/* * Copyright (c) 2007-2008, Advanced Micro Devices, Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Advanced Micro Devices, Inc. nor the names * of its contributors may be used to endorse or promote products * derived from this software without specific prior written * permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * Some portions copyright (c) 2008-2013 Xilinx, Inc. All rights reserved. * * Xilinx, Inc. * XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS" AS A * COURTESY TO YOU. BY PROVIDING THIS DESIGN, CODE, OR INFORMATION AS * ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE, APPLICATION OR * STANDARD, XILINX IS MAKING NO REPRESENTATION THAT THIS IMPLEMENTATION * IS FREE FROM ANY CLAIMS OF INFRINGEMENT, AND YOU ARE RESPONSIBLE * FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE FOR YOUR IMPLEMENTATION. * XILINX EXPRESSLY DISCLAIMS ANY WARRANTY WHATSOEVER WITH RESPECT TO * THE ADEQUACY OF THE IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO * ANY WARRANTIES OR REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE * FROM CLAIMS OF INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY * AND FITNESS FOR A PARTICULAR PURPOSE. * */ #include "netif/xlltemacif.h" #include "lwipopts.h" /* Advertisement control register. */ #define ADVERTISE_10HALF 0x0020 /* Try for 10mbps half-duplex */ #define ADVERTISE_1000XFULL 0x0020 /* Try for 1000BASE-X full-duplex */ #define ADVERTISE_10FULL 0x0040 /* Try for 10mbps full-duplex */ #define ADVERTISE_1000XHALF 0x0040 /* Try for 1000BASE-X half-duplex */ #define ADVERTISE_100HALF 0x0080 /* Try for 100mbps half-duplex */ #define ADVERTISE_1000XPAUSE 0x0080 /* Try for 1000BASE-X pause */ #define ADVERTISE_100FULL 0x0100 /* Try for 100mbps full-duplex */ #define ADVERTISE_1000XPSE_ASYM 0x0100 /* Try for 1000BASE-X asym pause */ #define ADVERTISE_100BASE4 0x0200 /* Try for 100mbps 4k packets */ #define ADVERTISE_100_AND_10 (ADVERTISE_10FULL | ADVERTISE_100FULL | \ ADVERTISE_10HALF | ADVERTISE_100HALF) #define ADVERTISE_100 (ADVERTISE_100FULL | ADVERTISE_100HALF) #define ADVERTISE_10 (ADVERTISE_10FULL | ADVERTISE_10HALF) #define ADVERTISE_1000 0x0300 #define IEEE_CONTROL_REG_OFFSET 0 #define IEEE_STATUS_REG_OFFSET 1 #define IEEE_AUTONEGO_ADVERTISE_REG 4 #define IEEE_PARTNER_ABILITIES_1_REG_OFFSET 5 #define IEEE_PARTNER_ABILITIES_2_REG_OFFSET 8 #define IEEE_PARTNER_ABILITIES_3_REG_OFFSET 10 #define IEEE_1000_ADVERTISE_REG_OFFSET 9 #define IEEE_CTRL_1GBPS_LINKSPEED_MASK 0x2040 #define IEEE_CTRL_LINKSPEED_MASK 0x0040 #define IEEE_CTRL_LINKSPEED_1000M 0x0040 #define IEEE_CTRL_LINKSPEED_100M 0x2000 #define IEEE_CTRL_LINKSPEED_10M 0x0000 #define IEEE_CTRL_RESET_MASK 0x8000 #define IEEE_CTRL_AUTONEGOTIATE_ENABLE 0x1000 #define IEEE_STAT_AUTONEGOTIATE_CAPABLE 0x0008 #define IEEE_STAT_AUTONEGOTIATE_COMPLETE 0x0020 #define IEEE_STAT_AUTONEGOTIATE_RESTART 0x0200 #define IEEE_STAT_1GBPS_EXTENSIONS 0x0100 #define IEEE_AN1_ABILITY_MASK 0x1FE0 #define IEEE_AN3_ABILITY_MASK_1GBPS 0x0C00 #define IEEE_AN1_ABILITY_MASK_100MBPS 0x0380 #define IEEE_AN1_ABILITY_MASK_10MBPS 0x0060 #define PHY_DETECT_REG 1 #define PHY_DETECT_MASK 0x1808 static int detect_phy(XLlTemac *xlltemacp) { u16 phy_reg; u32 phy_addr; for (phy_addr = 31; phy_addr > 0; phy_addr--) { XLlTemac_PhyRead(xlltemacp, phy_addr, PHY_DETECT_REG, &phy_reg); if ((phy_reg != 0xFFFF) && ((phy_reg & PHY_DETECT_MASK) == PHY_DETECT_MASK)) { /* Found a valid PHY address */ LWIP_DEBUGF(NETIF_DEBUG, ("XLlTemac detect_phy: PHY detected at address %d.\r\n", phy_addr)); LWIP_DEBUGF(NETIF_DEBUG, ("XLlTemac detect_phy: PHY detected.\r\n")); return phy_addr; } } LWIP_DEBUGF(NETIF_DEBUG, ("XLlTemac detect_phy: No PHY detected. Assuming a PHY at address 0\r\n")); /* default to zero */ return 0; } unsigned get_IEEE_phy_speed(XLlTemac *xlltemacp) { u16 control; u16 status; u16 partner_capabilities; u16 partner_capabilities_1000; u16 phylinkspeed; u32 phy_addr = detect_phy(xlltemacp); XLlTemac_PhyWrite(xlltemacp, phy_addr, IEEE_1000_ADVERTISE_REG_OFFSET, ADVERTISE_1000); XLlTemac_PhyWrite(xlltemacp, phy_addr, IEEE_AUTONEGO_ADVERTISE_REG, ADVERTISE_100_AND_10); XLlTemac_PhyRead(xlltemacp, phy_addr, IEEE_CONTROL_REG_OFFSET, &control); control |= (IEEE_CTRL_AUTONEGOTIATE_ENABLE | IEEE_STAT_AUTONEGOTIATE_RESTART); XLlTemac_PhyWrite(xlltemacp, phy_addr, IEEE_CONTROL_REG_OFFSET, control); /* Read PHY control and status registers is successful. */ XLlTemac_PhyRead(xlltemacp, phy_addr, IEEE_CONTROL_REG_OFFSET, &control); XLlTemac_PhyRead(xlltemacp, phy_addr, IEEE_STATUS_REG_OFFSET, &status); if ((control & IEEE_CTRL_AUTONEGOTIATE_ENABLE) && (status & IEEE_STAT_AUTONEGOTIATE_CAPABLE)) { while ( !(status & IEEE_STAT_AUTONEGOTIATE_COMPLETE) ) { XLlTemac_PhyRead(xlltemacp, phy_addr, IEEE_STATUS_REG_OFFSET, &status); } XLlTemac_PhyRead(xlltemacp, phy_addr, IEEE_PARTNER_ABILITIES_1_REG_OFFSET, &partner_capabilities); if (status & IEEE_STAT_1GBPS_EXTENSIONS) { XLlTemac_PhyRead(xlltemacp, phy_addr, IEEE_PARTNER_ABILITIES_3_REG_OFFSET, &partner_capabilities_1000); if (partner_capabilities_1000 & IEEE_AN3_ABILITY_MASK_1GBPS) return 1000; } if (partner_capabilities & IEEE_AN1_ABILITY_MASK_100MBPS) return 100; if (partner_capabilities & IEEE_AN1_ABILITY_MASK_10MBPS) return 10; xil_printf("%s: unknown PHY link speed, setting TEMAC speed to be 10 Mbps\r\n", __FUNCTION__); return 10; } else { /* Update TEMAC speed accordingly */ if (status & IEEE_STAT_1GBPS_EXTENSIONS) { /* Get commanded link speed */ phylinkspeed = control & IEEE_CTRL_1GBPS_LINKSPEED_MASK; switch (phylinkspeed) { case (IEEE_CTRL_LINKSPEED_1000M): return 1000; case (IEEE_CTRL_LINKSPEED_100M): return 100; case (IEEE_CTRL_LINKSPEED_10M): return 10; default: xil_printf("%s: unknown PHY link speed (%d), setting TEMAC speed to be 10 Mbps\r\n", __FUNCTION__, phylinkspeed); return 10; } } else { return (control & IEEE_CTRL_LINKSPEED_MASK) ? 100 : 10; } } } unsigned configure_IEEE_phy_speed(XLlTemac *xlltemacp, unsigned speed) { u16 control; u32 phy_addr = detect_phy(xlltemacp); XLlTemac_PhyRead(xlltemacp, phy_addr, IEEE_CONTROL_REG_OFFSET, &control); control &= ~IEEE_CTRL_LINKSPEED_1000M; control &= ~IEEE_CTRL_LINKSPEED_100M; control &= ~IEEE_CTRL_LINKSPEED_10M; if (speed == 1000) { control |= IEEE_CTRL_LINKSPEED_1000M; } else if (speed == 100) { control |= IEEE_CTRL_LINKSPEED_100M; /* Dont advertise PHY speed of 1000 Mbps */ XLlTemac_PhyWrite(xlltemacp, phy_addr, IEEE_1000_ADVERTISE_REG_OFFSET, 0); /* Dont advertise PHY speed of 10 Mbps */ XLlTemac_PhyWrite(xlltemacp, phy_addr, IEEE_AUTONEGO_ADVERTISE_REG, ADVERTISE_100); } else if (speed == 10) { control |= IEEE_CTRL_LINKSPEED_10M; /* Dont advertise PHY speed of 1000 Mbps */ XLlTemac_PhyWrite(xlltemacp, phy_addr, IEEE_1000_ADVERTISE_REG_OFFSET, 0); /* Dont advertise PHY speed of 100 Mbps */ XLlTemac_PhyWrite(xlltemacp, phy_addr, IEEE_AUTONEGO_ADVERTISE_REG, ADVERTISE_10); } XLlTemac_PhyWrite(xlltemacp, phy_addr, IEEE_CONTROL_REG_OFFSET, control | IEEE_CTRL_RESET_MASK); { volatile int wait; for (wait=0; wait < 100000; wait++); for (wait=0; wait < 100000; wait++); } return 0; } unsigned Phy_Setup (XLlTemac *xlltemacp) { unsigned link_speed = 1000; if (XLlTemac_GetPhysicalInterface(xlltemacp) == XTE_PHY_TYPE_RGMII_1_3) { ; /* Add PHY initialization code for RGMII 1.3 */ } else if (XLlTemac_GetPhysicalInterface(xlltemacp) == XTE_PHY_TYPE_RGMII_2_0) { ; /* Add PHY initialization code for RGMII 2.0 */ } else if (XLlTemac_GetPhysicalInterface(xlltemacp) == XTE_PHY_TYPE_SGMII) { ; /* Add PHY initialization code for SGMII */ } else if (XLlTemac_GetPhysicalInterface(xlltemacp) == XTE_PHY_TYPE_1000BASE_X) { ; /* Add PHY initialization code for 1000 Base-X */ } /* set PHY <--> MAC data clock */ #ifdef CONFIG_LINKSPEED_AUTODETECT link_speed = get_IEEE_phy_speed(xlltemacp); xil_printf("auto-negotiated link speed: %d\r\n", link_speed); #elif defined(CONFIG_LINKSPEED1000) link_speed = 1000; configure_IEEE_phy_speed(xlltemacp, link_speed); xil_printf("link speed: %d\r\n", link_speed); #elif defined(CONFIG_LINKSPEED100) link_speed = 100; configure_IEEE_phy_speed(xlltemacp, link_speed); xil_printf("link speed: %d\r\n", link_speed); #elif defined(CONFIG_LINKSPEED10) link_speed = 10; configure_IEEE_phy_speed(xlltemacp, link_speed); xil_printf("link speed: %d\r\n", link_speed); #endif return link_speed; }