/****************************************************************************** * * Copyright (C) 2010 - 2014 Xilinx, Inc. All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * Use of the Software is limited solely to applications: * (a) running on a Xilinx device, or * (b) that interact with a Xilinx device through a bus or interconnect. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * XILINX CONSORTIUM BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF * OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * * Except as contained in this notice, the name of the Xilinx shall not be used * in advertising or otherwise to promote the sale, use or other dealings in * this Software without prior written authorization from Xilinx. * ******************************************************************************/ #include "lwipopts.h" #if !NO_SYS #include "xmk.h" #include "sys/intr.h" #include "lwip/sys.h" #endif #include "lwip/stats.h" #include "lwip/inet_chksum.h" #include "netif/xadapter.h" #include "netif/xaxiemacif.h" #if XLWIP_CONFIG_INCLUDE_AXIETH_ON_ZYNQ == 1 #include "xscugic.h" #else #include "xintc_l.h" #endif #include "xstatus.h" #include "xlwipconfig.h" #include "xparameters.h" #ifdef CONFIG_XTRACE #include "xtrace.h" #endif #if XLWIP_CONFIG_INCLUDE_AXIETH_ON_ZYNQ == 1 #define AXIDMA_TX_INTR_PRIORITY_SET_IN_GIC 0xA0 #define AXIDMA_RX_INTR_PRIORITY_SET_IN_GIC 0xA0 #define AXIETH_INTR_PRIORITY_SET_IN_GIC 0xA0 #define TRIG_TYPE_RISING_EDGE_SENSITIVE 0x3 #define INTC_DIST_BASE_ADDR XPAR_SCUGIC_DIST_BASEADDR #ifndef XCACHE_FLUSH_DCACHE_RANGE #define XCACHE_FLUSH_DCACHE_RANGE(data, length) \ Xil_DCacheFlushRange((u32)data, length) #endif #ifndef XCACHE_INVALIDATE_DCACHE_RANGE #define XCACHE_INVALIDATE_DCACHE_RANGE(data, length) \ Xil_DCacheInvalidateRange((u32)data, length) #endif #endif /* Byte alignment of BDs */ #define BD_ALIGNMENT (XAXIDMA_BD_MINIMUM_ALIGNMENT*2) #ifdef USE_STATIC_BDSPACE #define RXBD_SPACE_BYTES XAxiDma_BdRingMemCalc(BD_ALIGNMENT, XLWIP_CONFIG_N_RX_DESC) #define TXBD_SPACE_BYTES XAxiDma_BdRingMemCalc(BD_ALIGNMENT, XLWIP_CONFIG_N_TX_DESC) char rx_bdspace[RXBD_SPACE_BYTES] __attribute__ ((aligned(BD_ALIGNMENT))); char tx_bdspace[TXBD_SPACE_BYTES] __attribute__ ((aligned(BD_ALIGNMENT))); #endif #if XPAR_INTC_0_HAS_FAST == 1 /*********** Function Prototypes *********************************************/ /* * Function prototypes of the functions used for registering Fast * Interrupt Handlers */ static void axidma_sendfast_handler(void) __attribute__ ((fast_interrupt)); static void axidma_recvfast_handler(void) __attribute__ ((fast_interrupt)); static void xaxiemac_errorfast_handler(void) __attribute__ ((fast_interrupt)); /**************** Variable Declarations **************************************/ /** Variables for Fast Interrupt handlers ***/ struct xemac_s *xemac_fast; xaxiemacif_s *xaxiemacif_fast; #endif static unsigned sdma_debug = 0; #undef SDMA_DEBUG #ifdef SDMA_DEBUG void print_packet(char *p, int n, int l) { int i, j; xil_printf("Prnt size: %d Packet size: %d\r\n", n, l); for (i = 0; i < n; i+=16) { for (j = 0; j < 16; j++) xil_printf("%02x ", *p++&0xff); xil_printf("\r\n"); } } #endif int is_tx_space_available(xaxiemacif_s *emac) { XAxiDma_BdRing *txring; txring = XAxiDma_GetTxRing(&emac->axidma); /* tx space is available as long as there are valid BD's */ return XAxiDma_BdRingGetFreeCnt(txring); } int process_sent_bds(XAxiDma_BdRing *txring) { XAxiDma_Bd *txbdset, *txbd; int n_bds, i; XStatus Status; /* obtain a list of processed BD's */ n_bds = XAxiDma_BdRingFromHw(txring, XAXIDMA_ALL_BDS, &txbdset); if (n_bds == 0) return -1; /* free the pbuf associated with each BD */ for (i = 0, txbd = txbdset; i < n_bds; i++) { struct pbuf *p = (struct pbuf *)XAxiDma_BdGetId(txbd); pbuf_free(p); txbd = XAxiDma_BdRingNext(txring, txbd); } /* free the processed BD's */ Status = XAxiDma_BdRingFree(txring, n_bds, txbdset); if (Status != XST_SUCCESS) { return XST_FAILURE; } return 0; } void axidma_send_handler(void *arg) { unsigned irq_status; struct xemac_s *xemac; xaxiemacif_s *xaxiemacif; XAxiDma_BdRing *TxRingPtr; struct xtopology_t *xtopologyp; XAxiEthernet *xaxiemac; xemac = (struct xemac_s *)(arg); xaxiemacif = (xaxiemacif_s *)(xemac->state); TxRingPtr = XAxiDma_GetTxRing(&xaxiemacif->axidma); xtopologyp = &xtopology[xemac->topology_index]; xaxiemac = &xaxiemacif->axi_ethernet; /* Read pending interrupts */ irq_status = XAxiDma_BdRingGetIrq(TxRingPtr); /* Acknowledge pending interrupts */ XAxiDma_BdRingAckIrq(TxRingPtr, irq_status); /* * If error interrupt is asserted, raise error flag, reset the * hardware to recover from the error, and return with no further * processing. */ if ((irq_status & XAXIDMA_IRQ_ERROR_MASK)) { xil_printf("%s: Error: axidma error interrupt is asserted\r\n", __FUNCTION__); XAxiDma_Reset(&xaxiemacif->axidma); return; } /* If Transmit done interrupt is asserted, process completed BD's */ if ((irq_status & (XAXIDMA_IRQ_DELAY_MASK | XAXIDMA_IRQ_IOC_MASK))) { process_sent_bds(TxRingPtr); } } #if XPAR_AXIETHERNET_0_TXCSUM == 1 #if !CHECKSUM_GEN_TCP static void bd_csum_enable(XAxiDma_Bd *bd) { XAxiDma_BdWrite((bd), XAXIDMA_BD_USR0_OFFSET, (XAxiDma_BdRead((bd), XAXIDMA_BD_USR0_OFFSET) | 1)); } static void bd_csum_disable(XAxiDma_Bd *bd) { XAxiDma_BdWrite((bd), XAXIDMA_BD_USR0_OFFSET, (XAxiDma_BdRead((bd), XAXIDMA_BD_USR0_OFFSET) & ~1)); } static void bd_csum_set(XAxiDma_Bd *bd, u16_t tx_csbegin, u16_t tx_csinsert, u16_t tx_csinit) { u32_t app1; bd_csum_enable(bd); /* write start offset and insert offset into BD */ app1 = ((u32_t)tx_csbegin << 16) | (u32_t) tx_csinsert; XAxiDma_BdWrite(bd, XAXIDMA_BD_USR1_OFFSET, app1); /* insert init value */ XAxiDma_BdWrite(bd, XAXIDMA_BD_USR2_OFFSET, tx_csinit); } #endif #endif #if XPAR_AXIETHERNET_0_TXCSUM == 2 static void bd_fullcsum_disable(XAxiDma_Bd *bd) { XAxiDma_BdWrite((bd), XAXIDMA_BD_USR0_OFFSET, (XAxiDma_BdRead((bd), XAXIDMA_BD_USR0_OFFSET) & ~3)); } static void bd_fullcsum_enable(XAxiDma_Bd *bd) { XAxiDma_BdWrite((bd), XAXIDMA_BD_USR0_OFFSET, (XAxiDma_BdRead((bd), XAXIDMA_BD_USR0_OFFSET) | 2)); } #endif XStatus axidma_sgsend(xaxiemacif_s *xaxiemacif, struct pbuf *p) { struct pbuf *q; int n_pbufs; XAxiDma_Bd *txbdset, *txbd, *last_txbd = NULL; XStatus Status; XAxiDma_BdRing *txring; unsigned max_frame_size; #ifdef USE_JUMBO_FRAMES max_frame_size = XAE_MAX_JUMBO_FRAME_SIZE - 18; #else max_frame_size = XAE_MAX_FRAME_SIZE - 18; #endif txring = XAxiDma_GetTxRing(&xaxiemacif->axidma); /* first count the number of pbufs */ for (q = p, n_pbufs = 0; q != NULL; q = q->next) n_pbufs++; /* obtain as many BD's */ Status = XAxiDma_BdRingAlloc(txring, n_pbufs, &txbdset); if (Status != XST_SUCCESS) { LWIP_DEBUGF(NETIF_DEBUG, ("sgsend: Error allocating TxBD\r\n")); return ERR_IF; } for(q = p, txbd = txbdset; q != NULL; q = q->next) { /* Send the data from the pbuf to the interface, one pbuf at a time. The size of the data in each pbuf is kept in the ->len variable. */ XAxiDma_BdSetBufAddr(txbd, (u32)q->payload); if (q->len > max_frame_size) { #ifndef XPAR_AXIDMA_0_ENABLE_MULTI_CHANNEL XAxiDma_BdSetLength(txbd, max_frame_size); #else XAxiDma_BdSetLength(txbd, max_frame_size, txring->MaxTransferLen); #endif } else { #ifndef XPAR_AXIDMA_0_ENABLE_MULTI_CHANNEL XAxiDma_BdSetLength(txbd, q->len); #else XAxiDma_BdSetLength(txbd, q->len, txring->MaxTransferLen); #endif } XAxiDma_BdSetId(txbd, (void *)q); XAxiDma_BdSetCtrl(txbd, 0); XCACHE_FLUSH_DCACHE_RANGE(q->payload, q->len); #ifdef SDMA_DEBUG if (sdma_debug) { LWIP_DEBUGF(NETIF_DEBUG, ("sending packet:\r\n")); print_packet(q->payload, 60, q->len); } #endif pbuf_ref(q); last_txbd = txbd; txbd = XAxiDma_BdRingNext(txring, txbd); } if (n_pbufs == 1) { XAxiDma_BdSetCtrl(txbdset, XAXIDMA_BD_CTRL_TXSOF_MASK | XAXIDMA_BD_CTRL_TXEOF_MASK); } else { /* in the first packet, set the SOP */ XAxiDma_BdSetCtrl(txbdset, XAXIDMA_BD_CTRL_TXSOF_MASK); /* in the last packet, set the EOP */ XAxiDma_BdSetCtrl(last_txbd, XAXIDMA_BD_CTRL_TXEOF_MASK); } #if XPAR_AXIETHERNET_0_TXCSUM == 1 #if !CHECKSUM_GEN_TCP bd_csum_disable(txbdset); /* offload TCP checksum calculation to hardware */ if (XAxiEthernet_IsTxPartialCsum(&xaxiemacif->axi_ethernet)) { if (p->len > sizeof(struct ethip_hdr)) { struct ethip_hdr *ehdr = p->payload; u8_t proto = IPH_PROTO(&ehdr->ip); /* check if it is a TCP packet */ if (htons(ehdr->eth.type) == ETHTYPE_IP && proto == IP_PROTO_TCP) { u32_t iphdr_len, csum_insert_offset; u16_t tcp_len; /* TCP header length + data length in bytes */ u16_t csum_init = 0; u16_t tcp_payload_offset; /* determine length of IP header */ iphdr_len = (IPH_HL(&ehdr->ip) * 4); tcp_payload_offset = XAE_HDR_SIZE + iphdr_len; tcp_len = p->tot_len - tcp_payload_offset; /* insert checksum at offset 16 for TCP, 6 for UDP */ if (proto == IP_PROTO_TCP) csum_insert_offset = tcp_payload_offset + 16; else if (proto == IP_PROTO_UDP) csum_insert_offset = tcp_payload_offset + 6; else csum_insert_offset = 0; /* compute pseudo header checksum value */ csum_init = inet_chksum_pseudo(NULL, (ip_addr_t *)&ehdr->ip.src, (ip_addr_t *)&ehdr->ip.dest, proto, tcp_len); /* init buffer descriptor */ bd_csum_set(txbdset, tcp_payload_offset, csum_insert_offset, htons(~csum_init)); } } } #endif #endif #if XPAR_AXIETHERNET_0_TXCSUM == 2 bd_fullcsum_disable(txbdset); if (p->len > sizeof(struct ethip_hdr)) { bd_fullcsum_enable(txbdset); } #endif /* enq to h/w */ return XAxiDma_BdRingToHw(txring, n_pbufs, txbdset); } void setup_rx_bds(XAxiDma_BdRing *rxring) { XAxiDma_Bd *rxbd; int n_bds, i; XStatus Status; struct pbuf *p; u32 BdSts; n_bds = XAxiDma_BdRingGetFreeCnt(rxring); if (n_bds == 0) return; for (i = 0; i < n_bds; i++) { Status = XAxiDma_BdRingAlloc(rxring, 1, &rxbd); if (Status != XST_SUCCESS) { LWIP_DEBUGF(NETIF_DEBUG, ("setup_rx_bds: Error allocating RxBD\r\n")); return; } #ifdef USE_JUMBO_FRAMES p = pbuf_alloc(PBUF_RAW, XAE_MAX_JUMBO_FRAME_SIZE, PBUF_POOL); #else p = pbuf_alloc(PBUF_RAW, XAE_MAX_FRAME_SIZE, PBUF_POOL); #endif if (!p) { XAxiDma_BdRingUnAlloc(rxring, 1, rxbd); #if LINK_STATS lwip_stats.link.memerr++; lwip_stats.link.drop++; #endif LWIP_DEBUGF(NETIF_DEBUG, ("unable to alloc pbuf in recv_handler\r\n")); #ifdef LWIP_STATS if (sdma_debug) { stats_display(); while (1) ; } #endif return; } /* * Setup the BD. */ XAxiDma_BdSetBufAddr(rxbd, (u32)p->payload); /* Clear everything but the COMPLETE bit, which is cleared when * committed to hardware. */ BdSts = XAxiDma_BdGetSts(rxbd); BdSts &= XAXIDMA_BD_STS_COMPLETE_MASK; XAxiDma_BdWrite(rxbd, XAXIDMA_BD_STS_OFFSET, BdSts); #ifndef XPAR_AXIDMA_0_ENABLE_MULTI_CHANNEL XAxiDma_BdSetLength(rxbd, p->len); #else XAxiDma_BdSetLength(rxbd, p->len, rxring->MaxTransferLen); #endif XAxiDma_BdSetCtrl(rxbd, 0); XAxiDma_BdSetId(rxbd, p); XCACHE_FLUSH_DCACHE_RANGE(p, sizeof *p); XCACHE_FLUSH_DCACHE_RANGE(rxbd, sizeof *rxbd); /* Enqueue to HW */ Status = XAxiDma_BdRingToHw(rxring, 1, rxbd); if (Status != XST_SUCCESS) { LWIP_DEBUGF(NETIF_DEBUG, ("Error committing RxBD to hardware: ")); if (Status == XST_DMA_SG_LIST_ERROR) LWIP_DEBUGF(NETIF_DEBUG, ("XST_DMA_SG_LIST_ERROR: this function was called out of sequence with XAxiDma_BdRingAlloc()\r\n")); else LWIP_DEBUGF(NETIF_DEBUG, ("set of BDs was rejected because the first BD did not have its start-of-packet bit set, or the last BD did not have its end-of-packet bit set, or any one of the BD set has 0 as length value\r\n")); return; } } } /* * zero out the checksum field of this packet */ void zero_checksum_field(struct pbuf *p) { /* the way checksum works in this implementation of lwIP is as follows: - if checksum offload is disabled, then lwIP stack performs all checksum calculations - if checksum is enabled, - if computed csum says packet is valid, then we zero out the checksum field - if computed csum says packet is invalid, we leave checksum as is - upper layer recomputes checksum if it finds a non-zero checksum value */ struct ethip_hdr *ehdr = p->payload; u32_t iphdr_len; u16_t tcp_payload_offset; u8_t proto = IPH_PROTO(&ehdr->ip); iphdr_len = (IPH_HL(&ehdr->ip) * 4); tcp_payload_offset = XAE_HDR_SIZE + iphdr_len; if (htons(ehdr->eth.type) == ETHTYPE_IP && proto == IP_PROTO_TCP) { /* set checksum = 0 */ *(u16_t*)(p->payload + tcp_payload_offset + 16) = 0; } } void zero_tcp_ip_checksum_fields(struct pbuf *p) { /* the way checksum works in this implementation of lwIP is as follows: - if checksum offload is disabled, then lwIP stack performs all checksum calculations - if checksum is enabled, - if computed csum says packet is valid, then we zero out the checksum field - if computed csum says packet is invalid, we leave checksum as is - upper layer recomputes checksum if it finds a non-zero checksum value */ struct ethip_hdr *ehdr = p->payload; u32_t iphdr_len; u8_t proto = IPH_PROTO(&ehdr->ip); iphdr_len = (IPH_HL(&ehdr->ip) * 4); if (htons(ehdr->eth.type) == ETHTYPE_IP) { *(u16_t*)(p->payload + XAE_HDR_SIZE + 10) = 0; if (proto == IP_PROTO_TCP) { /* set checksum = 0 */ *(u16_t*)(p->payload + XAE_HDR_SIZE + iphdr_len + 16) = 0; } if (proto == IP_PROTO_UDP) { /* set checksum = 0 */ *(u16_t*)(p->payload + XAE_HDR_SIZE + iphdr_len + 6) = 0; } } } u32_t csum_sub(u32_t csum, u16_t v) { csum += (u32_t)v; return csum + (csum < (u32_t)v); } static u16_t extract_packet_len(XAxiDma_Bd *rxbd) { u16_t packet_len = XAxiDma_BdRead(rxbd, XAXIDMA_BD_USR4_OFFSET) & 0x3fff; return packet_len; } static u16_t extract_csum(XAxiDma_Bd *rxbd) { u16_t csum = XAxiDma_BdRead(rxbd, XAXIDMA_BD_USR3_OFFSET) & 0xffff; return csum; } static u32_t extract_csum_valid_status(XAxiDma_Bd *rxbd) { u32_t status = (XAxiDma_BdRead(rxbd, XAXIDMA_BD_USR2_OFFSET) & 0x00000038); status = status >> 3; return status; } int is_tcp_ip_checksum_valid(XAxiDma_Bd *rxbd) { u32_t csum_status = extract_csum_valid_status(rxbd); if (csum_status == 0x00000002) return 1; else return 0; } /* * compare if the h/w computed checksum (stored in the rxbd) * equals the TCP checksum value in the packet */ int is_checksum_valid(XAxiDma_Bd *rxbd, struct pbuf *p) { struct ethip_hdr *ehdr = p->payload; u8_t proto = IPH_PROTO(&ehdr->ip); /* check if it is a TCP packet */ if (htons(ehdr->eth.type) == ETHTYPE_IP && proto == IP_PROTO_TCP) { u32_t iphdr_len; u16_t csum_in_rxbd, pseudo_csum, iphdr_csum, padding_csum; u16_t tcp_payload_offset; u32_t computed_csum; u16_t padding_len, tcp_payload_len, packet_len; u16_t csum; /* determine length of IP header */ iphdr_len = (IPH_HL(&ehdr->ip) * 4); tcp_payload_offset = XAE_HDR_SIZE + iphdr_len; tcp_payload_len = htons(IPH_LEN(&ehdr->ip)) - IPH_HL(&ehdr->ip) * 4; packet_len = extract_packet_len(rxbd); padding_len = packet_len - tcp_payload_offset - tcp_payload_len; csum_in_rxbd = extract_csum(rxbd); pseudo_csum = htons(inet_chksum_pseudo(NULL, (ip_addr_t *)&ehdr->ip.src, (ip_addr_t *)&ehdr->ip.dest, proto, tcp_payload_len)); /* xps_ll_temac computes the checksum of the packet starting at byte 14 * we need to subtract the values of the ethernet & IP headers */ iphdr_csum = inet_chksum(p->payload + 14, tcp_payload_offset - 14); /* compute csum of padding bytes, if any */ padding_csum = inet_chksum(p->payload + p->tot_len - padding_len, padding_len); /* get the h/w checksum value */ computed_csum = (u32_t)csum_in_rxbd; /* remove the effect of csumming the iphdr */ computed_csum = csum_sub(computed_csum, ~iphdr_csum); /* add in the pseudo csum */ computed_csum = csum_sub(computed_csum, ~pseudo_csum); /* remove any padding effect */ computed_csum = csum_sub(computed_csum, ~padding_csum); /* normalize computed csum */ while (computed_csum >> 16) { computed_csum = (computed_csum & 0xffff) + (computed_csum >> 16); } /* convert to 16 bits and take 1's complement */ csum = (u16_t)computed_csum; csum = ~csum; /* chksum is valid if: computed csum over the packet is 0 */ return !csum; } else { /* just say yes to all other packets */ /* the upper layers in the stack will compute and verify the checksum */ return 1; } } void axidma_recv_handler(void *arg) { struct pbuf *p; unsigned irq_status, i; XAxiDma_Bd *rxbd, *rxbdset; struct xemac_s *xemac; xaxiemacif_s *xaxiemacif; XAxiDma_BdRing *rxring; struct xtopology_t *xtopologyp; XAxiEthernet *xaxiemac; xemac = (struct xemac_s *)(arg); xaxiemacif = (xaxiemacif_s *)(xemac->state); rxring = XAxiDma_GetRxRing(&xaxiemacif->axidma); xtopologyp = &xtopology[xemac->topology_index]; xaxiemac = &xaxiemacif->axi_ethernet; XAxiDma_BdRingIntDisable(rxring, XAXIDMA_IRQ_ALL_MASK); /* Read pending interrupts */ irq_status = XAxiDma_BdRingGetIrq(rxring); /* Acknowledge pending interrupts */ XAxiDma_BdRingAckIrq(rxring, irq_status); /* If error interrupt is asserted, raise error flag, reset the * hardware to recover from the error, and return with no further * processing. */ if ((irq_status & XAXIDMA_IRQ_ERROR_MASK)) { xil_printf("%s: Error: axidma error interrupt is asserted\r\n", __FUNCTION__); XAxiDma_Reset(&xaxiemacif->axidma); return; } /* * If Reception done interrupt is asserted, call RX call back function * to handle the processed BDs and then raise the according flag. */ if ((irq_status & (XAXIDMA_IRQ_DELAY_MASK | XAXIDMA_IRQ_IOC_MASK))) { int bd_processed; int rx_bytes; bd_processed = XAxiDma_BdRingFromHw(rxring, XAXIDMA_ALL_BDS, &rxbdset); for (i = 0, rxbd = rxbdset; i < bd_processed; i++) { p = (struct pbuf *)XAxiDma_BdGetId(rxbd); /* * Adjust the buffer size to the actual number of bytes received. */ rx_bytes = extract_packet_len(rxbd); pbuf_realloc(p, rx_bytes); #ifdef USE_JUMBO_FRAMES XCACHE_INVALIDATE_DCACHE_RANGE(p->payload, XAE_MAX_JUMBO_FRAME_SIZE); #else XCACHE_INVALIDATE_DCACHE_RANGE(p->payload, XAE_MAX_FRAME_SIZE); #endif #if XPAR_AXIETHERNET_0_RXCSUM == 1 #if !CHECKSUM_CHECK_TCP /* compare RX checksum to TCP checksum value */ if (is_checksum_valid(rxbd, p)) { /* if checksum is correct, then we re-write * checksum field with 0's so the upper layer doesn't recompute */ zero_checksum_field(p); #ifdef SDMA_DEBUG } else { LWIP_DEBUGF(NETIF_DEBUG, ("RX CHECKSUM INVALID for offload\r\n")); #endif } #endif #endif #if XPAR_AXIETHERNET_0_RXCSUM == 2 #if !CHECKSUM_CHECK_TCP #if !CHECKSUM_CHECK_IP if (is_tcp_ip_checksum_valid(rxbd)) { zero_tcp_ip_checksum_fields(p); #ifdef SDMA_DEBUG } else { LWIP_DEBUGF(NETIF_DEBUG, ("TCP/IP CHECKSUM INVALID for offload\r\n")); #endif } #endif #endif #endif #ifdef SDMA_DEBUG if (sdma_debug) { LWIP_DEBUGF(NETIF_DEBUG, ("receiving packet:\r\n")); print_packet(p->payload, 60, rx_bytes); } #endif /* store it in the receive queue, * where it'll be processed by a different handler */ if (pq_enqueue(xaxiemacif->recv_q, (void*)p) < 0) { #if LINK_STATS lwip_stats.link.memerr++; lwip_stats.link.drop++; #endif pbuf_free(p); } else { #if !NO_SYS sys_sem_signal(&xemac->sem_rx_data_available); #endif } rxbd = XAxiDma_BdRingNext(rxring, rxbd); } /* free up the BD's */ XAxiDma_BdRingFree(rxring, bd_processed, rxbdset); /* return all the processed bd's back to the stack */ /* setup_rx_bds -> use XAxiDma_BdRingGetFreeCnt */ setup_rx_bds(rxring); } XAxiDma_BdRingIntEnable(rxring, XAXIDMA_IRQ_ALL_MASK); } void *alloc_bdspace(int n_desc) { int space = XAxiDma_BdRingMemCalc(BD_ALIGNMENT, n_desc); int padding = BD_ALIGNMENT*2; void *unaligned_mem = mem_malloc(space + padding*4); void *aligned_mem = (void *)(((unsigned)(unaligned_mem + BD_ALIGNMENT)) & ~(BD_ALIGNMENT - 1)); #ifdef SDMA_DEBUG xil_printf("unaligned_mem start: %8x, end: %8x\r\n", unaligned_mem, unaligned_mem + space + padding * 4); xil_printf(" aligned_mem start: %8x, end: %8x\r\n", aligned_mem, aligned_mem + space); #endif #if DEBUG assert(aligned_mem > unaligned_mem); assert(aligned_mem + space < unaligned_mem + space + padding); #endif return aligned_mem; } XStatus init_axi_dma(struct xemac_s *xemac) { XAxiDma_Config *DMAConfig; XAxiDma_Bd BdTemplate; XAxiDma_BdRing *RxRingPtr, *TxRingPtr; XAxiDma_Bd *rxbd; struct pbuf *p; XStatus Status; int i; xaxiemacif_s *xaxiemacif = (xaxiemacif_s *)(xemac->state); #if XPAR_INTC_0_HAS_FAST == 1 xaxiemacif_fast = xaxiemacif; xemac_fast = xemac; #endif #if NO_SYS struct xtopology_t *xtopologyp = &xtopology[xemac->topology_index]; #endif /* initialize DMA */ DMAConfig = XAxiDma_LookupConfig(XPAR_AXIDMA_0_DEVICE_ID); XAxiDma_CfgInitialize(&xaxiemacif->axidma, DMAConfig); RxRingPtr = XAxiDma_GetRxRing(&xaxiemacif->axidma); TxRingPtr = XAxiDma_GetTxRing(&xaxiemacif->axidma); LWIP_DEBUGF(NETIF_DEBUG, ("RxRingPtr: 0x%08x\r\n", RxRingPtr)); LWIP_DEBUGF(NETIF_DEBUG, ("TxRingPtr: 0x%08x\r\n", TxRingPtr)); xaxiemacif->rx_bdspace = alloc_bdspace(XLWIP_CONFIG_N_RX_DESC); xaxiemacif->tx_bdspace = alloc_bdspace(XLWIP_CONFIG_N_TX_DESC); LWIP_DEBUGF(NETIF_DEBUG, ("rx_bdspace: 0x%08x\r\n", xaxiemacif->rx_bdspace)); LWIP_DEBUGF(NETIF_DEBUG, ("tx_bdspace: 0x%08x\r\n", xaxiemacif->tx_bdspace)); if (!xaxiemacif->rx_bdspace || !xaxiemacif->tx_bdspace) { xil_printf("%s@%d: Error: Unable to allocate memory for RX buffer descriptors", __FILE__, __LINE__); return XST_FAILURE; } /* * Setup RxBD space. * * Setup a BD template for the Rx channel. This template will be copied to * every RxBD. We will not have to explicitly set these again. */ XAxiDma_BdClear(&BdTemplate); /* * Create the RxBD ring */ #ifdef USE_STATIC_BDSPACE Status = XAxiDma_BdRingCreate(RxRingPtr, (u32) &rx_bdspace, (u32) &rx_bdspace, BD_ALIGNMENT, XLWIP_CONFIG_N_RX_DESC); #else Status = XAxiDma_BdRingCreate(RxRingPtr, (u32) xaxiemacif->rx_bdspace, (u32) xaxiemacif->rx_bdspace, BD_ALIGNMENT, XLWIP_CONFIG_N_RX_DESC); #endif if (Status != XST_SUCCESS) { LWIP_DEBUGF(NETIF_DEBUG, ("Error setting up RxBD space\r\n")); return XST_FAILURE; } XAxiDma_BdClear(&BdTemplate); Status = XAxiDma_BdRingClone(RxRingPtr, &BdTemplate); if (Status != XST_SUCCESS) { LWIP_DEBUGF(NETIF_DEBUG, ("Error initializing RxBD space\r\n")); return XST_FAILURE; } /* * Create the TxBD ring */ #ifdef USE_STATIC_BDSPACE Status = XAxiDma_BdRingCreate(TxRingPtr, (u32) &tx_bdspace, (u32) &tx_bdspace, BD_ALIGNMENT, XLWIP_CONFIG_N_TX_DESC); #else Status = XAxiDma_BdRingCreate(TxRingPtr, (u32) xaxiemacif->tx_bdspace, (u32) xaxiemacif->tx_bdspace, BD_ALIGNMENT, XLWIP_CONFIG_N_TX_DESC); #endif if (Status != XST_SUCCESS) { return XST_FAILURE; } /* We reuse the bd template, as the same one will work for both rx and tx. */ Status = XAxiDma_BdRingClone(TxRingPtr, &BdTemplate); if (Status != XST_SUCCESS) { return ERR_IF; } /* enable DMA interrupts */ XAxiDma_BdRingIntEnable(TxRingPtr, XAXIDMA_IRQ_ALL_MASK); XAxiDma_BdRingIntEnable(RxRingPtr, XAXIDMA_IRQ_ALL_MASK); /* * Allocate RX descriptors, 1 RxBD at a time. */ for (i = 0; i < XLWIP_CONFIG_N_RX_DESC; i++) { Status = XAxiDma_BdRingAlloc(RxRingPtr, 1, &rxbd); if (Status != XST_SUCCESS) { LWIP_DEBUGF(NETIF_DEBUG, ("init_axi_dma: Error allocating RxBD\r\n")); return ERR_IF; } #ifdef USE_JUMBO_FRAMES p = pbuf_alloc(PBUF_RAW, XAE_MAX_JUMBO_FRAME_SIZE, PBUF_POOL); #else p = pbuf_alloc(PBUF_RAW, XAE_MAX_FRAME_SIZE, PBUF_POOL); #endif if (!p) { #if LINK_STATS lwip_stats.link.memerr++; lwip_stats.link.drop++; #endif LWIP_DEBUGF(NETIF_DEBUG, ("unable to alloc pbuf in recv_handler\r\n")); return -1; } /* * Setup the BD. The BD template used in the call to * XAxiEthernet_SgSetSpace() set the "last" field of all RxBDs. * Therefore we are not required to issue a XAxiDma_Bd_SetLast(rxbd) * here. */ XAxiDma_BdSetBufAddr(rxbd, (u32)p->payload); #ifndef XPAR_AXIDMA_0_ENABLE_MULTI_CHANNEL XAxiDma_BdSetLength(rxbd, p->len); #else XAxiDma_BdSetLength(rxbd, p->len, RxRingPtr->MaxTransferLen); #endif XAxiDma_BdSetCtrl(rxbd, 0); XAxiDma_BdSetId(rxbd, p); XCACHE_FLUSH_DCACHE_RANGE(p, sizeof *p); XCACHE_FLUSH_DCACHE_RANGE(rxbd, sizeof *rxbd); /* Enqueue to HW */ Status = XAxiDma_BdRingToHw(RxRingPtr, 1, rxbd); if (Status != XST_SUCCESS) { LWIP_DEBUGF(NETIF_DEBUG, ("Error: committing RxBD to HW\r\n")); return XST_FAILURE; } } /* start DMA */ Status = XAxiDma_BdRingStart(TxRingPtr); if (Status != XST_SUCCESS) { LWIP_DEBUGF(NETIF_DEBUG, ("Error: failed to start TX BD ring\r\n")); return XST_FAILURE; } Status = XAxiDma_BdRingStart(RxRingPtr); if (Status != XST_SUCCESS) { LWIP_DEBUGF(NETIF_DEBUG, ("Error: failed to start RX BD ring\r\n")); return XST_FAILURE; } Status = XAxiDma_BdRingSetCoalesce(TxRingPtr, XLWIP_CONFIG_N_TX_COALESCE, 0x1); if (Status != XST_SUCCESS) { LWIP_DEBUGF(NETIF_DEBUG, ("Error setting coalescing settings\r\n")); return XST_FAILURE; } Status = XAxiDma_BdRingSetCoalesce(RxRingPtr, XLWIP_CONFIG_N_RX_COALESCE, 0x1); if (Status != XST_SUCCESS) { LWIP_DEBUGF(NETIF_DEBUG, ("Error setting coalescing settings\r\n")); return XST_FAILURE; } #if XLWIP_CONFIG_INCLUDE_AXIETH_ON_ZYNQ == 1 XScuGic_RegisterHandler(xtopologyp->scugic_baseaddr, xaxiemacif->axi_ethernet.Config.TemacIntr, (Xil_ExceptionHandler)xaxiemac_error_handler, &xaxiemacif->axi_ethernet); XScuGic_RegisterHandler(xtopologyp->scugic_baseaddr, xaxiemacif->axi_ethernet.Config.AxiDmaTxIntr, (Xil_ExceptionHandler)axidma_send_handler, xemac); XScuGic_RegisterHandler(xtopologyp->scugic_baseaddr, xaxiemacif->axi_ethernet.Config.AxiDmaRxIntr, (Xil_ExceptionHandler)axidma_recv_handler, xemac); XScuGic_SetPriTrigTypeByDistAddr(INTC_DIST_BASE_ADDR, xaxiemacif->axi_ethernet.Config.TemacIntr, AXIETH_INTR_PRIORITY_SET_IN_GIC, TRIG_TYPE_RISING_EDGE_SENSITIVE); XScuGic_SetPriTrigTypeByDistAddr(INTC_DIST_BASE_ADDR, xaxiemacif->axi_ethernet.Config.AxiDmaTxIntr, AXIDMA_TX_INTR_PRIORITY_SET_IN_GIC, TRIG_TYPE_RISING_EDGE_SENSITIVE); XScuGic_SetPriTrigTypeByDistAddr(INTC_DIST_BASE_ADDR, xaxiemacif->axi_ethernet.Config.AxiDmaRxIntr, AXIDMA_RX_INTR_PRIORITY_SET_IN_GIC, TRIG_TYPE_RISING_EDGE_SENSITIVE); XScuGic_EnableIntr(INTC_DIST_BASE_ADDR, xaxiemacif->axi_ethernet.Config.TemacIntr); XScuGic_EnableIntr(INTC_DIST_BASE_ADDR, xaxiemacif->axi_ethernet.Config.AxiDmaTxIntr); XScuGic_EnableIntr(INTC_DIST_BASE_ADDR, xaxiemacif->axi_ethernet.Config.AxiDmaRxIntr); #else #if NO_SYS #if XPAR_INTC_0_HAS_FAST == 1 /* Register temac interrupt with interrupt controller as Fast Interrupts */ XIntc_RegisterFastHandler(xtopologyp->intc_baseaddr, xaxiemacif->axi_ethernet.Config.TemacIntr, (XFastInterruptHandler)xaxiemac_errorfast_handler); XIntc_RegisterFastHandler(xtopologyp->intc_baseaddr, xaxiemacif->axi_ethernet.Config.AxiDmaTxIntr, (XFastInterruptHandler)axidma_sendfast_handler); XIntc_RegisterFastHandler(xtopologyp->intc_baseaddr, xaxiemacif->axi_ethernet.Config.AxiDmaRxIntr, (XFastInterruptHandler)axidma_recvfast_handler); #else /* Register temac interrupt with interrupt controller */ XIntc_RegisterHandler(xtopologyp->intc_baseaddr, xaxiemacif->axi_ethernet.Config.TemacIntr, (XInterruptHandler)xaxiemac_error_handler, &xaxiemacif->axi_ethernet); /* connect & enable DMA interrupts */ XIntc_RegisterHandler(xtopologyp->intc_baseaddr, xaxiemacif->axi_ethernet.Config.AxiDmaTxIntr, (XInterruptHandler)axidma_send_handler, xemac); XIntc_RegisterHandler(xtopologyp->intc_baseaddr, xaxiemacif->axi_ethernet.Config.AxiDmaRxIntr, (XInterruptHandler)axidma_recv_handler, xemac); #endif /* Enable EMAC interrupts in the interrupt controller */ do { /* read current interrupt enable mask */ unsigned int cur_mask = XIntc_In32(xtopologyp->intc_baseaddr + XIN_IER_OFFSET); /* form new mask enabling SDMA & temac interrupts */ cur_mask = cur_mask | (1 << xaxiemacif->axi_ethernet.Config.AxiDmaTxIntr) | (1 << xaxiemacif->axi_ethernet.Config.AxiDmaRxIntr) | (1 << xaxiemacif->axi_ethernet.Config.TemacIntr); /* set new mask */ XIntc_EnableIntr(xtopologyp->intc_baseaddr, cur_mask); } while (0); #else /* connect & enable TEMAC interrupts */ register_int_handler(xaxiemacif->axi_ethernet.Config.TemacIntr, (XInterruptHandler)xaxiemac_error_handler, &xaxiemacif->axi_ethernet); enable_interrupt(xaxiemacif->axi_ethernet.Config.TemacIntr); /* connect & enable DMA interrupts */ register_int_handler(xaxiemacif->axi_ethernet.Config.AxiDmaTxIntr, (XInterruptHandler)axidma_send_handler, xemac); enable_interrupt(xaxiemacif->axi_ethernet.Config.AxiDmaTxIntr); register_int_handler(xaxiemacif->axi_ethernet.Config.AxiDmaRxIntr, (XInterruptHandler)axidma_recv_handler, xemac); enable_interrupt(xaxiemacif->axi_ethernet.Config.AxiDmaRxIntr); #endif #endif return 0; } #if XPAR_INTC_0_HAS_FAST == 1 /****************************** Fast receive Handler *************************/ void axidma_recvfast_handler(void) { axidma_recv_handler((void *)xemac_fast); } /****************************** Fast Send Handler ****************************/ void axidma_sendfast_handler(void) { axidma_send_handler((void *)xemac_fast); } /****************************** Fast Error Handler ***************************/ void xaxiemac_errorfast_handler(void) { xaxiemac_error_handler(&xaxiemacif_fast->axi_ethernet); } #endif