/****************************************************************************** * * Copyright (C) 2009 - 2014 Xilinx, Inc. All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * Use of the Software is limited solely to applications: * (a) running on a Xilinx device, or * (b) that interact with a Xilinx device through a bus or interconnect. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * XILINX CONSORTIUM BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF * OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * * Except as contained in this notice, the name of the Xilinx shall not be used * in advertising or otherwise to promote the sale, use or other dealings in * this Software without prior written authorization from Xilinx. * ******************************************************************************/ /*****************************************************************************/ /** * * @file xil_testmem.c * * Contains the memory test utility functions. * *
* MODIFICATION HISTORY:
*
* Ver    Who    Date    Changes
* ----- ---- -------- -----------------------------------------------
* 1.00a hbm  08/25/09 First release
* 
* *****************************************************************************/ /***************************** Include Files ********************************/ #include "xil_testmem.h" #include "xil_io.h" #include "xil_assert.h" /************************** Constant Definitions ****************************/ /************************** Function Prototypes *****************************/ static u32 RotateLeft(u32 Input, u8 Width); /* define ROTATE_RIGHT to give access to this functionality */ /* #define ROTATE_RIGHT */ #ifdef ROTATE_RIGHT static u32 RotateRight(u32 Input, u8 Width); #endif /* ROTATE_RIGHT */ /*****************************************************************************/ /** * * Perform a destructive 32-bit wide memory test. * * @param Addr is a pointer to the region of memory to be tested. * @param Words is the length of the block. * @param Pattern is the constant used for the constant pattern test, if 0, * 0xDEADBEEF is used. * @param Subtest is the test selected. See xil_testmem.h for possible * values. * * @return * * - 0 is returned for a pass * - -1 is returned for a failure * * @note * * Used for spaces where the address range of the region is smaller than * the data width. If the memory range is greater than 2 ** Width, * the patterns used in XIL_TESTMEM_WALKONES and XIL_TESTMEM_WALKZEROS will * repeat on a boundry of a power of two making it more difficult to detect * addressing errors. The XIL_TESTMEM_INCREMENT and XIL_TESTMEM_INVERSEADDR * tests suffer the same problem. Ideally, if large blocks of memory are to be * tested, break them up into smaller regions of memory to allow the test * patterns used not to repeat over the region tested. * *****************************************************************************/ int Xil_TestMem32(u32 *Addr, u32 Words, u32 Pattern, u8 Subtest) { u32 I; u32 J; u32 Val; u32 FirtVal; u32 Word; Xil_AssertNonvoid(Words != 0); Xil_AssertNonvoid(Subtest <= XIL_TESTMEM_MAXTEST); /* * variable initialization */ Val = XIL_TESTMEM_INIT_VALUE; FirtVal = XIL_TESTMEM_INIT_VALUE; /* * Select the proper Subtest */ switch (Subtest) { case XIL_TESTMEM_ALLMEMTESTS: /* this case executes all of the Subtests */ /* fall through case statement */ case XIL_TESTMEM_INCREMENT: /* * Fill the memory with incrementing * values starting from 'FirtVal' */ for (I = 0L; I < Words; I++) { Addr[I] = Val; Val++; } /* * Restore the reference 'Val' to the * initial value */ Val = FirtVal; /* * Check every word within the words * of tested memory and compare it * with the incrementing reference * Val */ for (I = 0L; I < Words; I++) { Word = Addr[I]; if (Word != Val) { return -1; } Val++; } if (Subtest != XIL_TESTMEM_ALLMEMTESTS) { return 0; } /* end of case 1 */ /* fall through case statement */ case XIL_TESTMEM_WALKONES: /* * set up to cycle through all possible initial * test Patterns for walking ones test */ for (J = 0L; J < 32; J++) { /* * Generate an initial value for walking ones test * to test for bad data bits */ Val = 1 << J; /* * START walking ones test * Write a one to each data bit indifferent locations */ for (I = 0L; I < 32; I++) { /* write memory location */ Addr[I] = Val; Val = (u32) RotateLeft(Val, 32); } /* * Restore the reference 'val' to the * initial value */ Val = 1 << J; /* Read the values from each location that was * written */ for (I = 0L; I < 32; I++) { /* read memory location */ Word = Addr[I]; if (Word != Val) { return -1; } Val = (u32)RotateLeft(Val, 32); } } if (Subtest != XIL_TESTMEM_ALLMEMTESTS) { return 0; } /* end of case 2 */ /* fall through case statement */ case XIL_TESTMEM_WALKZEROS: /* * set up to cycle through all possible * initial test Patterns for walking zeros test */ for (J = 0L; J < 32; J++) { /* * Generate an initial value for walking ones test * to test for bad data bits */ Val = ~(1 << J); /* * START walking zeros test * Write a one to each data bit indifferent locations */ for (I = 0L; I < 32; I++) { /* write memory location */ Addr[I] = Val; Val = ~((u32)RotateLeft(~Val, 32)); } /* * Restore the reference 'Val' to the * initial value */ Val = ~(1 << J); /* Read the values from each location that was * written */ for (I = 0L; I < 32; I++) { /* read memory location */ Word = Addr[I]; if (Word != Val) { return -1; } Val = ~((u32)RotateLeft(~Val, 32)); } } if (Subtest != XIL_TESTMEM_ALLMEMTESTS) { return 0; } /* end of case 3 */ /* fall through case statement */ case XIL_TESTMEM_INVERSEADDR: /* Fill the memory with inverse of address */ for (I = 0L; I < Words; I++) { /* write memory location */ Val = (u32) (~((u32) (&Addr[I]))); Addr[I] = Val; } /* * Check every word within the words * of tested memory */ for (I = 0L; I < Words; I++) { /* Read the location */ Word = Addr[I]; Val = (u32) (~((u32) (&Addr[I]))); if ((Word ^ Val) != 0x00000000) { return -1; } } if (Subtest != XIL_TESTMEM_ALLMEMTESTS) { return 0; } /* end of case 4 */ /* fall through case statement */ case XIL_TESTMEM_FIXEDPATTERN: /* * Generate an initial value for * memory testing */ if (Pattern == 0) { Val = 0xDEADBEEF; } else { Val = Pattern; } /* * Fill the memory with fixed Pattern */ for (I = 0L; I < Words; I++) { /* write memory location */ Addr[I] = Val; } /* * Check every word within the words * of tested memory and compare it * with the fixed Pattern */ for (I = 0L; I < Words; I++) { /* read memory location */ Word = Addr[I]; if (Word != Val) { return -1; } } if (Subtest != XIL_TESTMEM_ALLMEMTESTS) { return 0; } /* end of case 5 */ /* this break is for the prior fall through case statements */ break; default: return -1; } /* end of switch */ /* Successfully passed memory test ! */ return 0; } /*****************************************************************************/ /** * * Perform a destructive 16-bit wide memory test. * * @param Addr is a pointer to the region of memory to be tested. * @param Words is the length of the block. * @param Pattern is the constant used for the constant Pattern test, if 0, * 0xDEADBEEF is used. * @param Subtest is the test selected. See xil_testmem.h for possible * values. * * @return * * - -1 is returned for a failure * - 0 is returned for a pass * * @note * * Used for spaces where the address range of the region is smaller than * the data width. If the memory range is greater than 2 ** Width, * the patterns used in XIL_TESTMEM_WALKONES and XIL_TESTMEM_WALKZEROS will * repeat on a boundry of a power of two making it more difficult to detect * addressing errors. The XIL_TESTMEM_INCREMENT and XIL_TESTMEM_INVERSEADDR * tests suffer the same problem. Ideally, if large blocks of memory are to be * tested, break them up into smaller regions of memory to allow the test * patterns used not to repeat over the region tested. * *****************************************************************************/ int Xil_TestMem16(u16 *Addr, u32 Words, u16 Pattern, u8 Subtest) { u32 I; u32 J; u16 Val; u16 FirtVal; u16 Word; Xil_AssertNonvoid(Words != 0); Xil_AssertNonvoid(Subtest <= XIL_TESTMEM_MAXTEST); /* * variable initialization */ Val = XIL_TESTMEM_INIT_VALUE; FirtVal = XIL_TESTMEM_INIT_VALUE; /* * selectthe proper Subtest(s) */ switch (Subtest) { case XIL_TESTMEM_ALLMEMTESTS: /* this case executes all of the Subtests */ /* fall through case statement */ case XIL_TESTMEM_INCREMENT: /* * Fill the memory with incrementing * values starting from 'FirtVal' */ for (I = 0L; I < Words; I++) { /* write memory location */ Addr[I] = Val; Val++; } /* * Restore the reference 'Val' to the * initial value */ Val = FirtVal; /* * Check every word within the words * of tested memory and compare it * with the incrementing reference val */ for (I = 0L; I < Words; I++) { /* read memory location */ Word = Addr[I]; if (Word != Val) { return -1; } Val++; } if (Subtest != XIL_TESTMEM_ALLMEMTESTS) { return 0; } /* end of case 1 */ /* fall through case statement */ case XIL_TESTMEM_WALKONES: /* * set up to cycle through all possible initial test * Patterns for walking ones test */ for (J = 0L; J < 16; J++) { /* * Generate an initial value for walking ones test * to test for bad data bits */ Val = 1 << J; /* * START walking ones test * Write a one to each data bit indifferent locations */ for (I = 0L; I < 16; I++) { /* write memory location */ Addr[I] = Val; Val = (u16)RotateLeft(Val, 16); } /* * Restore the reference 'Val' to the * initial value */ Val = 1 << J; /* Read the values from each location that was written */ for (I = 0L; I < 16; I++) { /* read memory location */ Word = Addr[I]; if (Word != Val) { return -1; } Val = (u16)RotateLeft(Val, 16); } } if (Subtest != XIL_TESTMEM_ALLMEMTESTS) { return 0; } /* end of case 2 */ /* fall through case statement */ case XIL_TESTMEM_WALKZEROS: /* * set up to cycle through all possible initial * test Patterns for walking zeros test */ for (J = 0L; J < 16; J++) { /* * Generate an initial value for walking ones * test to test for bad * data bits */ Val = ~(1 << J); /* * START walking zeros test * Write a one to each data bit indifferent locations */ for (I = 0L; I < 16; I++) { /* write memory location */ Addr[I] = Val; Val = ~((u16)RotateLeft(~Val, 16)); } /* * Restore the reference 'Val' to the * initial value */ Val = ~(1 << J); /* Read the values from each location that was written */ for (I = 0L; I < 16; I++) { /* read memory location */ Word = Addr[I]; if (Word != Val) { return -1; } Val = ~((u16)RotateLeft(~Val, 16)); } } if (Subtest != XIL_TESTMEM_ALLMEMTESTS) { return 0; } /* end of case 3 */ /* fall through case statement */ case XIL_TESTMEM_INVERSEADDR: /* Fill the memory with inverse of address */ for (I = 0L; I < Words; I++) { /* write memory location */ Val = (u16) (~((u32) (&Addr[I]))); Addr[I] = Val; } /* * Check every word within the words * of tested memory */ for (I = 0L; I < Words; I++) { /* read memory location */ Word = Addr[I]; Val = (u16) (~((u32) (&Addr[I]))); if ((Word ^ Val) != 0x0000) { return -1; } } if (Subtest != XIL_TESTMEM_ALLMEMTESTS) { return 0; } /* end of case 4 */ /* fall through case statement */ case XIL_TESTMEM_FIXEDPATTERN: /* * Generate an initial value for * memory testing */ if (Pattern == 0) { Val = 0xDEAD; } else { Val = Pattern; } /* * Fill the memory with fixed pattern */ for (I = 0L; I < Words; I++) { /* write memory location */ Addr[I] = Val; } /* * Check every word within the words * of tested memory and compare it * with the fixed pattern */ for (I = 0L; I < Words; I++) { /* read memory location */ Word = Addr[I]; if (Word != Val) { return -1; } } if (Subtest != XIL_TESTMEM_ALLMEMTESTS) { return 0; } /* end of case 5 */ /* this break is for the prior fall through case statements */ break; default: return -1; } /* end of switch */ /* Successfully passed memory test ! */ return 0; } /*****************************************************************************/ /** * * Perform a destructive 8-bit wide memory test. * * @param Addr is a pointer to the region of memory to be tested. * @param Words is the length of the block. * @param Pattern is the constant used for the constant pattern test, if 0, * 0xDEADBEEF is used. * @param Subtest is the test selected. See xil_testmem.h for possible * values. * * @return * * - -1 is returned for a failure * - 0 is returned for a pass * * @note * * Used for spaces where the address range of the region is smaller than * the data width. If the memory range is greater than 2 ** Width, * the patterns used in XIL_TESTMEM_WALKONES and XIL_TESTMEM_WALKZEROS will * repeat on a boundry of a power of two making it more difficult to detect * addressing errors. The XIL_TESTMEM_INCREMENT and XIL_TESTMEM_INVERSEADDR * tests suffer the same problem. Ideally, if large blocks of memory are to be * tested, break them up into smaller regions of memory to allow the test * patterns used not to repeat over the region tested. * *****************************************************************************/ int Xil_TestMem8(u8 *Addr, u32 Words, u8 Pattern, u8 Subtest) { u32 I; u32 J; u8 Val; u8 FirtVal; u8 Word; Xil_AssertNonvoid(Words != 0); Xil_AssertNonvoid(Subtest <= XIL_TESTMEM_MAXTEST); /* * variable initialization */ Val = XIL_TESTMEM_INIT_VALUE; FirtVal = XIL_TESTMEM_INIT_VALUE; /* * select the proper Subtest(s) */ switch (Subtest) { case XIL_TESTMEM_ALLMEMTESTS: /* this case executes all of the Subtests */ /* fall through case statement */ case XIL_TESTMEM_INCREMENT: /* * Fill the memory with incrementing * values starting from 'FirtVal' */ for (I = 0L; I < Words; I++) { /* write memory location */ Addr[I] = Val; Val++; } /* * Restore the reference 'Val' to the * initial value */ Val = FirtVal; /* * Check every word within the words * of tested memory and compare it * with the incrementing reference * Val */ for (I = 0L; I < Words; I++) { /* read memory location */ Word = Addr[I]; if (Word != Val) { return -1; } Val++; } if (Subtest != XIL_TESTMEM_ALLMEMTESTS) { return 0; } /* end of case 1 */ /* fall through case statement */ case XIL_TESTMEM_WALKONES: /* * set up to cycle through all possible initial * test Patterns for walking ones test */ for (J = 0L; J < 8; J++) { /* * Generate an initial value for walking ones test * to test for bad data bits */ Val = 1 << J; /* * START walking ones test * Write a one to each data bit indifferent locations */ for (I = 0L; I < 8; I++) { /* write memory location */ Addr[I] = Val; Val = (u8)RotateLeft(Val, 8); } /* * Restore the reference 'Val' to the * initial value */ Val = 1 << J; /* Read the values from each location that was written */ for (I = 0L; I < 8; I++) { /* read memory location */ Word = Addr[I]; if (Word != Val) { return -1; } Val = (u8)RotateLeft(Val, 8); } } if (Subtest != XIL_TESTMEM_ALLMEMTESTS) { return 0; } /* end of case 2 */ /* fall through case statement */ case XIL_TESTMEM_WALKZEROS: /* * set up to cycle through all possible initial test * Patterns for walking zeros test */ for (J = 0L; J < 8; J++) { /* * Generate an initial value for walking ones test to test * for bad data bits */ Val = ~(1 << J); /* * START walking zeros test * Write a one to each data bit indifferent locations */ for (I = 0L; I < 8; I++) { /* write memory location */ Addr[I] = Val; Val = ~((u8)RotateLeft(~Val, 8)); } /* * Restore the reference 'Val' to the * initial value */ Val = ~(1 << J); /* Read the values from each location that was written */ for (I = 0L; I < 8; I++) { /* read memory location */ Word = Addr[I]; if (Word != Val) { return -1; } Val = ~((u8)RotateLeft(~Val, 8)); } } if (Subtest != XIL_TESTMEM_ALLMEMTESTS) { return 0; } /* end of case 3 */ /* fall through case statement */ case XIL_TESTMEM_INVERSEADDR: /* Fill the memory with inverse of address */ for (I = 0L; I < Words; I++) { /* write memory location */ Val = (u8) (~((u32) (&Addr[I]))); Addr[I] = Val; } /* * Check every word within the words * of tested memory */ for (I = 0L; I < Words; I++) { /* read memory location */ Word = Addr[I]; Val = (u8) (~((u32) (&Addr[I]))); if ((Word ^ Val) != 0x00) { return -1; } } if (Subtest != XIL_TESTMEM_ALLMEMTESTS) { return 0; } /* end of case 4 */ /* fall through case statement */ case XIL_TESTMEM_FIXEDPATTERN: /* * Generate an initial value for * memory testing */ if (Pattern == 0) { Val = 0xA5; } else { Val = Pattern; } /* * Fill the memory with fixed Pattern */ for (I = 0L; I < Words; I++) { /* write memory location */ Addr[I] = Val; } /* * Check every word within the words * of tested memory and compare it * with the fixed Pattern */ for (I = 0L; I < Words; I++) { /* read memory location */ Word = Addr[I]; if (Word != Val) { return -1; } } if (Subtest != XIL_TESTMEM_ALLMEMTESTS) { return 0; } /* end of case 5 */ /* this break is for the prior fall through case statements */ break; default: return -1; } /* end of switch */ /* Successfully passed memory test ! */ return 0; } /*****************************************************************************/ /** * * Rotates the provided value to the left one bit position * * @param Input is value to be rotated to the left * @param Width is the number of bits in the input data * * @return * * The resulting unsigned long value of the rotate left * * @note * * None. * *****************************************************************************/ static u32 RotateLeft(u32 Input, u8 Width) { u32 Msb; u32 ReturnVal; u32 WidthMask; u32 MsbMask; /* * set up the WidthMask and the MsbMask */ MsbMask = 1 << (Width - 1); WidthMask = (MsbMask << 1) - 1; /* * set the Width of the Input to the correct width */ Input = Input & WidthMask; Msb = Input & MsbMask; ReturnVal = Input << 1; if (Msb != 0x00000000) { ReturnVal = ReturnVal | 0x00000001; } ReturnVal = ReturnVal & WidthMask; return ReturnVal; } #ifdef ROTATE_RIGHT /*****************************************************************************/ /** * * Rotates the provided value to the right one bit position * * @param Input is value to be rotated to the right * @param Width is the number of bits in the input data * * @return * * The resulting u32 value of the rotate right * * @note * * None. * *****************************************************************************/ static u32 RotateRight(u32 Input, u8 Width) { u32 Lsb; u32 ReturnVal; u32 WidthMask; u32 MsbMask; /* * set up the WidthMask and the MsbMask */ MsbMask = 1 << (Width - 1); WidthMask = (MsbMask << 1) - 1; /* * set the width of the input to the correct width */ Input = Input & WidthMask; ReturnVal = Input >> 1; Lsb = Input & 0x00000001; if (Lsb != 0x00000000) { ReturnVal = ReturnVal | MsbMask; } ReturnVal = ReturnVal & WidthMask; return ReturnVal; } #endif /* ROTATE_RIGHT */