × 2 mm element
 - 2 by 2 PMTs per block
 - 3 major rings
 - \(\Rightarrow\) 24 detector rings
 - 48 detector blocks per major ring
 - \(\Rightarrow\) 384 detectors per ring
 - \(\Rightarrow\) 8216 crystals total
A Typical PET Scanner
Combined PET/CT Systems

- CT: provides high resolution anatomical information
- PET: Low resolution functional imaging
- Traditional approach:
 - Obtain CT and PET images separately
 - Registration of CT and PET images, to help interpretation of PET images
- Combined PET/CT: Performing PET and CT measurements within the same system without moving the patient relative to the table
 - Make the registration problem easier
 - But measurement are still taken separately with quite long time lag
Imaging Equation

\[
\begin{align*}
N^+(s_0) &= N_0 \exp \left\{ -\int_{s_0}^{R} \mu(x(s'), y(s')); E)ds' \right\} \\
N^-(s_0) &= N_0 \exp \left\{ -\int_{-R}^{s_0} \mu(x(s'), y(s')); E)ds' \right\} \\
N_c(s_0) &= N_0 \exp \left\{ -\int_{-R}^{R} \mu(x(s'), y(s')); E)ds' \right\} \\
&\quad \cdot \exp \left\{ -\int_{-R}^{s_0} \mu(x(s'), y(s')); E)ds' \right\} \\
&= N_0 \exp \left\{ -\int_{-R}^{R} \mu(x(s'), y(s')); E)ds' \right\}
\end{align*}
\]

\[
\varphi(l, \theta) = K \int_{-R}^{R} A(x(s), y(s)) \exp \left\{ -\int_{-R}^{R} \mu(x(s'), y(s')); E)ds' \right\} ds = K \int_{-R}^{R} A(x(s), y(s)) ds \cdot \exp \left\{ -\int_{-R}^{R} \mu(x(s'), y(s')); E)ds' \right\}
\]

\(A(x, y) \) and \(\mu(x, y) \) can be separated!
Attenuation Correction

• Corrected sinogram

\[\phi_c(\ell, \theta) = \frac{\phi(\ell, \theta)}{K \exp \left\{ - \int_{-R}^{R} \mu(x(s), y(s); E) \, ds \right\}} \]

• \(\mu(x, y) \) found from CT (transmission PET)

• One can apply filtered backprojection algorithm to reconstruct \(A(x, y) \) from the corrected sinogram
Reconstruction from Corrected Sinogram

- Convolution backprojection yields $A(x, y)$

$$A_c(x, y) = \int_0^\pi \int_{-\infty}^\infty \phi_c(\ell, \theta) \tilde{c}(x \cos \theta + y \sin \theta - \ell) \, d\ell d\theta$$
Example

- Imaging of a rectangular region, with the following structure. Derive detector readings in 2 paired positions (A-C, B-D)

How does the approach and results differ from SPECT?
PET resolution compared to MRI

- Modern PET ~ 2-3 mm resolution (1.3 mm)

From H. Graber, lecture slides for BMI1,F05
PET evolution

From H. Graber, lecture slides for BMI1,F05
PET applications

• Brain:
 – Tumor detection
 – Neurological function (pathologic, neuroscience app.)
 – Perfusion

• Cardiac
 – Blood flow
 – Metabolism

• Tumor detection (metastatic cancer)

• From H. Graber, lecture slides for BMI1,F05
• See Webb Sec. 2.11.7
The PET scan on the left shows two areas of the brain (red and yellow) that become particularly active when volunteers read words on a video screen: the primary visual cortex and an additional part of the visual system, both in the back of the left hemisphere. Other brain regions become especially active when subjects hear words through ear-phones, as seen in the PET scan on the right.
Image Quality Consideration

- We will consider the following for scintigraphy, SPECT, and PET together
 - Resolution: collimator, detector intrinsic
 - Noise
 - SNR
- Ref: Sec. 8.4 in Textbook
Relation between True Image and Reconstructed Image in SPECT/PET

• Approximation:
 \[\hat{f}(x, y) = f(x, y) \ast h(r) \]

• In SPECT, \(h(r) \) includes:
 - collimator and intrinsic resolutions
 - ramp filter window effect

• In PET, \(h(r) \) includes:
 - the positron range function
 - detector width effects
 - ramp filter window effect
Collimator Resolution

2 * $R_c(z)$ is the maximum width that a point source at distance z can reach w/o being absorbed by the collimator.
A single photon at distance z produces a circle with radius = $R_c(z)$ in the detector plane

$R_c(z)$ equal to FWHM of the PSF of the detector

Note that this resolution is dependent on z: targets farther away are blurred more.

Increase l can reduce R_c and hence increase the resolution, but also reduces sensitivity.

$R_C(|z|) = \frac{d}{l}(l + b + |z|)$
Equivalent Blurring Function

- Gaussian approximation
 \[h_c(x, y; |z|) = \exp \left\{ -4r^2 \ln 2/R_c^2(|z|) \right\} \]

- Planar source is blurred
 \[\phi(x, y) = A_{z_0}(x, y) \frac{1}{4\pi z_0^2} \times \]
 \[\exp \left\{ - \int_{z_0}^{0} \mu(x, y, z'; E)dz' \right\} \ast h_c(x, y; |z_0|) \]
Intrinsic Resolution

- Where did the x-ray photon hit?
 - Compton in crystal spreads out light
 - Crystal thickness
 - Noise in light, PMTs, and electronics
- Gaussian approximation
 \[
 h_I(x, y) = \exp \left\{ -4r^2 \ln \frac{2}{R_I^2} \right\}
 \]
- Planar source is further blurred
 \[
 \phi(x, y) = A_{z_0}(x, y) \frac{1}{4\pi z_0^2} \exp \left\{ -\int_{z_0}^{0} \mu(x, y, z'; E) \, dz' \right\}
 \]
 \[
 \ast h_C(x, y; |z_0|) \ast h_I(x, y)
 \]
Collimator Sensitivity

\[\epsilon = \left(\frac{K d^2}{l(d + h)} \right)^2 \]

where \(K \approx 0.25 \).

\(\epsilon \) is the fraction of photons (on average) that pass through the collimator for each emitted photon directed at the camera.
Detector Efficiency

- Depends on crystal thickness
 - thicker \Rightarrow more efficient
 - 100% at 100keV; 10-20% at 511keV

- Tradeoff:
 - If E_γ low \Rightarrow use thinner crystal
 * better intrinsic resolution
 - If E_γ high \Rightarrow use thicker crystal
 * poorer intrinsic resolution
 - Higher E_γ, less absorption in body
Signal to Noise

- Similar to X-ray imaging
- Model the number of detected photons as a random variable following the Poisson distribution
 - Mean of detected photons $\eta = N$
 - Variance of detected photons: $\sigma^2 = \eta = N$
 - Intrinsic SNR = $\eta / \sigma = \sqrt{N} = \sqrt{\eta}$
- Frame mode detector with $J \times J$ pixels
 - Mean of detected photons over all pixels $\eta = N$
 - Mean of detected photons per pixel: $\eta_p = N / J^2$
 - Intrinsic SNR per pixel = $\sqrt{\eta_p} = \sqrt{N} / J$
- Contrast SNR
 - Mean of detected photons over target region $\eta_t = \bar{N}_t$
 - Mean of detected photons over background: $\eta_b = \bar{N}_b$
 - Contrast $C = (\bar{N}_t - \bar{N}_b) / \bar{N}_b$
 - Noise Variance: $\sigma^2 = \bar{N}_b$
 - Contrast SNR $= (\bar{N}_t - \bar{N}_b) / \sigma = (\bar{N}_t - \bar{N}_b) / \sqrt{\bar{N}_b} = C \sqrt{\bar{N}_b}$
Summary

• Three major imaging modalities:
 – Planar scintigraphy
 – SPECT
 – PET

• Principle of Anger camera: collimator, scintillation crystal, photomultiplier

• Imaging principles of planar scintigraphy and SPECT
 – Both based on gamma decay
 – Very similar to X-ray projection and CT, except for the attenuation factor
 – Practical systems mostly ignore the attenuation factor

• Imaging principle of PET:
 – Coincidence detection: detect two photons reaching two opposite detectors simultaneously (within a short time window)
 – Detected signal is the product of two terms, depending on the radioactivity A and attenuation μ separately
 – Can reconstruct radioactivity more accurately if μ can be measured simultaneously

• Image Quality
Reference

- Prince and Links, Medical Imaging Signals and Systems, Chap 8,9.
- A. Webb, Introduction to Biomedical Imaging, Chap. 2
- Handouts from Webb: Sec. 2.5 for Technetium generation; Sec. 2.10, Sec. 2.11.7 for Clinical applications of nuclear medicine.

- Recommended readings:
 - M. Reivich and A. Alavi (Eds.), *Positron Emission Tomography* (A. R. Liss, NY, 1985).
Homework

• Reading:
 – Prince and Links, Medical Imaging Signals and Systems, Ch. 8,9.
 – Handouts
• Note down all the corrections for Ch. 8,9 on your copy of the textbook based on the provided errata.
• Problems for Chap 8,9 of the text book
 – P8.2
 – P8.7
 – P8.8
 – P9.2 (part a only)
 – P9.4