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1 Introduction

This document describes the specifications and the structure of the firmware embedded in the ArriaTM10
FPGA, referenced 10AX115R4F40I4SGES (ArriaTM10 family ALTERATM), located on the AMC-A10
of the LAr Digital Processing Board. Interfaces between the various blocks of the firmware are defined.

1.1 Description and specifications

As a reminder of the overall LAr phase I backend system, Figure 57 of the LAr TDR [1] is reproduced
in Fig. 1). This document gives the specification of the AMC-A10 firmware which handles the incom-
ing data from the LArg Trigger Digital Boards (LTDB), to deliver reconstructed transverse energy to
Ł1CALO and data to TDAQ and monitoring.

Data 
Processing 

ADC Data@40MHz e/jFEX Data@40 MHz 
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(ADC Data + Results 2.7 Tbps)  

Data  Monitoring 

(Results/L1A – RNDM 99.2 Gbps) 

ATLAS Event-TDAQ 
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LDPB Monitoring 
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10/40 GbE Network 

GbE Network 

LTDB FELIX DCS  PM  
PC 

PM  PC 
ATCA 
System 

Manager 

DCS  

Shelf 
Managers IPMC 

LDPBs 

GBT links 

PC  
FARM 

FELIX TDAQ 

AMC Front Panel Links 

(Histos, Status <1Gbps) 

LTDB Monitoring 

(status, sensors <1Gbps) 

TDAQ Network 

LTDB: 124 Modules     LDPB: 31 Blades 

DCS 

(ADC Data 
25.2 Tbps) 

(Results 41.1 Tbps) 

Data Flow 
Rates 

ADC Data 
@40MHz 

e/jFEX Data 
@40MHz 

LDPB 
Monitoring 

Data 
Monitoring 

ATLAS Event- 
TDAQ 

LTDB 
Monitoring 

DCS 

LTDB  204 Gbps - - - - <<1 Gbps <<1 Gbps 

LDPB  814 Gbps 1.3 Tbps <<1 Gbps 82 Gbps 3.2 Gbps - <<1 Gbps 

GLOBAL 25.2 Tbps 41.1 Tbps <1 Gbps 2.7 Tbps 99.2 Gbps <1Gbps <<1 Gbps 

Figure 1: Figure 57 of LAr TDR: schematic representation of the data paths and associated data flows
of the LDPS. Data paths are represented as arrows; the data path name is written above the arrow and
the nature of the data, with the total data flow rate, below the arrow. The data sources of the LDPS
are represented as blue boxes. The hardware elements of the LDPS are with dashed lines. The table
summarizes the data flow rates per LTDB and LDPB for each data path. The last row gives the total rate
for the system.

Table 1 summarizes the data flows at the level of one AMC-A10.
The LDPB design was internally (LAr) reviewed: the documentation and the report are available

at [2]. The AMC-A10 schematic is presented in Fig. 2.
The firmware on the AMC-A10 performs four main functions, the details of which are described in

later sections:

• it handles a number of high speed links in the input from the LTDB,
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ADC data FEX data LDPB Data ATLAS Event- DCS
@40 MHz @40 MHz Monitoring Monitoring TDAQ
204 Gbps '300 Gbps �1 Gbps '20 Gbps ' 1 Gbps �1 Gbps

Table 1: Data flow for one AMC-A10 board.

Figure 2: Schematic representation of the AMC-A10 as presented during the LAr internal review [2].

• it performs a filtering algorithm to reconstruct the ESuper Cell
T every 25 ns and identify the Bunch

Crossing where the deposited energy was initiated (BCid),

• it outputs results to the Ł1CALO FEXs, and

• it processes and buffers data to be delivered to the TDAQ readout chain and to the monitoring
processes, upon a Level-1 accept (L1A).

The first step in the FPGA processing is the deserialization and demultiplexing of the incoming data.
The 12-bit ADC data at 40 MHz for each channel must be aligned accordingly for the application of the
filtering algorithm.

Next, data words are organised following the detector geometry in a configurable way. Next, the
Super Cell transverse energies are calculated with filtering algorithms. The ESuper Cell

T encoding into 10
bits needs to be performed without losing the benefit of the fine energy granularity in terms of cluster
reconstruction. The size of the quantization scale for each layer is still under discussion. The nature of
the filtering algorithm is not part of this document.

An important point to be considered is the case of saturated inputs which have different shapes than
nominal pulses and for which BCid may fail. The proper bunch crossing has to be identified from a
dedicated filter on the signal or, for instance, from a neighboring Super Cell (either from a different
calorimeter layer or from another Super Cell in the same layer).

The processing has to be performed with a fixed latency.
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1.2 AMC-A10 firmware overall structure

Figure 3 presents a block diagram of the AMC-A10 firmware. Each block is described in one section
below. The firmware is built around the low level interface which controls the hardware components
of the AMC-A10. The firmware consists of a main data path (from LTDB to FEX) which has been
organised in four logical blocks:

• input stage : deserializes, demultiplexes and aligns in time the 12-bit ADC data from the LTDB

• configurable remapping : remaps incoming data following the detector geometry, in a configurable
way.

• user code : applies the filter to reconstruct ESuper Cell
T and determine BCid.

• output summing : makes the proper geometrical sums for gFEX and jFEX.

Three other functions are included in the firmware: tdaq monitoring which organises the transfer of
data to TDAQ and to the local monitoring processes, the ipbus controller which is the interface for the
AMC-A10 slow-control system and the ttc which decodes and provides signals from the TTC system.AMC DAQ : General synoptic
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Figure 3: Proposed firmware synopsis.
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1.2.1 AMC-A10 firmware clock distribution

Figure 4 presents a block diagram of the various clocks organisation inside the AMC-A10 firmware.
Three clocks are foreseen: The 320 MHz clock is used up to the configurable remapping. The config-
urable remapping transfers data to the user code which receives, computes and transmits, at the speed
of 240 MHz; the output summing then transfers FEX data to Ł1CALO at 280 MHz.

AMC DAQ : Clock domains on main data path
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TTC 
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XCVR Rx
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XCVR Tx
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Avalon Memory Mapped interfaces
Avalon ST interfaces

Figure 4: Proposed clock organisation.

1.2.2 Expected firmware footprint in ArriaTM10

The current estimate of this proposed firmware footprint in the ArriaTM10 FPGA is presented in Table 2.

1.2.3 Overall latency

Table 3, extracted from [1], presents the summary of the latencies introduced by each step. From the
reception of the data to their transmission to FEX, the latency is estimated to 14 LHC clock cycles.

Table 4, presents the summary of the latencies estimated by each processing block as described in
this document. From the reception of the data to their transmission to FEX, the latency is estimated to
15 LHC clock cycles.
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resource from FE to FEX Filtering Monitor 1 GbE GBT Total ArriaTM10
amount 48 (1) 48 (1) 32x2 (1) 1 1 1 1

Register (103) 96 (2) 26 (0.5) 52 (1) 5 4 1 ∼184 1300
LUT (103) 48 (1) 23 (0.5) 38 (0.8) 5 3 2 ∼120 900

TX/RX 48 (1) 0 ( 0) 4 1 1 54 96
DSP 0 (0) 0 (0) 768 ( 16) 10 0 0 778 1518

BlockRam (kbit) 0 (0) 3500 (72) 4320 (90) 5000 92 630 13500 57000

Table 2: List of estimated resources needed for each block of the AMC-A10 firmware and specifications
of ArriaTM10 FPGA. The line amount indicates the number of instances of the object, e.g. 48 fibers
from FE, 48 fibres to FEX, 32 paired instances of the user code . Numbers in parentheses indicate the
corresponding resources for one unit.

from TDR Latency
Total [BCs]

[ns] [BCs]
Deserializer on LDPS 50 2.0
Channel Demultiplexing on LDPS 25 1.0
Pedestal Subtraction 25 1.0
ET with forward correction 125 5.0
Digital summation 50 2.0
Multiplexing 40-320 MHz on LDPS 25 1.0
Serializer on LDPS 50 2.0

14.0

Table 3: Estimated latency budget for the data processing on the AMC-A10 of the LDPB, in the context
of the Phase-I upgrade of the LAr trigger readout electronics, as of the presentation of the TDR in 2013.

Current evalutation Latency
Total [BCs]

[ns] [BCs]
Deserializer from LTDB - LLI 50 2.0
Input stage 75 3.0
Configurable remapping 38 1.5
User code 125 5.0
Output summing 38 1.5
Serializer to FEX - LLI 50 2.0

15.0

Table 4: Estimated latency budget for the data processing on the AMC-A10 of the LDPB updated for
this document.
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1.3 Some considered show stoppers

1.3.1 Technical showstoppers

Timing jitter Could the clock jitter induce random errors ?

The reference clocks to the transceivers are purposely cleaned on the carried card; their jitter is
therefore very small (<< 1 ps). The clocks used in the processing stages are derived from the
recovered LHC clock by a PLL function and distributed over the FPGA with dedicated clock trees
of three sorts: global clocks, local clocks and regional clocks.

TimeQuestTM closing Could the timing constraints be too demanding for the TimeQuestTM anal-
yser ?

This would prevent a closure of TimeQuestTM. This is very unlikely. The design being very mod-
ular and the modules being quite independent one another, one only needs to solve the timing
question for a generic module. All the logic elements used in the design have switching character-
istics beyond 400 MHz. The fastest parts of our design runs at 320 MHz only and the user code at
240 MHz. Furthermore, it would be technically possible to run at 160 MHz with twice the number
of logic cells. The most demanding part of the design concerning the time is the configurable
remapping. It has been checked to work at 320 MHz with the TimeQuestTM software.

Latency Could the requested fixed latency achieved be higher than the available latency for the
firmware ?

Each blocks in the firmware can be designed to have a fixed latencies and numbers summarised in
Table 4 indicate that the total latency is within the specifications of 18 BCs.

FPGA resources Could the firmware footprint exceed the FPGA resources. Following Table 2,
this seems unlikely.

1.3.2 Tools limitations

Unstable/incomplete development tools

The following problems related to the QUARTUSTM development tools will most probably be
encountered: bugs in all releases, incomplete documentation, lack of reference designs, IP related
problems (bad simulation models). Even though these aspects may bring difficulties and slow
down the development, they are not considered as show stoppers. The high quality relationship
already existing between the labs and the ALTERATM company will be maintained.

Project development time

The compilation of a complete project in the FPGA can be very long (order of magnitude of 10
hours). Several actions can be conducted in order to optimize the development time:

– Use the modularity of the design to work on small projects before working on the big one.

– Distribute the work within the institutes involved.

1.3.3 Conclusions

The difficulties that we expect to encounter in the project are very classical. Furthermore, similar projects
with similar specifications and technological environment have been conducted with success recently
(LHCb Muon trigger project). The most serious expected problems are linked to the development tools
and not to the project specifications.
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1.4 Remarks and some conventions

1.4.1 Remarks

The specifications presented in this document are based on the LAr calorimeter phase-I upgrade TDR [1].
Some of them may be revised in the future like:

• the output fibres speed which would in turn allow to change the data content sent to FEXs,

• encoding on fibers going to FEX (8bit/10 or 64bit/66),

• latency to eFEX/jFEX/gFEX: does it have to be identical ?

• the technique to extract BCid in case of saturation,

• the exact mapping even though it should not affect a priori the proposal made here, because a
configurable remapping is proposed and

• the monitoring and TDAQ readout data flows.

A detailed proposal for the FE-BE-Ł1CALO mapping is in preparation; the most up to date informa-
tion is available at [4] (see the first talk on the agenda).

The section 1 describing low level interface is more developed than the other sections; this reflects the
development of this part of the firmware which is close to the hardware components of the AMC-A10.

1.4.2 Conventions

The following conventions are used in this document:

• The acronym written as BCID refers to the Bunch Crossing Identifier i.e. the BC number

• The acronym written as BCid refers to the Bunch Crossing Identification i.e. the identification of
the bunch crossing where the energy deposit was initiated.

1.5 Document structure

The document is organised as follows: the low level interface (LLI) is described in section 2; the input
stage in section 3; the description of the configurable remapping is given in section 4. The structure of
the user code is presented in section 5. The output summing to prepare data for the FEXs is presented
in section 6. The way data are prepared to be delivered to TDAQ for readout and for local monitoring
is given in section 7 and the slow control, via the ipbus controller of the AMC-A10 in section 8. The
ttc decoding stage is presented in section 9. In section 10, a brief description of the code management is
given.
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2 Low-Level Interface

5

2.1 Introduction

This section describes the Low Level Interface (LLI) part of the Arria10 firmware for the AMC-A10.
It describes the firmware interfaces between the external chip (DDR3, GbE, XAUI and LTDB links. . . )
and the FPGA core. The LLI synopsis is shown on Fig. 5.

The list of the LLI input and output signals (interfaces) is presented in Table 5 in section 2.4

DDR3
LLI

FPGA core layer

LLI : General synoptic

DDR3 
x2

Low Level Interface layer
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Avalon Memory Mapped interfaces
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Figure 5: Low-level interface block diagram

All the interfaces between the LLI and the FPGA core layers are designed with standard Avalon
Streaming and Avalon memory Mapped interfaces [5]. This allows having well defined and documented
standard interfaces between each block.

2.2 Description

2.2.1 Reset/Clocks interface

2.2.1.1 Overview

This LLI part makes the interface between the hardware resets, the different clocks sources and the FPGA
core layer. A synopsis of the signal distribution for reset and clocks interfaces is presented on Fig. 6.
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Two different sources drive the hardware resets to the ArriaTM10 FPGA: the front panel push button
and the MMC reset signal. The aim of this block is to provide hardware synchronous reset signals in
each clock domain in order to prevent metastability in state machines.

Set apart the high speed transceivers reference clocks, three different types of clocks drive the FPGA
clock tree. The 160 MHz TTC clock comes from either the local oscillator or the AMC-A10 TTC clock
pin. Another standard 100 MHz clock drives the internal logic and the DDR3 controller. This interface
provides the different clock frequency needed by the FPGA core.
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DFF
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Figure 6: Reset/clock interface block diagram

2.2.1.2 Registers

Around this main path, a status register is implemented to monitor this interface. This status register
mainly output the PLL locked signals.

2.2.2 LTDB interface

2.2.2.1 Overview

At the Front End side, one LTDB sends continuous ADC data to the LDPB through 40 optical fibres with
a data rate of 5.12 Gbps. Before this serialization, the ADC data are encoded by the LOCic chip with a
custom PRBS encoding.

After 70 m of optical fibres, the LDPB receives all these links via 4 AVAGO microPODTM receivers
[6] and the outputs of these 12 channels parallel optics receivers drive the ArriaTM10 through high speed
CML differential pairs.

This LLI part makes the interface between the microPODTM and the FPGA core. It performs the
serial to parallel interface by implementing the embedded FPGA hardware high speed receivers.

The interface with the FPGA core uses standard interfaces for streaming data and registers access. As
there are 48 optics fibres at the input there are 48 output parallel data buses in the streaming interfaces.
A synopsis of the LTDB interface block diagram is presented on Fig. 7.
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Figure 7: LTDB interface block diagram

ArriaTM10 Native PHY receiver block

Configuration The Native PHY part is the hardware IP which implements the receiver part of the
ArriaTM10 transceiver. Six ArriaTM10 transceivers are gathered in a same bank which is synchro-
nized with a 160 MHz external reference clock. The total of 48 receivers will be implemented in
8 banks. A transceiver includes a receiver and a transmitter. These 2 parts are strongly dependent
and share the same reference clock but they can handle different speed.

The Native PHY receiver part can be implemented by using the Standard PCS (Physical Coding
Sublayer) Native PHY IP (See ArriaTM10 Transceiver PHY User Guide in [7]). In that case the
output data is a parallel bus with a width of 16 bit running at 320 MHz. But in order to prevent
timing issues at FPGA core level the transceiver can be implemented using the Enhanced PCS
which allows having a 32 bit data bus running at 160 MHz on the output parallel bus. This clock
can be the recovered clock from the input serial data stream or a local clock if the Native PHY is
configured with the Rate Match FIFO. In that case this local clock shall have the same frequency
as the recovered clock and shall have the same source (TTC system).

Implementation At power up or if a reset occurs, the Native PHY needs a special reset sequence
on its analog and digital parts in order to be locked on the input data stream. Once the link is
locked, the Rx freq locked flags are raised. Otherwise, these flags are not stable and the link has
to be reset to start a new sequence to achieve the synchronization on the input serial data.

The Native PHY receiver frame can be detected on a special word by implementing different
alignment modes like bit-slip or manual alignment. The word aligner receives the serial data from
the Physical Medium Attachment (deserializer and Clock Data Recovery) and realigns the serial
data to have the correct word boundary according to the word alignment pattern configured. This
alignment sequence should be driven by the “Input Stage” block.

Timing The output parallel data bus is synchronized by the recovered Rx clock or a local clock if
the Rate Match FIFO is implemented. Due to the hardware IP (CDR, internal FIFO), there may be
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a few clock cycles between the output parallel data bus coming from each optics fibre. So all these
data shall be aligned in the “Input Stage” block at the FPGA core level.

2.2.2.2 Registers

A set of status registers will be implemented in order to monitor the locking states of the receiver’s links
and the reference clocks. The control registers allows resetting the receiver links.

2.2.2.3 Examples

To be completed. Examples and chronograms describing the output streaming interface to the next stage

2.2.3 FEX interface

2.2.3.1 Overview

At the Backend side the LDPB sends results to the FEX through 48 optical fibres. The data rate is not
yet defined but could be 6.4/9.6/11.2 or 12.8 Gbps. The output packets should have a standard format for
all FEX with a header and a trailer. This format is not yet defined.

The LDPB drives all these links via 4 AVAGO microPODTM Transmitters [7] and the inputs of these
12 channels parallel optics transmitters are driven by the ArriaTM10 through high speed CML differential
pairs.

This LLI part makes the interface between the microPODTM and the FPGA core. It encodes and
serializes the incoming data to a serial data frame. The interface with the FPGA core uses standard
interfaces for streaming data and registers access. As there are 48 optics fibres at the output there are 48
input parallel data buses in the streaming interfaces.

The FEX interface is built around 2 main blocks which serialize and encode the incoming parallel
data bus. The serializer is built with the ArriaTM10 Native PHY IP. The data encoding is not yet defined:
it could be implemented inside the Native PHY or could be an external block. The first idea is to use the
8B10B encoding. Around this main path, a set of control and status registers are implemented to monitor
or control this interface. A synopsis of the FEX interface block diagram is presented on Fig. 8.
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Figure 8: FEX interface block diagram

ArriaTM10 Native PHY transmitter block

Configuration The Native PHY part is the hardware IP which implements the transmitter of the
ArriaTM10 transceiver. Six ArriaTM10 transceivers are gathered in a same bank which is synchro-
nized with a 160 MHz external reference clock. The total of 48 receivers will be implemented in
8 banks. A transceiver includes a receiver and a transmitter. These 2 parts are strongly dependent
and share the same reference clock but they can handle different speed.

In order to prevent timing issues at FPGA core level the transceiver should be implemented using
the Enhanced PCS (See ArriaTM10 Transceiver PHY User Guide in [8]) which allows having a
32/40 or a 64 bit data bus on the input parallel bus. The frequency of the synchronization clock
depends of the output serial data rate and the input data bus width. For example, if the Native PHY
is configured at 11.2 Gbps with a 40 bit input data bus, the clock frequency should be 280 MHz.

Implementation At power up or if a reset occurs, the Native PHY needs a special reset sequence
on its analog and digital part in order to lock the output data stream. An external ATX PLL is used
to generate the high speed clock which drives the high speed clock of the serializer. When the
ATX PLL is locked, an output flag is raised and then the reset sequence may continue. The input
parallel data bus is driven by the FEX encoding block when the Native PHY does not implement
the internal encoding protocol. For example the 64b/66b protocol is already implemented in the
Native PHY.

Timing The input parallel data bus is synchronized by the recovered Tx clock or a local clock if
the Rate Match FIFO is implemented. All these data shall been aligned in the previous stages with
a fixed latency.
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FEX encoding This block receives data from the previous stage “Output Summing block” in a standard
format defined for all the FEX boards. This format should have header and trailer in order to identify
the packets. Currently the data format is not yet known. In addition and for reliability and control of the
system, a CRC word may be added to each output data packet.

These packets shall be encoded before being transmitted to the Native PHY transceiver. Generally
for high speed transmission, the 64b/66b encoding is used (40/100G protocol) and allows having only
3.125% overhead. This protocol is implemented inside the Native PHY but, if the 64b/66b encoding
is not chosen for the final design, the FEX encoding block shall implement the desired protocol. The
other solution could be the 8B10B encoding which is the current foreseen solution. The input and output
parallel data buses of this block are strongly correlated to the configuration of the Native PHY. For
example, if we want to implement the 8B10B encoding, the Native PHY shall be configured in 40 bit and
the input interface of the FEX encoding block shall be 32 bit. In that case the 8B10B encoder will also
be implemented in the FEX encoding block.

2.2.3.2 Registers

A set of status registers will be implemented in order to monitor the locking state of the transmitter PLL.
The control registers allows resetting the transmitters links.

2.2.3.3 Examples

To be completed. Examples and chronograms describing the input streaming interface from the previous
stage.

2.2.4 DDR3 interfaces

2.2.4.1 Overview

The ARRIA 10 is connected to two external MT41JT128M16JT-125 DDR3 for massive storage of data.
This DDR3 is a 16 bit data bus memory with a theoretical maximum data rate of 3.2 GB/s. The density is
2 GB distributed in 8 banks of 16K rows, each row containing 1K column of 16 bit (page of 2 KB).

The ARRIA 10 can interface these DDR3 with 2 independent and parallel ALTERATM EMIF (External
Memory Interface) IP [9]. This IP can be designed with a hard memory controller and a hard PHY that
are part of the ArriaTM10 chip. The maximum data rate is obtained with the quarter clock rate driven the
“TDAQ-Monitoring” block. As only one row per bank can be opened at a given time it is recommended
to make accesses from bank to bank for more efficiency. A synopsis of the DDR3 interface block diagram
is presented on Fig. 9.

The DDR3 is seen as an Avalon Memory mapped slave by the FPGA core. So the FPGA core
interface should act as an Avalon Memory Mapped master in order to read or write data to the DDR3.
The Avalon bus timing is given by the EMIF user clock output. This clock has a frequency constrained
by the external DDR3 memory and the hard controller clock rate.
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Figure 9: DDR3 interface block diagram

The interface between the ARRIA 10 EMIF hard controller and the FPGA fabric is based on the
standard Avalon Interface Memory Mapped interface.

2.2.4.2 Examples

To be completed with chronograms
Quarter-rate DDR3 SDRAM reads
Quarter-rate DDR3 SDRAM writes
Waiting for new release of the ALTERATM External Memory Interface Handbook for ARRIA 10 EMIF

timing.

2.2.5 GbE interface

2.2.5.1 Overview

The GbE port of the LLI is dedicated to slow control and monitoring of the ArriaTM10 firmware. This
port comes from the AMC-A10 connector on a 1.25 Gbps link. The GbE interface makes the interface
between the physical link and the next stage which is the IPBus controller block.

This interface use a hardware transceiver coupled with a 10/100/1000 Ethernet MAC. This MAC is
an ALTERATM IP [10].

The GbE interface is designed by the instantiation of the ArriaTM10 triple speed Ethernet IP which
includes the hardware part of the 1.25 PHY and the triple speed Ethernet MAC. In our case, we can
use the “10/100/1000 Ethernet MAC with 1000Base-X/SGMII PCS” option. The streaming interface is
connected to the “IPBus Controller” block which will be the bridge towards the Avalon MM domain for
all the other Avalon MM slaves. The transactions are processed on a 32 bit data bus and are synchronized
by a 100 MHz clock. Payload data are UDP packets encompassing IPBus packets.
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The GbE has also an Avalon MM interface for internal control and monitoring. We have to see if it
can be connected to the Avalon MM domain managed by the IPBus controller block. A synopsis of the
GbE interface block diagram is presented on Fig. 10.
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Figure 10: GbE interface block diagram

2.2.5.2 Registers

A set of status registers will be implemented in order to monitor the locking states of the receiver/transmitter
link. The control registers allows resetting the receiver and transmitter links.

2.2.5.3 Examples

See section 7 of data sheet [10].

2.2.6 XAUI interface

2.2.6.1 Overview

The XAUI interface of the LLI is dedicated to local fast monitoring using XAUI links coupled with a
10GbE MAC. The XAUI interface comes from the AMC-A10 connector on 4x3.125 Gbps links. The
data format exchanged on this interface is not yet defined. The transport protocol can be UDP.

This interface is designed around 2 main blocks. The hardware XAUI PHY includes the hardware
transceivers plus the soft XAUI protocol and the 10GbE MAC coming from the ALTERATM IP. The
transport protocol (UDP or others to be defined) is not decoded in this interface but the next stage.

The interface with the FPGA core uses standard interfaces for streaming data and registers access.
The streaming interface is performed on a 32 bit data bus running at 312.5 MHz in transmission and
reception
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The XAUI PHY implements 4 hardware transceivers running at 3.125 Gbps. These transceivers are
synchronized by the same 156.25 MHz reference clock. An external ATX PLL shall be implemented in
order to drive the high speed clock for the transmitter part. Unlike the Stratix IV FPGA, the ArriaTM10
XAUI alignment is not performed inside the hardware transceivers but with a soft IP.

The 10GbE MAC part of this interface is the standard 10GbE ALTERATM IP [11].
A synopsis of the XAUI interface block diagram is presented on Fig. 11.
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Figure 11: XAUI interface block diagram

2.2.6.2 Registers

A set of status registers will be implemented in order to monitor the locking state of the transmitter PLL
and the receiver’s links. The control registers allow resetting the receivers and transmitters links.

2.2.6.3 Examples

See section 9 of data sheet [11].

2.2.7 GBT interfaces

2.2.7.1 Overview

A GBT port is available on the AMC-A10 connector. This link targets data transmission between the on-
detector and off-detector electronics serving simultaneously applications such as data acquisition, timing,
trigger and experiment control. In our application the GBT link will be used to transmit monitoring data
to TDAQ system and/or to carry TTC control signals. This link operates at 4.8 Gbps.
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The GBT FPGA interface could be divided in 2 main parts. The hardware transceiver part is imple-
mented by the Native PHY IP and the decoding/encoding part is represented by the GBT Tx and GBT
Rx blocks. This interface could be based on the GBT-FPGA project[12] which is developed at CERN.
For the moment this project targets ALTERATM Cyclone V or Stratix V. ArriaTM10 FPGA is not yet
implemented.

This LLI interface should support the “GBT frame” encoding scheme (Reed Solomon) in order to be
compatible with Data acquisition and Timing and Trigger Control systems. This encoding is mandatory
to obtain a “Latency-Optimized” design. In that case the user data field is 80 bit.

The TDAQ monitoring packets transmitted to the TDAQ system shall have the predefined format
given by ATLAS TDAQ system with headers, payload data and trailers. This encapsulation is performed
by the “TDAQ monitoring” previous stage. A synopsis of the GBT interface block diagram is presented
on Fig. 12.
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Figure 12: GBT interface block diagram

2.2.7.2 Registers

A set of status registers will be implemented in order to monitor the locking state of the transmitter PLL
and the receiver’s links. The control registers allows resetting the receivers and transmitters links.

2.2.7.3 Examples

To be completed with chronograms. See also GBT project web page at CERN.
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2.2.8 LVDS interfaces

2.2.8.1 Overview

There are 4 LVDS links connected to the AMC-A10 connector. These links could be used to carry TTC
signals from the carrier board.

The LVDS links are implemented on ArriaTM10 hardware LVDS transmitters and receivers. These
modules accept LVDS data up to 1.6 Gbps.

If these LVDS lines are used to carry TTC signals, they shall be synchronized with the 160 MHz
TTC clock coming from the carrier. The mandatory signals are Bunch Crossing Reset and the phase of
the 40 MHz TTC clock. Other signals like L0A, L1A or Trigger Type signals should be used for TDAQ
monitoring purposes. A synopsis of the XAUI interface block diagram is presented on Fig. 13.
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Figure 13: LVDS interface block diagram

2.2.8.2 Registers

A set of status registers will be implemented in order to monitor the locking state of the LVDS links. The
control registers allows resetting the receivers and transmitters links.

2.2.8.3 Examples

To be completed with chronograms.

2.2.9 MMC/microPODTM/ArriaTM10 ADC/EPCQ-L FLASH interfaces

2.2.9.1 Overview

Several components are connected to the ArriaTM10 with GPIO or serial links like I2C or SPI. The FPGA
includes an embedded ADC to monitor external voltage values and an internal sensing diode to check
the FPGA temperature. This section of the LLI describes the interface between all these components and
the FPGA core.
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ArriaTM10 device supports an internal temperature sensing diode with a built-in 10 bit ADC circuitry
to monitor die temperature. In addition ArriaTM10 supports an on-chip voltage sensor. The voltage
sensor provides a 12 bit digital representation of the analog signal being observed. The voltage sensor
monitors two external differential inputs and six internal power supplies. During standard acquisition, the
FPGA temperature and power supplies are monitored by the MMC with external components in order to
check all the temperature and power supplies of the FPGA. But for tests and debugging or direct access
to the GbE network, it could be useful to use these internal capabilities for the FPGA characterization.

For microPODTM module control and interrogation, the microPODTM control interface incorporates
an I2C interface and control signals (resets, interrupts). Diagnostic monitors for VCSEL bias, light
output power (LOP), temperature, both supply voltages and elapsed operating time are implemented and
results are available through the I2C interface. The ArriaTM10 implements an I2C master to monitor all
these parameters. These values could be read directly by the GbE network and an alarm could be raised
and sent to the MMC GPIO when the microPODTM temperature or power supplies exceed predetermined
limits.

At power up or if a reconfiguration reset occurs, the ArriaTM10 boots from the EPCQ-L 512 Mbit
serial Flash. This Flash can be uploaded through the ALTERATM Serial Flash Loader IP. In order to
update the EPCQ-L from the GbE network, this IP should be managed by a custom bridge linked to the
Avalon MM port.

Others GPIO are connected to the MMC for alarm flag, the AMC-A10 clock multiplexer and AMC-
A10 ID resistors. A synopsis of the MMC/microPODTMArriaTM10 ADC/EPCQ-L FLASH interface
block diagram is presented on Fig. 14.
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Figure 14: MMC/microPODTM/ArriaTM10 ADC/EPCQ-L FLASH interfaces block diagram

2.2.9.2 Registers

A set of status registers will be implemented in order to monitor the state of the microPODTM, the
FPGA temperature. . . . The control registers allows resetting the microPODTM, changing the TTC clock
source. . . ..
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2.2.9.3 Examples

To be completed.

2.3 Estimated latency

The latency induced by the deserialization of the LTDB data block and by the serialization of the FEX
interface can be estimated by simulation. A project has been designed with a simple pattern generator
and checker connected to the ArriaTM10 transceiver IP. This IP was configured at 6.4 Gbps with a parallel
bus of 40 bit and with the bit slip alignment mode. The transmitter and receiver were connected with a
delay of 0 ns in the simulation test bench.

Figure 15: Simulated latency introduced by ArriaTM10 transceiver IP (6.4 Gbps/40 bit)

The delay measured between the pattern generator and the pattern checker is ∼ 105 ns, as presented
on Fig. 15. So if we assume that the serialization and the deserialization induce equal delays, we can
estimate that the latency is ∼ 2.5 BC for the LTDB interface and also ∼ 2.5 BC for the FEX interface.

These values are preliminary and have to be measured and checked with hardware and with Transceiver
IP configured at 5.12 Gbs/16 bit and 11.2 Gbps/40 bit.

2.4 Interfaces

The Low-level interface interfaces are described in Table 5.

Interface # Description
Clocks

ipctrl 100 clk 1 IP Bus controller 100MHz clock
Data path

Table 5: Low-level interface interfaces description (part)
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Interface # Description
lli istage ltdb data st 48 Incoming LTDB data

Signal/Bus Width Description
data 16 Incoming supercell data from the deserializer

rx bitslip 1 Signal sent to the Rx part of the input
transceiver to shift the data by one
bit. Used until the frame is properly
aligned.

valid 1 Transceiver locked
xcvr rx 320 clk 1 320 MHz recovered clock from the transceiver

FEX data
osum lli fex data st 48 Packed FEX data

Signal/Bus Width Description
data 32 FEX data
valid 1 FEX data is valid

xcvr tx 280 clk 1 Transceiver clock
GBT Link

lli mon gbt link c 3 GBT Monitoring link
gbt 120 clk 1 Transceiver clock
rx data st 1 RX data bus

Signal/Bus Width Description
data 16 TBD

ready 1 TBD
valid 1 TBD

tx data st 1 TX data bus
Signal/Bus Width Description

data 16 TBD
ready 1 TBD
valid 1 TBD

Gigabit Ethernet Link
lli ipctrl gbe link c 1 Gigabit Ethernet link

gbe 100 clk 1 Transceiver clock
rx data st 1 RX data bus

Signal/Bus Width Description
data 32 TBD

empty 2 TBD
endofpacket 1 TBD

error 6 TBD
ready 1 TBD

startofpacket 1 TBD
valid 1 TBD

tx data st 1 TX data bus
Signal/Bus Width Description

data 32 TBD
empty 2 TBD

endofpacket 1 TBD
error 1 TBD

Table 5: Low-level interface interfaces description (part)
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Interface # Description
ready 1 TBD

startofpacket 1 TBD
valid 1 TBD

LVDS Link
lli ttc lvds link c 4 LVDS link

lvds 160 clk 1 Transceiver clock
rx data st 1 RX data bus

Signal/Bus Width Description
data 16 TBD
valid 1 TBD

tx data st 1 TX data bus
Signal/Bus Width Description

data 16 TBD
valid 1 TBD

Memory
mon lli ddr c 1 DDR3 memory bus

bank mm 2 DDR3 memory bank
ddr 200 clk 1 DDR3 200MHz clock

Registers
ipctrl lli reg mm 1 Low-level interface registers

XAUI Link
lli mon xaui link c 1 XAUI Monitoring link

rx data st 1 RX data bus
Signal/Bus Width Description

data 32 TBD
empty 2 TBD

endofpacket 1 TBD
error 6 TBD
ready 1 TBD

startofpacket 1 TBD
rx status st 1 RX status bus

Signal/Bus Width Description
data 40 TBD
error 7 TBD
valid 1 TBD

tx data st 1 TX data bus
Signal/Bus Width Description

data 32 TBD
empty 2 TBD

endofpacket 1 TBD
error 2 TBD

startofpacket 1 TBD
valid 1 TBD

tx pause st 1 TX pause bus
Signal/Bus Width Description

data 32 TBD
Table 5: Low-level interface interfaces description (part)
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Interface # Description
tx status st 1 TX status bus

Signal/Bus Width Description
data 40 TBD
error 7 TBD
valid 1 TBD

xaui 312 5 clk 1 Transceiver clock

Table 5: Low-level interface interfaces description

2.5 Registers

TBD
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3 Input Stage

3.1 Introduction

As presented in section 2.2.2, the output of this Rx transceiver consists in a 16 bit data path at 320 MHz
that feeds the input stage: lli istage ltdb data st. Each 16 bit data bus has its own 320 MHz clock recov-
ered by the deserializer of the corresponding channel: lli istage ltdb data st.xcvr rx 320 clk.

The input stage task can be split into 3 sub-tasks:

• reception and processing of the LTDB data stream as described in section 2.2.2,

• test pattern generator and

• fibre to fibre alignment.

A synopsis of the input stage block diagram is presented in Fig. 16.

Figure 16: Input stage block diagram

3.2 Description

3.2.1 Input frame alignment

3.2.1.1 Reception and processing of the LTDB data stream

The LTDB data stream uses the LOCic format described in reference [13]. The LTDB data structure
consists in a 128 bit frame per BCID represented in Fig 17. This frame contains:

• A special pattern to detect the border of the frame (4 bits = “0101”), represented as T8-T11 in
Fig. 17.
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• The ADC data, scrambled, corresponding to 8 channels (112 bits) represented as D0-D11 in
Fig. 17. D12 and D13 are not used.

• BCID partial information , PRBS5 and PRBS7 (4 bits) , represented as T12-T15 in Fig. 17.

• A CRC word to check the transmission (8 bits) , represented as T0-T7 in Fig. 17.

Figure 17: LOCic frame structure

The input stage must:

• Detect the border pattern in the input serial stream to “cut out” 16 bit data words with the proper
alignment.

• Extract the ADC data from the parallel data stream. These data are scrambled.

• Unscramble the ADC data stream.

• Extract the CRC from the data stream.

• Compute the CRC from the unscrambled data and compare it to the extracted CRC.

• Extract the BCID information from the parallel data stream (4 bit) and compute the current BCID
(12 bit).

• Constantly check that the BCID progression is consistent.

• Provide the fibre to fibre alignment block a data stream and some flags:

– Unscrambled ADC values : 12 bit @ 320 MHz

– Start of frame signal (1 bit)

– BCID value (12 bit)

– Status flags: error flags (CRC error, BCID sequence error)
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3.2.1.2 Test pattern generator

The test pattern generator is provided as a test device that can inject user defined data in the processing
stages instead of the data coming from the Front-End LTDB. It can be used when debugging the firmware
but also as a tool to show possible failures when the system is under use.

The test pattern generator design is simple. It consists mainly of a dual access RAM containing the
patterns to be injected in the processor and of a controller interfaced with the IPBus to store and read
back the data and to control the injection into the processor.

A digital multiplexer is used to select the source of the data that will be processed: either the FE
LTDB data or the test pattern generator data.

The structure of the data is that of the data encoded in LOCic format. Each frame consists of 8 words
of 16 bits, one per channel (Super Cell). These words are delivered at 320 MHz. The LHC machine cycle
length being equal to 3564 BCID, the BCID does not return to zero after 4095 (normal binary roll-over)
but at 3563. So we need 3564 * 8 = 28512 words to get one full rotation. We retain the value 32768
for the memory depth, since it is the closest power of 2 over 28512. As a consequence, the memory has
a 15 bit address bus and a 16 bit wide data bus. The test pattern is seen as a memory block that can be
accessed in Write and Read mode by the DCS system (IPBus based).

When the Test mode bit is not activated (= 0), the address of the memory is blocked at 0 and the
multiplexer selects the data from the LTDB. When the Test mode bit is activated (= 1), the address of
the memory is incremented at 320 MHz rate, and returns to zero after address 28511 is reached. In that
case the multiplexer selects the data from the dual port RAM.

The memory has 32768 words of 16 bits corresponding to ∼ 0.5 Mbit to be compared to the memory
available in the ArriaTM10 of 50 Mbit. It therefore seems reasonable to allocate one memory per block of
6 transceivers. 8 such blocks are needed to obtain a full 48 fibre system. Therefore the memory dedicated
to the pattern generator amounts to about 4 Mbit, i.e ∼ 8% of the total available memory of the FPGA.

3.2.2 Fibre to fibre alignment

Incoming data are not synchronous due to the differences in time of flight and of fibre lengths; data
corresponding to one bunch crossing have to be aligned. The principle of operation of the synchronizer
is the following:

• there is one FIFO per TX channel (fibre).

• A state machine makes sure that the first word written after the reset of the FIFOs corresponds to
the data of BCID = 0.

• Once all the FIFOs are in the state “not empty”, they can be read by the system with a common
clock by connecting the valid signal to the “read enable” signals of all the FIFOs.

A master clock at 320 MHz derived from the system clock recovered by the TTC can be used: ttc 320 clk.
Data are written in the FIFOS and read out from the FIFOs at 320 MHz.

The FIFO depth is relatively small. It only needs to accommodate the biggest time difference between
the set of fibres. By construction, the synchronizer can handle any time difference value. For instance,
for an alignment depth of four BC, and considering the eight data words to write at each BC, it would
require a FIFO with 4 x 8 = 32 words, which is very small. In total, for 48 fibres, the corresponding
FIFOs require 3888 (ALMs) and 25576 memory bits, which is less than respectively 1% and 0.5 % of
the available resources.
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3.3 Estimated latency

The estimated latency of this stage is in the range 2.5 to 3 BCIDs (62 to 75 ns), counted from the input
of the TX reception stage to the output of the synchronization FIFO. This number comes from a mea-
surement done on a mock-up implemented on a CYCLONE V Gx design kit, and extrapolated to the
ArriaTM10. The figure must be handled with some caution.

3.4 Interfaces

The interfaces of input stage block are described in table 6.

Interface # Description
Clocks

ipctrl 100 clk 1 IP Bus controller 100MHz clock
ttc 320 clk 1 TTC 320MHz recovered clock

Data path
istage remap sc data aligned st 48 Supercell ADC data aligned on the TTC 320MHz clock

Signal/Bus Width Description
data 12 Supercell ADC data
error 2 Report CRC errors or BCID errors on

the corresponding channels
startofpacket 1 Indicates the first word in the series

of 8 words of each BCID packet
valid 1 Indicates that the data going out of

the input stage can be used by the configurable
remapping. This signal is activated
when all the selected channels are synchronized
and re-timed without errors.

lli istage ltdb data st 48 Incoming LTDB data
Signal/Bus Width Description

data 16 Incoming supercell data from the deserializer
rx bitslip 1 Signal sent to the Rx part of the input

transceiver to shift the data by one
bit. Used until the frame is properly
aligned.

valid 1 Transceiver locked
xcvr rx 320 clk 1 320 MHz recovered clock from the transceiver

Registers
ipctrl istage reg mm 1 Input stage registers

TTC data
ttc istage bcid st 1 Current BCID value provided by the TTC receiver

Signal/Bus Width Description
data 12 Received BCID
valid 1 BCID is valid

Table 6: Input stage interfaces description
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3.5 Registers

The registers implemented in the input stage are summarized in table 7.

Register name Type Size (32 bits) Offset Description
istage test data R/W RAM 8 x 32 k x 16 bits 0x00000 LOCic like data

Istage test mode R/W Register 1 0x10000 Normal or test mode operation
selection

istage fibre select R/W Register 48 0x10004 Fibre selection

Table 7: Input stage registers description
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4 Configurable Remapping

4.1 Introduction

The configurable remapping block is used to reorder data following the detector geometry, for each BC,
coming from the input stage. This block groups data from Super Cells belonging to the same Trigger
Tower (TT) coming in over istage remap sc data aligned st interface, and then sends them to one of
the user code block instances over remap user remap data st interface. A synopsis of the configurable
remapping interface block diagram is presented in Fig. 18.

There are two main reasons for grouping Super Cells according to detector geometry:

• to prepare data for jFEX and gFEX where the unit is a TT and

• to potentially use the BCid from a neighbouring Super Cell if the pulse shape is distorted because
of saturation.

As the data arrangement and the geometry are not uniformed across the detector and therefore are dif-
ferent for each AMC-A10, it is proposed to configure the remapping process at power up. Data from
several incoming fibres are grouped to build a TT. The configurable remapping stage therefore allows to
have a unique version of the user code .
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Avalon ST interfaces
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Figure 18: configurable remapping block diagram

4.2 Description

Each interface istage remap sc data aligned st corresponds to typically 10 Super Cells but there are
cases where it corresponds to 12 Super Cells. The configurable remapping therefore needs to be able
to remap 12 data words from one TT. Each output interface remap user remap data st is constructed
over a pair of 12 bit buses together with error bits and the frame delimiter.

Thus, the configurable remapping block has 48 input data streams aligned on ttc 320 clk (8 samples
within 1 BC) and 64 output data streams aligned on ttc 240 clk (6 samples within 1 BC) paired to 32
data streams to the number of TTs. The waveforms of the configurable remapping input and output
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signals are shown in Fig. 19. The time-division multiplexing of the data and packing two samples within
24 bit output word can be seen there.

Figure 19: Waveforms of the configurable remapping input and output signals. Here: FXn — X-th fibre
sample for the n-th BCID, T Xn — X-th Trigger tower sample for the n-th BCID.

4.3 Estimated latency

The estimated latency for configurable remapping block is less than 1.5 BC. This number was obtained
by a functional verification of a principle configurable remapping realization. Basically 1 BC is needed
to store all inputs samples with the same BCID in the FPGA block memory. Several additional clock
cycles are needed to move the data from clock domain of ttc 320 clk to the one of ttc 240 clk.

4.4 Interfaces

The configurable remapping block has three interfaces:

• ipctrl remap reg mm used to load configuration data to the block. It is the Avalon MM interface;

• the input data come over 48 streams of the istage remap sc data aligned st interface. It is the
Avalon Stream interface;

• over 32 stream pairs of the remap user remap data st interface the remapped data go to the user
code block. It is the Avalon Stream interface;

Full description of the interfaces is presented in Table 8.

Interface # Description
Clocks

ipctrl 100 clk 1 IP Bus controller 100MHz clock
ttc 240 clk 1 TTC 240MHz recovered clock

Table 8: Input remapping interfaces description (part)
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Interface # Description
ttc 320 clk 1 TTC 320MHz recovered clock

Data path
istage remap sc data aligned st 48 Supercell ADC data aligned on the TTC 320MHz clock

Signal/Bus Width Description
data 12 Supercell ADC data
error 2 Report CRC errors or BCID errors on

the corresponding channels
startofpacket 1 Indicates the first word in the series

of 8 words of each BCID packet
valid 1 Indicates that the data going out of

the input stage can be used by the configurable
remapping. This signal is activated
when all the selected channels are synchronized
and re-timed without errors.

remap user remap data st 32 Reordered ADC data aligned on the TTC 240MHz clock
Signal/Bus Width Description

data 24 ADC data of two supercells
error 4 CRC error, BCID error for two supercells

startofpacket 1 First word of the packet
valid 1 Valid data to User-code

Registers
ipctrl remap reg mm 1 Configurable remapping registers

Table 8: Input remapping interfaces description

4.5 Registers

The register map for the configurable remapping block depends on the realization of this block. So these
registers are to be defined.
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5 User Code

5.1 Introduction

The user code block receives the remapped Super Cell data from the configurable remapping block and
outputs synchronously the reconstructed transverse energy, ESuper Cell

T , the bunch crossing, BCid , and
some quality and error bits to the output summing block as represented in Fig 3.

The multiplexed input data from the configurable remapping block consists of 32 streams of
remap user remap data st. Each stream consists of two sets of up to six Super Cells (typically five),
associated to one Trigger Tower (TT) as described in section 4. It is foreseen to run one instance of the
user code per input stream, leading to an input data rate of 24 bit at 240 MHz.

The output to the output summing block consists of 40 bit at 240 MHz on user osum out data st.
(2x14 bits for ESuper Cell

T 2x4 bit for a quality factor and 2x2 bit for errors) The transverse energy calcu-
lation, ESuper Cell

T , and BCid are performed by a filtering algorithm.
When the pulse shape is distorted, e.g. in case of saturation, BCid may fail. In that case, a special

treatment, to recover the BC where the signal was deposited and to estimate the energy, has to be included
in the available latency.

The overall latency introduced by the user code is fixed.
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Figure 20: user code block diagram. Basic data flow consists from 32 streams of two Super Cells in
2 × 12 bit (input) or 2 × 11 bit (output). The numbers associated to the interfaces between the two
sub-blocks refer to one Super Cell only.

5.2 Description

The user code consists of two sub-blocks as presented on Fig. 20:

• the Filtering block reconstructs ESuper Cell
T and identifies the BC, which runs two parallel tasks:
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– the FIR Filter converts 12 bit ADC to transverse energy by a filtering algorithm and

– the Saturation detection detects irregular pulse shapes, as induced by upstream saturation, or
distorted pulse shape due for instance to noise.

• the Combine block combines the outputs from these two tasks and provides ESuper Cell
T in the correct

BC and one quality bit.

The user code also provides data for monitoring, error detection and possibly histogramming. The
monitoring infrastructure is described in section 7.

5.2.1 FIR filter task

Several algorithms, to reconstruct ESuper Cell
T in high pile-up conditions, have been studied; all of them

based on FIR filter, such as is presented in equation 1,

ET (m) =

N−1∑
i=0

ai · (ADCm−i − pedm−i), (1)

where ai is the calibrated filtering co-efficient, N the number of time samples entering the filter and m
the BCID index. In this document, the choice of the filter is not addressed. Some details on the filter
performance are available in the TDR [1] and in some presentations [14] [15] [16]. The identification of
the BC is performed by applying conditions; ESuper Cell

T is output when the condition is satisfied.

5.2.2 Saturation detection task

If the analog pulse is saturated, the standard algorithm may not provide the correct transverse energy for
the corresponding BC. The treatment of saturated signal has not been extensively studied. It is crucial
to be able to identify the correct BC and provide high energy in case a very high energy was deposited:
a wrong BCid may lead to the loss of a event (as the trigger is blind for four/five BC after a L1A) with
a high energy particle. Recent studies done on simulated data [20] show that BCid is achievable even
when the pulse shape is distorted because of saturation.

In case BCid cannot be extracted from the pulse itself, one possible idea is to get the BCid from a
neighbouring cell, which is known not to saturate. This operation needs to be performed in the shadow
of the FIR filter task.

5.2.3 Combine sub-block

This sub-block combines the output of FIR filter and of the Saturation detection tasks. This sub-block
introduces an extra latency. To keep a total fixed latency, all the operations have to be performed even in
the absence of saturation.

The input of the combine sub-block is data streams with 14 bits for ESuper Cell
T per Super Cell.

5.3 Estimated latency

FIR filter studies in high pile-up condition have shown that, in order to measure the transverse energy,
the FIR filter has to be applied to three samples before, and one sample after the BC. Therefore intrinsic
latency is four BCs. The latency of the saturation detection algorithm should be less or equal than the
one of the FIR filter1. The latency introduced by the Combine block is assumed to be less than one BC.

1This algorithm evaluates only pulse before the peak of the pulse, therefore the required latency tends to be less than FIR
filter.
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Adding the individual contributions, one obtains a minimum latency for the user code block is five BCs.
The implementation of the FIR filter has been studied by several groups, whereas the treatment of the
saturation and the combination stage need to be studied in order to provide more solid numbers.

5.4 Interfaces

Interface # Description
Clocks

ipctrl 100 clk 1 IP Bus controller 100MHz clock
ttc 240 clk 1 TTC 240MHz recovered clock

Data path
remap user remap data st 32 Reordered ADC data aligned on the TTC 240MHz clock

Signal/Bus Width Description
data 24 ADC data of two supercells
error 4 CRC error, BCID error for two supercells

startofpacket 1 First word of the packet
valid 1 Valid data to User-code

user osum out data st 32 Processed data block from User-code
Signal/Bus Width Description

data 28 Two 14 bits data words from User-code
packed in a 28 bits word

error 4 CRC error, BCID error for two supercells
quality 8 Quality information

startofpacket 1 First word of the packet
valid 1 Valid data from User-code

Monitoring
user mon monitoring data c 32 Monitoring data

adc ped st 1 ADC data after substracting pedestal. 12 bits per SC
Signal/Bus Width Description

data 24 ADC data without pedestal data
startofpacket 1 First cell

valid 1 Valid data from User-code
quality st 1 Quality from combine block. 4 bits per SC

Signal/Bus Width Description
data 8 Quality data

startofpacket 1 First cell
valid 1 Valid data from User-code

raw adc st 1 ADC data before substracting pedestal. 12 bits per
SC

Signal/Bus Width Description
data 24 ADC data

startofpacket 1 First cell
valid 1 Valid data from User-code

sat detect st 1 Output of the saturation detection. 2 bits per SC
Signal/Bus Width Description

data 4 Saturation detection data
startofpacket 1 First cell

Table 9: User code interfaces description (part)
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Interface # Description
valid 1 Valid data from User-code

transverse e id st 1 Transverse energy ET from combine block. 14 bits
per SC

Signal/Bus Width Description
data 28 ET data

startofpacket 1 First cell
valid 1 Valid data from User-code

transverse e st 1 Transverse energy ET from filtering block. 14 bits
per SC

Signal/Bus Width Description
data 28 ET data

startofpacket 1 First cell
valid 1 Valid data from User-code

Registers
ipctrl user reg mm 1 User code registers

Table 9: User code interfaces description

• remap user remap data st: Raw ADC data from configurable remapping block as in described in
Section 4. In total 32 data streams for 320 Super Cells with 240 MHz clock. Each stream consists
from 24 bits word which corresponding a pair of Super Cell, 12 bit ADC data. Within 1 BC, user
code block receive 12 Super Cells within a Trigger Tower for each data stream. Corresponding
signals (error, ready start of packet, valid and TTC recovered clock) are also input to the user code.

• ttc 240 clk: 240 MHz TTC recovered clock directly from low level interface, which is used for
base clock for user code.

• user osum out data st: Output to the output summing from the user code block. Transverse Energy
after combining the output of the filtering and saturation detection sub-blocks. The output data
stream is same format with the input, 32 data stream for 320 Super Cells with 240 MHz clock.
Each Super Cell carries 14 bits data, and quality information with 4 bit. Corresponding signals
(error, ready start of packet, valid and TTC recovered clock) are also sent to the output summing
block.

• ipctrl user reg mm: Obtain coefficients through Avalon MM from the register in IPbus block.
Details are described in Section 5.5.

• user mon XXX st: Output to the circular buffer in the monitoring block. The format of data
stream is similar with main stream to output summing block. This stream establishes the access
from monitoring block for each calculation stages: pedestal subtraction (optional, before and after
subtraction), transverse energy (transverse et), saturation detection output (sat detect) and quality
bits (quality) and final output after combining two sub-blocks (transverse et id).

5.5 Registers

The registers to be implemented in the user code block is summarized in Table. 10. These are coefficients
for FIR Filter, Saturation detection and combine sub-blocks.
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Register name Type Size Description, number of parameters per
Super Cell

user ped mm R/W Register 320 x 14 bits pedestal, 1
user filco mm R/W Register 320 x N-stage x 14 bits N-stage FIR co-efficients, N
user con mm R/W Register 320 x 3 or 4 x 14 bits FIR condition parameter, 3-4.
user sat mm R/W Register 320 x 3 or 4 x 14 bits Parameter for Saturation detection, 3 or 4.

user com mm R/W Register 320 x 3 or 4 x 14 bits Parameter for combine block, 3 or 4.

Table 10: User block registers description
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6 Output Summing

6.1 Introduction

The main task of the output summing block it to group the data received from the user code, to calculate
the sums over specific η − φ areas and to send the data to the FEX output fibres (Fig. 21).

Another task is to adjust the precision (number of bits) for each FEX and prepare the encapsulation
of the data, headers and trailers sent to the low level interface and further to the FEX. Another task of the
block is to duplicate several FEX outputs two or more times according to the number of receivers of the
data from specific η − φ areas. Finally the block sends selected sums for monitoring. A synopsis of the
output summing interface block diagram is presented in Fig. 21.

user_osum_out_data_st

Avalon Memory Mapped interfaces
Avalon ST interfaces

Output summing

ipctrl_osum_reg_mm

data
28

startofpacket

valid

quality
8

errors
4

32

data
32

valid

48

osum_lli_fex_data_st

xcvr_tx_280_clk

data
32

valid

osum_mon_monitoring_data_st

ttc_240_clk

Figure 21: Output summing block diagram

6.2 Description

The data flow of the output summing block is shown in Fig. 22. The width of the arrows on the diagram
are roughly proportional to the data streams.

Up to 12 ESuper Cell
T are calculated for each TT in the user code block. For most TTs only 10 or less

data words, out of the 12, are valid data.
For those TTs with all 12 valid data words ESuper Cell

T the special procedure is enabled in the output
summing block to combine two pairs of Super Cells to two pseudo-Super Cells. This procedure is
performed in the input 12⇒ 10 adapter and still needs to be defined. The simple sum can be used as the
first approximation for this adapter.

After the adapter the data go to the eFEX packager (where the precision is fixed and headers and
trailers are appended) and to the first stage of summing where the sums over TTs are performed. To
configure the output summing block which Super Cells are valid and should be included in the output
and to be summed, special registers are included for output summing block. The sums from the first
summing stage go to the jFEX packager and to the second stage of summing where sums over 0.2 x 0.2
η − φ regions are performed. These sums go to the gFEX packager.

While the input data come aligned on ttc 240 clk and the output clock has been chosen to 280 MHz,
the data width of the output interfaces are still to be defined. The data transfer to the output clock domain
is performed in the packager blocks using FIFOs which are pushed in five or six times out of the six input
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clock cycles (during 1 BCID) and poped out five or six times out of the seven output clock cycles (for
the 280 MHz output clock). The header and trailers are appened also in the packager blocks.

Packaged data are duplicated for selected channels. The set of duplicated channels and the multiplic-
ity of the duplication is set by specific registers of the output summing block. The destination (eFEX,
jFEX or gFEX) and area covered by specific optical fibre is set by the registers and the logic of the se-
lective duplication block, that can be configured. However the total number of the output FEX lines is
limited by the number of microPODTM Tx connectors.

For monitoring and debugging purpose, any sum, within the output summing block can be directed
for monitoring. To minimize the number of output lines for monitoring the selection registers are used
for choosing the sums of interest.

Figure 22: Data flows of the Output summing block

6.3 Estimated latency

The estimated latency on the main path of the output summing block for the eFEX stream is less than
0.5 BCs. This time is needed for eFEX data to change the clock domain and to append headers and
trailers. Since summing of all TT energies is needed for jFEX and gFEX, the additional latency of 1 BC
is incurred for them. Thus the latency for jFEX and gFEX are less than 1.5 BC.

6.4 Interfaces

The Output summing block has four interfaces:

• the input data come over 32 paired streams of user osum out data st interface. It is the Avalon
Stream interface;

• the osum lli fex data st interface the output data go to the LLI and further to eFEX. It is the
Avalon Stream interface;

• over osum mon data st interface the selected FEX data outputs for monitoring. It is the Avalon
Stream interface;

• ipctrl osum reg mm used to load configuration data to the block. It is the Avalon MM interface.

Full description of the interfaces is presented in Table 11.
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Interface # Description
Clocks

ipctrl 100 clk 1 IP Bus controller 100MHz clock
ttc 240 clk 1 TTC 240MHz recovered clock

Data path
user osum out data st 32 Processed data block from User-code

Signal/Bus Width Description
data 28 Two 14 bits data words from User-code

packed in a 28 bits word
error 4 CRC error, BCID error for two supercells

quality 8 Quality information
startofpacket 1 First word of the packet

valid 1 Valid data from User-code
FEX data

osum lli fex data st 48 Packed FEX data
Signal/Bus Width Description

data 32 FEX data
valid 1 FEX data is valid

xcvr tx 280 clk 1 Transceiver clock
Monitoring data

osum mon monitoring data st 1 Monitoring data
Signal/Bus Width Description

data 32 Monitoring data
valid 1 Monitoring is valid

Registers
ipctrl osum reg mm 1 Output summing registers

Table 11: Output summing interfaces description

6.5 Registers

Several configuration register types are used in the output summing block.

• registers on whether to activate 12 to 10 Super Cells adapter for specific channel;

• registers on which TT Super Cells are included for total TT energies for jFEX and gFEX. The
dummy Super Cells for some TTs with less than 10 valid Super Cells are omitted from summation;

• registers on which channels need duplication;

• registers on which channels go for monitoring
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7 TDAQ Readout and Monitoring

7.1 Introduction

The AMC-A10 card has three types of output related to data: output for the calorimeter trigger FEXs,
output to TDAQ on receipt of an L1 Accept and output to the monitoring stream for debugging and fast
online analysis. ADC data (from each Super Cell) and ESuper Cell

T data must be buffered pending an L1A
for the TDAQ readout or pending a Send Monitor Data request for monitoring. The Send Monitor Data
request could be an L1A, a TTC channel B command or an internally generated signal.

TDAQ data are sent from the AMC-A10 card via a high speed serial pair either directly to a GBT
chip-set located on the Rear Transition Module (RTM) behind the carrier card, or through the carrier card
FPGA (that acts as a buffer) and then to the GBT chip-set. The baseline is the latter (using the carrier
card FPGA as a buffer) because the signal path lengths are minimized.

Monitoring data are sent from the AMC-A10 via four XAUI pairs to the FPGA located on the carrier
card. The monitoring data from the four AMC-A10 of one LDPB are multiplexed on the FPGA located
on the carrier card and then sent to the Zone 2 Fabric of the ATCA shelf.
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Figure 23: TDAQ Readout and Monitoring block diagram

7.2 Description

7.2.1 Monitor and TDAQ data buffering

Both the incoming ADC data and outputs of the filter (ESuper Cell
T quality bits) results must be buffered

prior to their output to TDAQ or the monitor stream.

7.2.1.1 Monitor data buffering

Monitor data is buffered in four stages:

• circular buffer that runs continuously and keeps a moving window of the last 512 words of ADC
data, filtered (energy and quality bits) data. There is a dedicated circular buffer for each Super
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Cell channel. When a Send Monitor Data signal is received, a contiguous block of N (N typically
between 5 and 10) data samples is taken from the circular buffer and pushed on to a dedicated
FIFO. The number of samples is the number of BC desired and will depend on which type of
Monitor data is being sent. In a trial implementation for a Xilinx Virtex-7, the circular buffer is
512 × 36, absorbing 3 12 bit values every cycle. This corresponds to a depth of (512-2) × 25 ns =

12.75 µs

• Data is packed into a second stage FIFO as 64 bit words in preparation for networking. Each
channel has its own dedicated second stage FIFO. In a trial implementation for a Virtex-7, a shift
register LUT (SRL) was used with a depth of 16.

• When the second stage FIFO has received all the data following the Send Monitor Data signal, it
triggers a state machine that merges the results from multiple Super Cell channels into a third stage
FIFO. There are five of these third stage FIFOs for the 320 Super Cells of information and each of
the 5 FIFOs corresponds to data in a jumbo UDP packet. In a trial implementation for a Virtex-7,
the FIFO size was 512 × 64.

• The UDP header information is contained in a separate BRAM. Finally, the UDP header and FIFO
data are merged and sent out sequentially as 5 separate UDP jumbo packets. The jumbo packet
format is shown in the Figure 24.
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Figure 24: UDP packet format

A second type of monitor data that has been considered is the oscilloscope format. In this case a
continuous flow of data (every BC) is sent out for debugging. Whether or not to send the associated
ESuper Cell

T is still to be decided. The amount of data to be sent must also be decided. Ideally the number
of jumbo UDP packets sent would be the same as for the previous case.
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7.2.1.2 TDAQ data buffering

The TDAQ data is buffered in a similar manner as the monitor data:

• The first stage is a circular buffer that runs continuously and keeps a moving window of the last
512 words of ADC data and filter results data. There is a dedicated circular buffer for each Super
Cell channel.

• When an L1A Send signal is received, a contiguous block of N data samples is taken from the
circular buffer and pushed on to a dedicated second stage FIFO.

The L1A received must also be buffered to fulfill the TDAQ requirements on consecutive L1A.

• When the second stage FIFO has received all the data following the L1A, it triggers a state machine
that merges the results from multiple Super Cell channels into a third stage FIFO. This FIFO then
serves as input to the GBT serialization block. It is likely there will be two third stage FIFOs,
with one being used to store the next L1A data being sent while the other is readout into the GBT
serialization block.

7.2.2 TDAQ Data

TDAQ data is sent to the ATLAS TDAQ system upon L1A. The input is from a circular buffer previously
described. The output is a serial pair, encoded in GBT format, which is used as input to the GBT chip-set
that resides on the RTM.

In Phase 1, the L1 trigger latency is 2.5 µs and the maximum L1 rate is 100 kHz. In Phase 1, data is
sent in response to an L1A.

In Phase 2, the L0 trigger latency is 6 µs (with headroom to go to 10 µs) and the maximum L0 rate
is 1 MHz. The L1 trigger latency is 30 µs (with headroom to go to 60 µs) and the maximum L1 rate is
400 kHz.

The firmware to be developed will assume Phase 1 conditions. However, much larger circular buffers
corresponding to Phase 2 conditions should be investigated as to their impact on FPGA resources. TDAQ
data from each AMC-A10 is sent to a GBT, where it is subsequently sent to FELIX and then on to the
ATLAS TDAQ system. Several TDAQ data formats must be accommodated.

Several use cases have been considered:

• In normal operation, the data sent to TDAQ are ESuper Cell
T coded on 10 bits but they can be stored

in 16 bit words if needed. The bandwidth is 320 Super Cells (SC) × 16 bits × 100 kHz = 0.5 Gbps.
This easily fits within the approximately 5 Gbps bandwidth of the GBT protocol used by FELIX.
One should also send a few words of header information including the BCID corresponding to the
L1A.

• A second TDAQ mode is for calorimeter noise readout. In this mode, both the ADC and ESuper Cell
T

data are transmitted. This data is sent for a total of 10 BCs, five before and five after the BC
corresponding to the L1A (RNDM).

These data are collected at 1 Hz L1A rate (RNDM) so the amount of data to be transmitted is
320 SC × 2 (ADC and ESuper Cell

T ) × 16 bits × 10 BCs × 1 Hz = 0.1 Gbps. This rate fits easily
within the GBT bandwidth.

• A third TDAQ mode is used to compare the filtered transverse energy calculations to those de-
termined using the readout of individual calorimeter cells and offline filtering. One can imagine
using heavily prescaled jet triggers in special runs for L1A for this case. The data to be sent would
be both ADC, ESuper Cell

T and quality bits data. The bandwidth would be slightly larger than the
second TDAQ mode.
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7.2.3 GBT Transceiver

GBT (GigaBit Transceiver) firmware is used to transmit TDAQ data to FELIX and to receive TTC and
other control information from the same. The firmware is designed to communicate with the GBTx ASIC
and Versatile link. An HDL library and example firmware have been provided by the CERN GBT-FPGA
Firmware group for a limited number of target FPGAs and IDE versions. This provides a starting point
for most applications but we will have to modify the code and migrate to the ArriaTM10 and appropriate
QUARTUSTM version.

For our application we will likely use the ”GBT-frame” encoding frame and the Standard latency. In
this mode, there is 80 bits of User Data and 40 bits of reserved data (header, slow control and forward
error correction). Thus 120 bits of data are transmitted at 40 MHz. The GBT core firmware generates or
receives a 20- or 40- bit word that must be then integrated with the ArriaTM10 transceivers.

TDAQ data are placed in the 80-bit User Data words for transmission. The format of the TTC data
that are received via the GBT is still to be defined. The recovered clock from the receive firmware
becomes the BC clock for the AMC-A10 card.

7.2.4 Monitor Data

The function of the monitoring stream is to provide validation of the data processing on AMC-A10. The
Monitor data is meant to be sent over the 10 GbE ATCA Zone 2 fabric though an ATCA switch to a
host PC or farm. It is not part of the usual ATLAS TDAQ system. The input is from a circular buffer
described above. The output is to four XAUI lanes that connect the AMC-A10 FPGA to the carrier card
FPGA. The transmitted data are in the form of jumbo UDP packets. The aggregate bandwidth from the
ATCA crate is ≈ 10 Gbps.

• In normal operation, monitor data is sent to a host PC or farm. The stimulus for sending data could
a prescaled L1A or a RNDM one. One monitoring mode would send ADC data, ESuper Cell

T and the
local BCID in response to the stimulus. UDP and data header information would be sent as well.
The data to be sent might correspond to 5 BCs, two BCs before and two after the peak BC. In this
case the bandwidth would be 320 SC × 3 (ADC, ESuper Cell

T , Q) × 5 (BCs) × 16 bits x S, where S is
the stimulus rate. An S of 10 Hz gives a bandwidth of 0.76 Gbps. While this is below the 10 GbE
bandwidth, recall that four AMC-A10 feed the Carrier Card FPGA/Zone 2 fabric and that there
are multiple carrier cards in the ATCA crate.

• Another mode of operation would send an oscilloscope type of monitor data output. In this case,
data from 32 BCs would be sent for a given Super Cell. The data to be sent might be 80 SC × 2
(ADC and ESuper Cell

T ) × 16 bits × 32 BCs × S, where S is the stimulus rate. An S of 10 Hz gives a
bandwidth of 0.82 Gbps.

All, or at least many, of the use cases need to be specified in writing by the LAr group before the final
firmware is written. One consideration is packing the data into jumbo UDP packets. This is driven by
the number of BCs to be sent, the different forms of data to be sent and the number of Super Cell. An
additional selection criteria of ESuper Cell

T > ET (threshold) has also been proposed for the data. While this
can be done it is an additional complication in the firmware in terms of packing data in UDP packets.

7.3 Estimated latency

This part of the design is not in the critical data path, therefore the latency of this block is not relevant.
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7.4 Interfaces

In the case of the monitor data, the input to the Monitor firmware block are the outputs from three circular
buffers. The three circular buffers hold ADC and filtered data for each Super Cell. The circular buffers
are built from BRAM elements.

The output from the monitor block is a 64-bit FIFO. Additionally there is a fixed UDP preamble
(Ethernet frame, IP header and UDP header information that is stored in BRAM and sent before the
actual Monitor data. A UDP preamble block provides this data. The preample and Monitor data are sub-
sequently merged and sent to the 10 Gbe MAC. The data is sent to the 10 GbE MAC via the AV mm bus.

In the case of the TDAQ data, the input to the TDAQ firmware block are the outputs from three circu-
lar buffers. The three circular buffers hold raw SC data and filtered energy and time data. Alternatively,
they could hold raw SC data, filtered energy data and quality data. The circular buffers are built from
BRAM elements.

The output from the TDAQ block is an 84-bit FIFO. This FIFO is subsequently read by the GBT
firmware block at 40 MHz.

7.5 Registers

Some of the registers to be implemented in the TDAQ Readout and Monitoring block are given in the
Table 12. They were used in a Xilinx Virtex-7 implementation of the Monitoring block. There will be a
similar set of registers for the TDAQ Readout block, some of which are given in the table.

Register name Type Length Description
mon preamble storage R/W 32 10 GbE preamble storage

mon test storage R/W 128 10 GbE test packet storage
mon preamble size R/W 1 10 GbE preamble size

mon test size R/W 1 10 GbE test packet size
mon packet channel enable R/W 1 10 GbE packet channel enable bits

mon test packet control R/W 1 10 GbE test packet control
mon xaui status R/W 1 10 GbE XAUI/MAC status

mon mac tx status R/W 1 10 GbE MAC TX status
mon packet bytes R/W 1 10 GbE packet size bytes
mon status control R/W 1 10 GbE status and control

mon id 1 R/W 1 10 GbE ID 2
mon id 2 R/W 1 10 GbE ID 1

mon error reg 1 R/W 1 10 GbE monitor error register 1
mon error reg 2 R/W 1 10 GbE monitor error register 2

mon gbt preamble storage R/W 1 GBT header (if needed)
mon gbt test storage R/W 128 GBT test data

mon gbt status control R/W 1 GBT status and control
mon gbt error reg 1 R/W 1 GBT error register 1

Table 12: TDAQ Readout and Monitoring block registers description

Interface # Description
Clocks

ipctrl 100 clk 1 IP Bus controller 100MHz clock
Table 13: TDAQ monitoring interfaces description (part)
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Interface # Description
ttc 240 clk 1 TTC 240MHz recovered clock

GBT Link
lli mon gbt link c 3 GBT Monitoring link

gbt 120 clk 1 Transceiver clock
rx data st 1 RX data bus

Signal/Bus Width Description
data 16 TBD

ready 1 TBD
valid 1 TBD

tx data st 1 TX data bus
Signal/Bus Width Description

data 16 TBD
ready 1 TBD
valid 1 TBD

Memory
mon lli ddr c 1 DDR3 memory bus

bank mm 2 DDR3 memory bank
ddr 200 clk 1 DDR3 200MHz clock

Monitoring
user mon monitoring data c 32 Monitoring data

adc ped st 1 ADC data after substracting pedestal. 12 bits per SC
Signal/Bus Width Description

data 24 ADC data without pedestal data
startofpacket 1 First cell

valid 1 Valid data from User-code
quality st 1 Quality from combine block. 4 bits per SC

Signal/Bus Width Description
data 8 Quality data

startofpacket 1 First cell
valid 1 Valid data from User-code

raw adc st 1 ADC data before substracting pedestal. 12 bits per
SC

Signal/Bus Width Description
data 24 ADC data

startofpacket 1 First cell
valid 1 Valid data from User-code

sat detect st 1 Output of the saturation detection. 2 bits per SC
Signal/Bus Width Description

data 4 Saturation detection data
startofpacket 1 First cell

valid 1 Valid data from User-code
transverse e id st 1 Transverse energy ET from combine block. 14 bits

per SC
Signal/Bus Width Description

data 28 ET data
startofpacket 1 First cell

Table 13: TDAQ monitoring interfaces description (part)
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Interface # Description
valid 1 Valid data from User-code

transverse e st 1 Transverse energy ET from filtering block. 14 bits
per SC

Signal/Bus Width Description
data 28 ET data

startofpacket 1 First cell
valid 1 Valid data from User-code

Monitoring data
osum mon monitoring data st 1 Monitoring data

Signal/Bus Width Description
data 32 Monitoring data
valid 1 Monitoring is valid

Registers
ipctrl mon reg mm 1 Monitoring registers

XAUI Link
lli mon xaui link c 1 XAUI Monitoring link

rx data st 1 RX data bus
Signal/Bus Width Description

data 32 TBD
empty 2 TBD

endofpacket 1 TBD
error 6 TBD
ready 1 TBD

startofpacket 1 TBD
rx status st 1 RX status bus

Signal/Bus Width Description
data 40 TBD
error 7 TBD
valid 1 TBD

tx data st 1 TX data bus
Signal/Bus Width Description

data 32 TBD
empty 2 TBD

endofpacket 1 TBD
error 2 TBD

startofpacket 1 TBD
valid 1 TBD

tx pause st 1 TX pause bus
Signal/Bus Width Description

data 32 TBD
tx status st 1 TX status bus

Signal/Bus Width Description
data 40 TBD
error 7 TBD
valid 1 TBD

xaui 312 5 clk 1 Transceiver clock
Table 13: TDAQ monitoring interfaces description (part)
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Interface # Description

Table 13: TDAQ monitoring interfaces description
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8 Slow Control

8.1 Introduction

The slow control interface connects the firmware blocks to the outer world to allow the user to load or
change all the configuration parameters of the system. Furthermore, it monitors the status of the system
and implements the integration into the ATLAS Detector Control System (DCS).

The transport mechanism for the slow control interface is the IPbus protocol [23] over Ethernet.
Since our colleagues from the Compact Muon Solenoid (CMS) experiment already developed an IPbus
controller firmware it is proposed to use this firmware. The IPbus controler is is available from the CAC-
TUS package [26]. This IPbus controller interfaces an IPbus over Ethernet to an adjustable, synchronous
System on Chip (SoC) bus in accordance to the Wishbone specifications [21]. Since the LAr firmware
working group has further decided to use Avalon interfaces for all connections, a Wishbone to Avalon
Memory Mapped interface adapter needs to be implemented.

8.2 IPbus Protocol and CACTUS firmware

The proposed IPbus Controller can be found at Code Archive for the The UpgradeS [26].
It is intended to modify the CACTUS firmware as less as possible to allow easy integration of future

developments done by the CACTUS group. Therefore, a design with interface adapters is chosen. The
adapter between Wishbone and the Avalon Memory Map interface is labeled with wb2amm in the bock
diagram of Figure 26. The archive also contains a documentation of version 2.0 of the IPbus protocol

Figure 25: Schematic view of the SoC bus topology. The bus is implemented as a set of point-to-point
signals. The figure is taken from the CACTUS firmware documentation [25]

[23]. The firmware directory [24] is located at CERN and contains implementations for different XILINX
development boards and some example slave designs which could serve as a basis for our modules.
Figure 25 shows a schematic view of the SoC bus topology. The bus is implemented as a set of point-to-
point signals. The figure is taken from the CACTUS firmware documentation [25].

8.3 ATLAS Detector Control System

The general organization of the Atlas Detector Control System (DCS) is described in [22]. The Finite
State Machine (FSM) mechanism is described in chapter 7.1 therein. It is a framework used to model
the behavior of a system by means of limited number of states, transitions between states, actions and
events. The DCS is designed to
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i) be flexible and platform-independent,

ii) be fault-tolerant and allow remote diagnostics,

iii) keep the dependence of low-level control procedures on external services such as computer networks
as small as possible.

There is no IPbus port to the ATLAS DCS. Therefore, a computer should serve as the interface between
the slow control firmware and the ATLAS DCS. The CACTUS team has also developed an IPbus soft-
ware suite, called uHAL [26], to simplify the development of control software. The control software
should be integrated into the LAr TDAQ software to have only one common software to be maintained.
Since the CACTUS firmware is designed as a master-slave architecture, the software needs to poll the
firmware modules to monitor their states. The connection to the ATLAS DCS system needs to be devel-
oped with the ATLAS DCS group and will be described in a separate document. The control software
should observe the ATLAS Finite State Machine (FSM) states and react on changes if necessary by set-
ting the control registers of the firmware modules to initiate the corresponding behavior. Special attention
should be taken to the implementation of a reset procedure to guarantee signal integrity.

In summary, the connection between the AMC-A10s and the ATLAS DCS is done via a software
control program which interfaces the IPbus protocol to a DCS protocol.

8.4 Interfaces

In order to connect the AMC-A10 firmware modules by means of a Avalon MM interface to the CACTUS
control ports, an output interface adapter is required as depicted in figure 26. The Gigabit ethernet
connection of the CACTUS firmware follows the 8 data bit AXI4 streaming standard. Most probably,
a second interface adapter needs to be implemented to connect the lli ipctrl gbe link c custom
interfaces to the AXI4 standard.
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Avalon Memory Mapped interfaces
Avalon ST interfaces

Cactus firmware

ipctrl_lli_reg_mm

rx_data_st

tx_data_st

32

32

1

lli_ipctrl_gbe_link_c

ipctrl_istage_reg_mm

ipctrl_remap_reg_mm

ipctrl_user_reg_mm

ipctrl_osum_reg_mm

ipctrl_mon_reg_mm

ipctrl_ttc_reg_mm

ipctrl_100_clk

wb2amm

Interface 
adapter

IP Bus 
contoller

Clocks

Slaves

IP Bus 
fabric

A. ipb_to_slaves[NSLV]
B. ipb_from_slaves [NSLV]

A.

B.

gbe_clk

Figure 26: Slow control block diagram. The left block represents the CACTUS firmware with its
main modules ipbus ctrl, slaves, ipbus fabric, and clocks. The Wishbone interface arrays labeled A. and
B. have the names used by the CACTUS firmware where NSLV is the number of slaves. The slaves are
defined in the block slaves and the address decoding is done in the block ipbus fabric utilizing the auto
generated - according to the users definitions - VHDL code ip bus addr decode.vhd.

All interfaces to the slow control firmware block are listed in table 14. In case of the Ethernet link,
the interface is described in detail with the corresponding signal names.

Interface # Description
Clocks

ipctrl 100 clk 1 IP Bus controller 100MHz clock
Gigabit Ethernet Link

lli ipctrl gbe link c 1 Gigabit Ethernet link
gbe 100 clk 1 Transceiver clock
rx data st 1 RX data bus

Signal/Bus Width Description
data 32 TBD

empty 2 TBD
endofpacket 1 TBD

error 6 TBD
ready 1 TBD

startofpacket 1 TBD
valid 1 TBD

tx data st 1 TX data bus
Signal/Bus Width Description

data 32 TBD
empty 2 TBD

endofpacket 1 TBD
error 1 TBD

Table 14: Slow control interfaces description (part)
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Interface # Description
ready 1 TBD

startofpacket 1 TBD
valid 1 TBD

Registers
ipctrl istage reg mm 1 Input stage registers
ipctrl lli reg mm 1 Low-level interface registers
ipctrl mon reg mm 1 Monitoring registers
ipctrl osum reg mm 1 Output summing registers
ipctrl remap reg mm 1 Configurable remapping registers
ipctrl ttc reg mm 1 TTC registers
ipctrl user reg mm 1 User code registers

Table 14: Slow control interfaces description

8.5 Registers

Most probable, it is not necessary to have any registers for the slow control itself.

55



9 TTC

9.1 Introduction

The ttc block receives the LHC TTC information on either an LVDS or GBT link, this needs to be
clarified. It recovers the LHC clock and provide all other blocks a synchronous clock. Informations such
as BCID, Trigger-Type, Level-1 Accept are also provided. The synopsis of the ttc block is shown on
figure 27.

Avalon Memory Mapped interfaces
Avalon ST interfaces

ttc_240_clk

TTC

ipctrl_ttc_reg_mm

rx_data_st

lvds_160_clk

tx_data_st

4

lli_ttc_lvds_link_c 12

data

valid

ttc_istage_bcid_st

ttc_320_clk

Figure 27: ttc block diagram

9.2 Description

TBD

9.3 Estimated latency

The ttc block is not in the main data path hence does not introduce any latency.

9.4 Interfaces

Full description of the interfaces is presented in table 15.

Interface # Description
Clocks

ipctrl 100 clk 1 IP Bus controller 100MHz clock
ttc 240 clk 1 TTC 240MHz recovered clock
ttc 320 clk 1 TTC 320MHz recovered clock

LVDS Link
lli ttc lvds link c 4 LVDS link

lvds 160 clk 1 Transceiver clock
rx data st 1 RX data bus

Signal/Bus Width Description
Table 15: TTC interfaces description (part)
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Interface # Description
data 16 TBD
valid 1 TBD

tx data st 1 TX data bus
Signal/Bus Width Description

data 16 TBD
valid 1 TBD

Registers
ipctrl ttc reg mm 1 TTC registers

TTC data
ttc istage bcid st 1 Current BCID value provided by the TTC receiver

Signal/Bus Width Description
data 12 Received BCID
valid 1 BCID is valid

Table 15: TTC interfaces description

9.5 Registers

TBD
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10 Code Management

10.1 Naming conventions

Some naming conventions apply to the interface and the signal names of the firmware. The naming
conventions are intended to improve the readability and the maintainability of the code.

10.1.1 Interface naming convention

The port names of the modules are made out of 4 parts separated by an underline character:

<master block> <slave block> <interface name> <interface type><[cardinality]>

The meaning of the different parts are described in table 16. There can be no spaces in the names nor
double underlines.

Part of the name Description
master block Short name of the block which is the master of this interface, refer to table 17. If

the master block is not specified, the signal/interface is a global signal/interface,
usually a global reset or clock, i.e. ttc 240 clk is a clock generated by the low
level interface that connects to multiple slaves.

slave block Short name of the block which is the slave of this interface, refer to table 17.
If the slave block is not specified, the signal/interface is connected to multiple
slaves, typically clocks.

interface name Name describing the interface and its purpose.
interface type Short name describing the type of interface, refer to table 18.
cardinality Number of interfaces to instantiate

Table 16: Building parts for high level interface names

Each block has a abbreviation which is listed in table 17.

High-level block Block short name
low level interface lli
input stage istage
configurable remapping remap
user code user
output summing osum
tdaq monitoring mon
ipbus controller ipctrl

Table 17: Abbreviations for the high level blocks

Each type of interface is identified by an abbreviation shown in table 18.
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Interface type Short name
Avalon Streaming interface st
Avalon Memory Mapped interface mm
Custom interface c
Signal s
Clock clk

Table 18: Abbreviations for the interface type

An example of an interface definition is lli istage ltdb data c[48]. It represents a custom
interface between the low level interface and the input stage for transferring data from the LTDB. There
are 48 instances of this interface.

10.1.2 Signals within an interface

The signals within an interface should be in accordance with the the following convention. The name is
made out of two parts separated by an underline character:

<signal name> <signal direction><[cardinality]>

Table 19 lists the description of the different parts of the signal name.

Part of the name Description
signal name Name describing the signal and its purpose

signal direction
signal direction short name
Signal is driven from a source o
Signal is received by a sink i

cardinality Number of signals to instantiate

Table 19: Building parts for signal names

Two examples for signal names are data o[16] and ready i. In order to assign these signals
within an interface utilizing a record in the type definitions one will get e.g. lli istage ltdb data-
st[48].data o[16] or lli istage ltdb data st[48].ready i, respectively. Where lli -
istage ltdb data st[48].data o[16] is the 16th bit of data of the 48th instance of kind Avalon
Streaming used to transfer the LTDB data from the low level interface to the input stage and lli -
istage ltdb data st[48].ready i is the ready signal used by the input stage to inform the low
level interface that it can or cannot receive LTDB data at present.

10.2 GIT Repository

All the code related to the AMC-A10 firmware is stored on a GIT repository located in CERN:

• https://git.cern.ch/web/atlas-lar-ldpb-firmware.git

This allows for all contributors to have access to the same code wherever they are.

A dedicated simulation/compilation environment has been built in order to have a defined process com-
mon to everyone. It is Make f ile and Python based, originally made from hdl − make project [27]. The
environment takes care automatically of all dependencies between source files and is compatible with
Modelsim/Questa and Quartus software for both Windows and Linux machines.
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For more information about the working environment and how to simulate/compile the design, please
refer to [28].

10.3 High-level interfaces and code skeleton

In the GIT repository described in section 10.2, is stored a python file used to describe all high-level
interfaces. All interfaces names are according to the convention described in section 10.1.

The table is used to generate all the interfaces tables used in the present document. Therefore all
blocks are coherent between each other and chances of mistakes are less. A python script in the GIT
environment has been developed to generate the Latex code required for the tables.

The table is also used to generate (with the same script) a code skeleton where VHDL files for each
modules are automatically generated:

• VHDL interfaces definition

• VHDL component definition

• VHDL entity definition

• VHDL architecture definition, to be used as a base for development

• VHDL testbench to simulate the module

Those files should be used by each developer as a base skeleton. It should also reduce the number of
mistakes made at the high-level interfaces.
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