
BABA
Plan of the day

Few more language features

Particle data table

Polymorphic inheritance
R C++ Course 163 Paul F. Kunz

BABA

enum Co olet };

Color c

enum Po
Enumerations

mnemonic names for integer codes grouped into sets

• Color is programmer defined type

• red, orange, etc are constants of type Color

• c is declared as type Color with inital value of
green

• c can change, but red, orange etc can not

• enum values are converted to int when used in
arithmetic or logical operations

• default integer values start at 0 and increment by 1

• can override the default.

• but valued stored in variable which is an enumerated
type is limited to the values of the enum

• uniqueness of the enumerated values is guaranteed

• slightly different from C

lor { red, orange, yellow, green, blue, indigo, vi

 = green;

lygon { triangle = 3, quadrilateral, pentagon };
R C++ Course 164 Paul F. Kunz

BABA

c
{
p
/
/

/

}

PdtLund Class

Extract from this class

• enum nested in class

• must use scoping to access outside of class

• the scoping helps the readability and avoids name
conflicts

• scope type and constants

lass PdtLund

ublic:
/ a list of common particles
/ the numbers are PDG standard particle codes
enum Type {

e_minus = 11, nu_e, mu_minus, nu_mu,
e_plus = -11, nu_e_bar = -12

/ many more not shown
};

;

PdtLund::Type t= PdtLund::e_minus;
R C++ Course 165 Paul F. Kunz

BABA

v

Layout

• Pdt has one data member:
vector<PdtEntry*> s_entries

• PdtEntry has data members for particle properties
and list<DecayMode *> for list of decay modes

• DecayMode has data members for branching
fraction and an list<PdtEntry *> for list of
children.

µ±

π±

π0

K±

K0

η
ρ
ω

K+→µ+ν
K+→e+ν
K+→π+π0

K+→π+π+π-

K+→π+π0π0

K+→π0µ+ν

π+

π0

ector<PDTEntry *>

list<PDTEntry *>

π0

list<DecayMode *>
R C++ Course 166 Paul F. Kunz

BABA

cla
{
pub
 /

s
s
s
s

 s
 s
//
pri

s
};
static keyword

Part of the Pdt class declaratin

• a static data member is one that is shared by all
instances of the class, e.g. a global within the scope
of the class

• a static member function is one that is global
within the scope of the class

• access a data member or member function with scope
operator

ss Pdt

lic:
/ return entry pointer given particle id or name
tatic PdtEntry* lookup(const char *name);
tatic PdtEntry* lookup(PdtLund::Type id);
tatic PdtEntry* lookup(PdtGeant::Type id);
tatic float mass(PdtLund::Type id);
tatic float mass(PdtGeant::Type id);
tatic float mass(const char* name);
more not shown
vate:
tatic std::vector<PdtEntry *> s_entries;

mass = Pdt::mass(PdtLund::pi_plus);
R C++ Course 167 Paul F. Kunz

BABA

cla

cla
pub

i
i
i
i

//
pro

c
f
f
f
f
f
f
f
s
P
P

};
PDTEntry class

Parts of the header file

• note forward declaration of class

ss DecayMode;

ss PdtEntry {
lic:
nline const char *name() const {return m_name;}
nline float charge() const {return m_charge;}
nline float mass() const {return m_mass;}
nline float width() const {return m_width;}
more not shown
tected:
har *m_name;
loat m_mass; // nominal mass (GeV)
loat m_width; // width (0 if stable) (GeV)
loat m_lifeTime; // c*tau, (cm)
loat m_spin; // spin, in units of hbar
loat m_charge; // charge, in units of e
loat m_widthCut; // used to limit range of B-W
loat m_sumBR; // total branching ratio
td::list<DecayMode *> m_decayList;
dtLund::Type m_lundid;
dtGeant::Type m_geantid;
R C++ Course 168 Paul F. Kunz

BABA

class
publi
Dec

inl
{

r
}

inl
{

}

priva

flo
std

};
DecayMode class

From the header file

• nothing new

 DecayMode {
c:
ayMode (float bf,

const list<PdtEntry *> & l);

ine float BF() const

eturn m_branchingFraction;

ine const vector<PDTEntry *> & childList() const

return m_children;

te:

at m_branchingFraction;
::list<PdtEntry *> m_children;
R C++ Course 169 Paul F. Kunz

BABA
Detector Simulation

What classes are involved?

• 3-vector

• geometry

• track

• detectors

• fields

• etc

Will take examples from Gismo project

• C++ framework for detector simulation and
reconstruction;

• we’ll see how it differs from the Fortran black box
approach, e.g. GEANT 3
R C++ Course 170 Paul F. Kunz

BABA
Gismo History

Version 0, the prototype

• written by Bill Atwood (SLAC) and Toby Burnett
(U Washington)

• completed in Spring 1991

Version 1, previous release

• written by Atwood, Burnett, Alan Breakstone
(Hawaii), Dave Britton (McGill) and others

• used C++ but without templates and without CLHEP

• first release was summer 1992

• ftp://ftp.slac.stanford.edu/pubic/
software/gismo-0.5.0.tar.Z

• will show code based on this version, but updated
with STL

Version 2, current version

• written by Atwood and Burnett

• C++ with templates, CLHEP and STL
R C++ Course 171 Paul F. Kunz

BABA
Some Gismo Classes

• other Gismo classes are not shown

• we see several independent class hierarchies

• objects from these hierarchies will work together

Let’s browse some of the classes

Ray

Surface

Helix

Plane

Rectangle

Cylinder

AntiCylinder

Volume

Tube

Circle

Box
R C++ Course 172 Paul F. Kunz

BABA

class S
class R
{
public:
Ray()
Ray(
virtu
Ray(
virtu
inlin
virtu
virtu
dista const;

// more
protect

Three
Three
float

};
Ray class

Part of the header

• you can pretty well guess the significance of the data
members and many of the member functions

• a ray is clearly a straight line

• we have some virtual functions whose signifance will
be explained shortly

urface;
ay

;
const ThreeVec& p, const ThreeVec& d);
al ~Ray() {};
const Ray& r);
al ThreeVec position(double s) const;
e const ThreeVec& position() const {return pos;}
al double curvature() const;
al double
nceToLeaveSurface(const Surface* s, ThreeVec& p)
 not shown
ed:
Vec pos;
Vec dir;
 arclength;
R C++ Course 173 Paul F. Kunz

BABA

class H
{
public:

Helix
Helix

virtu
Helix
virtu
virtu
virtu
dista const;
// ma

protect
Three
doubl
Three
doubl

};
Helix class

Part of the header

• many member functins must be re-implemented
here, so probably a Helix is not a Ray

• we have some more virtual functions

elix : public Ray

();
(const ThreeVec& p, const ThreeVec& d,
 const ThreeVec& a, double r);
al ~Helix() {};
(const Helix& r);
al ThreeVec position(double step) const;
al double curvature() const;
al double
nceToLeaveSurface(const Surface* s, ThreeVec& p)
ny more not shown
ed:
Vec axis; // helix axis direction (unit vector)
e rho; // helix radius, sign significant
Vec perp; // perpendicular direction
e parallel;// component along axis
R C++ Course 174 Paul F. Kunz

BABA

class Su
{
protecte

Thre
public:

Surf
Surf
virt
Surf

virt
= 0;

virt
st = 0;

virt t = 0;
/// more
};
Surface class

Part of the header

• data members can be first in file, but not usual
practise

• the distanceAlong member functions are pure
virtual

• an instance of Surface can not be instanciated

• Surface exists to define an interface

rface

d:
eVec origin; // origin of Surface

ace() : origin() {}
ace(const ThreeVec& o) : origin(o) {}
ual ~Surface() {}
ace(const Surface& s) {
origin = s.origin; }
ual double distanceAlongRay(
int which_way, const Ray* ry, ThreeVec& p) const
ual double distanceAlongHelix(
int which_way, const Helix* hx, ThreeVec& p) con
ual bool withinBoundary(const ThreeVec& x) cons
 not shown
R C++ Course 175 Paul F. Kunz

BABA

class
{
public
Plan
Plan

vi
st;

vi
nst;

// mo
privat
 dou
 //
};
Plane class

Part of header

• Plane is infinite since it has no data members to
describe boundary

• distance along ray to infinite plane can be calcutated,
so implementatin does exist here

Plane: public Surface

:
e(const Point& origin, const Vector& n);
e(const Point& origin, const Vector& nhat,
 double dist);

rtual double distanceAlongRay(
int which_way, const Ray* ry, ThreeVec& p) con

rtual double distanceAlongHelix(
int which_way, const Helix* hx, ThreeVec& p) co

re not shown
e:
ble d;
offset from origin to surface
R C++ Course 176 Paul F. Kunz

BABA

class
{
publi
Cir
Cir

vir
Cir
vir t;

// mo
prote

dou
};
Circle class

Part of header

• has data member to describe boundary

• also has member function to give the answer

 Circle: public Plane

c:
cle() : Plane() { radius = 1.0; }
cle(const ThreeVec& o,

const ThreeVec& n, double r);
tual ~Circle() {}
cle(const Circle& c);
tual bool withinBoundary(const ThreeVec& x) cons
re not shown
cted:
ble radius;
R C++ Course 177 Paul F. Kunz

BABA

class
{
publi
Rec
Rec

vir
Rec
vir t;

prote
dou
Thr

};
Rectangle class

Part of the header

• data members to describe boundary

• member function to test for boundary

• data member to describe direction

 Rectangle: public Plane

c:
tangle();
tangle(const ThreeVec& o, const ThreeVec& n,

double l, double w, const ThreeVec& la);
tual ~Rectangle() {}
tangle(const Rectangle& r);
tual bool withinBoundary(const ThreeVec& x) cons
cted:
ble length, width;
eeVec length_axis;
R C++ Course 178 Paul F. Kunz

BABA

cl
{
//

pr

};
Gismo Volume

Part of the header

• Volume is a base class with common functionality of
all volumes

• it contains a list of surfaces that describe the volume

• it contains a 3-vector for its center and 3 doubles for
its rotation

• member functions not shown allow one to build
abitrary volumes, move them, and rotate it.

• for tracking, key member function is
distanceToLeave

ass Volume

 a lot not shown
virtual double distanceToLeave(const Ray& r,

ThreeVec& p, const Surface*& s) const;
otected:
std::list<Surface *> surface_list;
ThreeVec center; // center of Volume
double roll, pitch, yaw;
R C++ Course 179 Paul F. Kunz

BABA

c
{

}

Subclasses of Volume

Box

• constructor builds six surfaces, positions them, and
adds them to surface list

• hardly any other member functions, nor any data
members

• same for Cylinder and other classes

• any one could add a new volume subclass in a smiliar
way, for example a light pipe

lass Box : Volume

 Box(float len, float width, float height);
Box(const Box &);
virtual ~Box();
// very little not shown

;

R C++ Course 180 Paul F. Kunz

BABA

do

{

}

Part of implementation

The key member function

• loop over all surfaces to find the shortest distance

• the Ray object appears to do the work

• we don’t know if the Ray object is-a Ray or the
Helix subclass

uble Volume::distanceToLeave(const Ray& r,
ThreeVec& p, const Surface *&sf) const

double d = 0.0, t = FLT_MAX;
ThreeVec temp (t, t, t);
p = temp;
sf = 0;
list< Surface *>::iterator it

= surface_list.begin();
for(; it != surface_list.end(); ++it) {

Surface * s = *it;
d = r.distanceToLeaveSurface(s, temp);
if ((t > d) && (d >= 0.0)) {

t = d;
p = temp;
sf = s;

}
}
return t;
R C++ Course 181 Paul F. Kunz

BABA
Recall Memory model

Consider

In computer’s memory we have

• but now, we want Volume to invoke
Helix::distanceToLeaveSurface

Ray r;
Helix h;

Ray()
position()
distanceToLeave()

Code:Objects:

r:

h:

Helix()
position()
distanceToLeave()
R C++ Course 182 Paul F. Kunz

BABA
The virtual function table

Memory model with virtual functions

• virtual member functions are invoked indirectly via
the virtual function table

• the table contains pointers to the member functions

• each class initializes the table with its functions

Ray()
position()
distanceToLeave()

Code:Objects:

r:

h:

Helix()
position()
distanceToLeave()
R C++ Course 183 Paul F. Kunz

BABA

doub

{
do
Th
p
sf
li

fo

}
re

}

Back to implementation

We have

• compiler creates different machines instructions to
invoke a virtual member function

• distanceToLeaveSurface was declared
virtual so correct function gets called

• can even add another subclass of Ray without
recompiling this code

le Volume::distanceToLeave(const Ray& r,
ThreeVec& p, const Surface *&sf) const

uble d = 0.0, t = FLT_MAX;
reeVec temp (t, t, t);
= temp;
 = 0;
st< Surface *>::iterator it
= surface_list.begin();

r(; it != surface_list.end(); ++it) {
Surface * s = *it;
d = r.distanceToLeaveSurface(s, temp);
if ((t > d) && (d >= 0.0)) {

t = d;
p = temp;
sf = s;

}

turn t;
R C++ Course 184 Paul F. Kunz

BABA

do

{

}
//
do

{

}

Following the trail

In Ray and Helix we have

• so Surface will do the work

• this design pattern is called the Visitor pattern or the
Double-Dispatch pattern

• via the Ray or Helix, we invoke the correct
member function of Surface subclass

• recall that these functions were pure virtual in
Surface

uble Ray::distanceToLeaveSurface
(const Surface* s, ThreeVec& p) const

return s->distanceAlongRay(1, this, p);

uble Helix::distanceToLeaveSurface
(const Surface* s, ThreeVec& p) const

return s->distanceAlongHelix(1, this, p);
R C++ Course 185 Paul F. Kunz

BABA
Where’s the implementation?

Where will we find distanceAlongRay?

• it’s not in Surface

• one implementation in Plane

• but we really instansiate objects of type Circle or
Rectangle

• another in Cylinder

Surface

Plane

Rectangle

Cylinder

AntiCylinderCircle
R C++ Course 186 Paul F. Kunz

BABA

doub

{
do
Th
p

//
Th
Th
Th
do
if

do);
if

}
re

}

Implementation

In Plane, we have

• withinBoundary() member function must be in
Circle or Rectangle

• example of template pattern

le Plane::distanceAlongRay(int which_way,
const Ray* ry, ThreeVec& p) const

uble dist = FLT_MAX;
reeVec lv (FLT_MAX, FLT_MAX, FLT_MAX);
= lv;
Origin and direction unit vector of Ray.
reeVec x = ry->position();
reeVec dhat = ry->direction(0.0);
reeVec nhat = normal(); // Normal to plane
uble denom = nhat * dhat;
 ((denom * which_way) <= 0.0)
return dist; // return large distance
uble d = (((getOrigin() - x) * nhat) / denom
 ((d >= 0.0) && (d < FLT_MAX)) {
dist = d;
p = ry->position(d);
if (! withinBoundary (p)) {
dist = FLT_MAX;
p = ThreeVec(FLT_MAX, FLT_MAX, FLT_MAX);

}

turn dist;
R C++ Course 187 Paul F. Kunz

BABA

bool C
{
Thre
if (

re
else

re
}

bool R st
{

Thre
Thre
if (&&

)
re

else
re

}

As expected

In Circle we have

In Rectangle we have

ircle::withinBoundary(const ThreeVec& x) const

eVec p = x - origin;
 p.magnitude() <= radius)
turn true;

turn false;

ectangle::withinBoundary(const ThreeVec& x) con

eVec p = x - origin;
eVec width_axis = norm.cross(length_axis);
 (fabs(p * length_axis) <= (0.5 * length))
(fabs(p * width_axis) <= (0.5 * width))
turn true;

turn false;
R C++ Course 188 Paul F. Kunz

BABA

V
{

}

Virtual destructor

In Volume, we may have

• we need to call the destructor for Circle, Plane,
etc

• thus we make the destructor virtual for this heirarchy

• gcc will warn you if you don’t

olume::~Volume()

list< Surface * >::iterator it
= surface_list.begin();

while (it != surface_list.end()) {
delete *it++;

}

R C++ Course 189 Paul F. Kunz

BABA
Summary

Inheritance used for

• used to expressed common implementation

• used to expressed common behavior

• used to expressed common structure

Virtual inheritance allows objects to use abstract
base functions with concrete classes
R C++ Course 190 Paul F. Kunz

BABA
We’re Done!

But…

• its like you’ve heard lectures on how to swim, but
now you face the deep end of the pool

• its like you know the rules of the game of chess, but
have not yet studied stratgies

Further reading:

• Designing object-oriented C++ applications using
the Booch method, Robert C. Martin, ISBN 0-13-
203837-4, Prentice Hall

• Design Patterns, Gamma, Helm, Johnson, and
Vlissides, ISBN 0-201-63361-2, Addison-Wesley
R C++ Course 191 Paul F. Kunz

	Plan of the day
	Few more language features
	Particle data table
	Polymorphic inheritance

	Enumerations
	mnemonic names for integer codes grouped into sets
	enum Color { red, orange, yellow, green, blue, indigo, violet };
	Color c = green;
	enum Polygon { triangle = 3, quadrilateral, pentagon };
	• Color is programmer defined type
	• red, orange, etc are constants of type Color
	• c is declared as type Color with inital value of green
	• c can change, but red, orange etc can not
	• enum values are converted to int when used in arithmetic or logical operations
	• default integer values start at 0 and increment by 1
	• can override the default.
	• but valued stored in variable which is an enumerated type is limited to the values of the enum
	• uniqueness of the enumerated values is guaranteed
	• slightly different from C

	PdtLund Class
	Extract from this class
	class PdtLund
	{
	public:
	// a list of common particles
	// the numbers are PDG standard particle codes
	��enum Type {
	����e_minus = 11, nu_e, mu_minus, nu_mu,
	����e_plus = -11, nu_e_bar = -12
	// many more not shown
	��};
	};
	• enum nested in class
	• must use scoping to access outside of class
	PdtLund::Type t= PdtLund::e_minus;

	• the scoping helps the readability and avoids name conflicts
	• scope type and constants

	Layout
	• Pdt has one data member: vector<PdtEntry*> s_entries
	• PdtEntry has data members for particle properties and list<DecayMode *> for list of decay modes
	• DecayMode has data members for branching fraction and an list<PdtEntry *> for list of children.

	static keyword
	Part of the Pdt class declaratin
	class Pdt
	{
	public:
	// return entry pointer given particle id or name
	��static PdtEntry* lookup(const char *name);
	��static PdtEntry* lookup(PdtLund::Type id);
	��static PdtEntry* lookup(PdtGeant::Type id);
	��static float mass(PdtLund::Type id);
	static float mass(PdtGeant::Type id);
	static float mass(const char* name);
	// more not shown
	private:
	��static std::vector<PdtEntry *> s_entries;
	};
	• a static data member is one that is shared by all instances of the class, e.g. a global within ...
	• a static member function is one that is global within the scope of the class
	• access a data member or member function with scope operator
	����mass = Pdt::mass(PdtLund::pi_plus);

	PDTEntry class
	Parts of the header file
	class DecayMode;
	class PdtEntry {
	public:
	��inline const char *name() const {return m_name;}
	��inline float charge() const {return m_charge;}
	��inline float mass() const {return m_mass;}
	��inline float width() const {return m_width;}
	// more not shown
	protected:
	��char *m_name;
	��float m_mass; ����// nominal mass (GeV)
	��float m_width;�� �// width (0 if stable) (GeV)
	��float m_lifeTime; // c*tau, (cm)
	��float m_spin;�����// spin, in units of hbar
	��float m_charge;���// charge, in units of e
	��float m_widthCut;�// used to limit range of B-W
	��float m_sumBR;����// total branching ratio
	��std::list<DecayMode *> m_decayList;
	��PdtLund::Type m_lundid;
	��PdtGeant::Type m_geantid;
	};
	• note forward declaration of class

	DecayMode class
	From the header file
	class DecayMode {
	public:
	��DecayMode (float bf,
	��������������const list<PdtEntry *> & l);
	��inline float BF() const
	��{
	����return m_branchingFraction;
	��}
	��inline const vector<PDTEntry *> & childList() const
	��{
	�����return m_children;
	��}
	private:
	��float m_branchingFraction;
	��std::list<PdtEntry *> m_children;
	};
	• nothing new

	Detector Simulation
	What classes are involved?
	• 3-vector
	• geometry
	• track
	• detectors
	• fields
	• etc

	Will take examples from Gismo project
	• C++ framework for detector simulation and reconstruction;
	• we’ll see how it differs from the Fortran black box approach, e.g. GEANT 3

	Gismo History
	Version 0, the prototype
	• written by Bill Atwood (SLAC) and Toby Burnett (U Washington)
	• completed in Spring 1991

	Version 1, previous release
	• written by Atwood, Burnett, Alan Breakstone (Hawaii), Dave Britton (McGill) and others
	• used C++ but without templates and without CLHEP
	• first release was summer 1992
	• ftp://ftp.slac.stanford.edu/pubic/ software/gismo-0.5.0.tar.Z
	• will show code based on this version, but updated with STL

	Version 2, current version
	• written by Atwood and Burnett
	• C++ with templates, CLHEP and STL

	Some Gismo Classes
	• other Gismo classes are not shown
	• we see several independent class hierarchies
	• objects from these hierarchies will work together
	Let’s browse some of the classes

	Ray class
	Part of the header
	class Surface;
	class Ray
	{
	public:
	��Ray();
	��Ray(const ThreeVec& p, const ThreeVec& d);
	��virtual ~Ray() {};
	��Ray(const Ray& r);
	��virtual ThreeVec position(double s) const;
	��inline const ThreeVec& position() const {return pos;}
	��virtual double curvature() const;
	��virtual double
	��distanceToLeaveSurface(const Surface* s, ThreeVec& p) const;
	// more not shown
	protected:
	��ThreeVec pos;
	��ThreeVec dir;
	��float arclength;
	};
	• you can pretty well guess the significance of the data members and many of the member functions
	• a ray is clearly a straight line
	• we have some virtual functions whose signifance will be explained shortly

	Helix class
	Part of the header
	class Helix : public Ray
	{
	public:
	��Helix();
	��Helix(const ThreeVec& p, const ThreeVec& d,
	�������� const ThreeVec& a, double r);
	��virtual ~Helix() {};
	��Helix(const Helix& r);
	��virtual ThreeVec position(double step) const;
	��virtual double curvature() const;
	��virtual double
	��distanceToLeaveSurface(const Surface* s, ThreeVec& p) const;
	��// many more not shown
	protected:
	��ThreeVec axis; �// helix axis direction (unit vector)
	��double rho; ����// helix radius, sign significant
	��ThreeVec perp;��// perpendicular direction
	��double parallel;// component along axis
	};
	• many member functins must be re-implemented here, so probably a Helix is not a Ray
	• we have some more virtual functions

	Surface class
	Part of the header
	class Surface
	{
	protected:
	����ThreeVec origin; // origin of Surface
	public:
	����Surface() : origin() {}
	����Surface(const ThreeVec& o) :�origin(o) {}
	����virtual ~Surface() {}
	����Surface(const Surface& s) {
	��������origin = s.origin; }
	����virtual double�distanceAlongRay(��������int which_way, const Ray* ry, ThreeVec& p) const = 0;
	����virtual double�distanceAlongHelix(
	��������int which_way, const Helix* hx, ThreeVec& p) const = 0;
	�� �virtual bool withinBoundary(const ThreeVec& x) const = 0;
	/// more not shown
	};
	• data members can be first in file, but not usual practise
	• the distanceAlong member functions are pure virtual
	• an instance of Surface can not be instanciated
	• Surface exists to define an interface

	Plane class
	Part of header
	class Plane: public Surface
	{
	public:
	��Plane(const Point& origin, const Vector& n);
	��Plane(const Point& origin, const Vector& nhat,
	�������� double dist);
	����virtual double�distanceAlongRay(��������int which_way, const Ray* ry, ThreeVec& p) const;
	����virtual double�distanceAlongHelix(
	��������int which_way, const Helix* hx, ThreeVec& p) const;
	�// more not shown
	private:
	double d;
	// offset from origin to surface
	};
	• Plane is infinite since it has no data members to describe boundary
	• distance along ray to infinite plane can be calcutated, so implementatin does exist here

	Circle class
	Part of header
	class Circle: public Plane
	{
	public:
	��Circle() : Plane() { radius = 1.0; }
	��Circle(const ThreeVec& o,
	����������const ThreeVec& n, double r);
	��virtual ~Circle() {}
	��Circle(const Circle& c);
	��virtual bool withinBoundary(const ThreeVec& x) const;
	// more not shown
	protected:
	��double radius;
	};
	• has data member to describe boundary
	• also has member function to give the answer

	Rectangle class
	Part of the header
	class Rectangle: public Plane
	{
	public:
	��Rectangle();
	��Rectangle(const ThreeVec& o, const ThreeVec& n,
	�������������double l, double w, const ThreeVec& la);
	��virtual ~Rectangle() {}
	��Rectangle(const Rectangle& r);
	��virtual bool withinBoundary(const ThreeVec& x) const;
	protected:
	��double length, width;
	��ThreeVec length_axis;
	};
	• data members to describe boundary
	• member function to test for boundary
	• data member to describe direction

	Gismo Volume
	Part of the header
	class Volume
	{
	// a lot not shown
	��virtual double distanceToLeave(const Ray& r,
	����������ThreeVec& p, const Surface*& s) const;
	protected:
	��std::list<Surface *> surface_list;
	��ThreeVec center; // center of Volume
	��double roll, pitch, yaw;
	};
	• Volume is a base class with common functionality of all volumes
	• it contains a list of surfaces that describe the volume
	• it contains a 3-vector for its center and 3 doubles for its rotation
	• member functions not shown allow one to build abitrary volumes, move them, and rotate it.
	• for tracking, key member function is distanceToLeave

	Subclasses of Volume
	Box
	class Box : Volume
	{
	� Box(float len, float width, float height);
	��Box(const Box &);
	��virtual ~Box();
	��// very little not shown
	};
	• constructor builds six surfaces, positions them, and adds them to surface list
	• hardly any other member functions, nor any data members
	• same for Cylinder and other classes
	• any one could add a new volume subclass in a smiliar way, for example a light pipe

	Part of implementation
	The key member function
	double Volume::distanceToLeave(const Ray& r,
	�������������ThreeVec& p, const Surface *&sf) const
	{
	��double d = 0.0, t = FLT_MAX;
	��ThreeVec temp (t, t, t);
	��p = temp;
	��sf = 0;
	��list< Surface *>::iterator it
	�����= surface_list.begin();
	��for(; it != surface_list.end(); ++it) {
	����Surface * s = *it;
	����d = r.distanceToLeaveSurface(s, temp);
	����if ((t > d) && (d >= 0.0)) {
	�������t = d;
	�������p = temp;
	�������sf = s;
	����}
	��}
	��return t;
	}
	• loop over all surfaces to find the shortest distance
	• the Ray object appears to do the work
	• we don’t know if the Ray object is-a Ray or the Helix subclass

	Recall Memory model
	Consider
	Ray r;
	Helix h;

	In computer’s memory we have
	Ray()
	position()
	distanceToLeave()
	• but now, we want Volume to invoke Helix::distanceToLeaveSurface

	The virtual function table
	Memory model with virtual functions
	Ray()
	position()
	distanceToLeave()
	• virtual member functions are invoked indirectly via the virtual function table
	• the table contains pointers to the member functions
	• each class initializes the table with its functions

	Back to implementation
	We have
	double Volume::distanceToLeave(const Ray& r,
	�������������ThreeVec& p, const Surface *&sf) const
	{
	��double d = 0.0, t = FLT_MAX;
	��ThreeVec temp (t, t, t);
	��p = temp;
	��sf = 0;
	��list< Surface *>::iterator it
	�����= surface_list.begin();
	��for(; it != surface_list.end(); ++it) {
	����Surface * s = *it;
	����d = r.distanceToLeaveSurface(s, temp);
	����if ((t > d) && (d >= 0.0)) {
	�������t = d;
	�������p = temp;
	�������sf = s;
	����}
	��}
	��return t;
	}
	• compiler creates different machines instructions to invoke a virtual member function
	• distanceToLeaveSurface was declared virtual so correct function gets called
	• can even add another subclass of Ray without recompiling this code

	Following the trail
	In Ray and Helix we have
	double Ray::distanceToLeaveSurface
	������������(const Surface* s, ThreeVec& p) const
	{
	����return s->distanceAlongRay(1, this, p);
	}
	//
	double Helix::distanceToLeaveSurface
	������������(const Surface* s, ThreeVec& p) const
	{
	����return s->distanceAlongHelix(1, this, p);
	}
	• so Surface will do the work
	• this design pattern is called the Visitor pattern or the Double-Dispatch pattern
	• via the Ray or Helix, we invoke the correct member function of Surface subclass
	• recall that these functions were pure virtual in Surface

	Where’s the implementation?
	Where will we find distanceAlongRay?
	• it’s not in Surface
	• one implementation in Plane
	• but we really instansiate objects of type Circle or Rectangle
	• another in Cylinder

	Implementation
	In Plane, we have
	double Plane::distanceAlongRay(int which_way,
	�������const Ray* ry, ThreeVec& p) const
	{
	��double dist = FLT_MAX;
	��ThreeVec lv (FLT_MAX, FLT_MAX, FLT_MAX);
	��p = lv;
	// Origin and direction unit vector of Ray.
	��ThreeVec x = ry->position();
	��ThreeVec dhat = ry->direction(0.0);
	��ThreeVec nhat = normal(); // Normal to plane
	��double denom = nhat * dhat;
	��if ((denom * which_way) <= 0.0)
	����return dist; // return large distance
	��double d = (((getOrigin() - x) * nhat) / denom);
	��if ((d >= 0.0) && (d < FLT_MAX)) {
	����dist = d;
	����p = ry->position(d);
	����if (! withinBoundary (p)) {
	������dist = FLT_MAX;
	������p = ThreeVec(FLT_MAX, FLT_MAX, FLT_MAX);
	����}
	��}
	��return dist;
	}
	• withinBoundary() member function must be in Circle or Rectangle
	• example of template pattern

	As expected
	In Circle we have
	bool Circle::withinBoundary(const ThreeVec& x) const
	{
	��ThreeVec p = x - origin;
	��if (p.magnitude() <= radius)
	����return true;
	��else
	����return false;
	}

	In Rectangle we have
	bool Rectangle::withinBoundary(const ThreeVec& x) const
	{
	��ThreeVec p = x - origin;
	��ThreeVec width_axis = norm.cross(length_axis);
	��if ((fabs(p * length_axis) <= (0.5 * length)) &&
	�������(fabs(p * width_axis) <= (0.5 * width)))
	����return true;
	��else
	����return false;
	}

	Virtual destructor
	In Volume, we may have
	Volume::~Volume()
	{
	��list< Surface * >::iterator it
	����= surface_list.begin();
	��while (it != surface_list.end()) {
	����delete *it++;
	��}
	}
	• we need to call the destructor for Circle, Plane, etc
	• thus we make the destructor virtual for this heirarchy
	• gcc will warn you if you don’t

	Summary
	Inheritance used for
	• used to expressed common implementation
	• used to expressed common behavior
	• used to expressed common structure

	Virtual inheritance allows objects to use abstract base functions with concrete classes

	We’re Done!
	But…
	• its like you’ve heard lectures on how to swim, but now you face the deep end of the pool
	• its like you know the rules of the game of chess, but have not yet studied stratgies

	Further reading:
	• Designing object-oriented C++ applications using the Booch method, Robert C. Martin, ISBN 0-13-...
	• Design Patterns, Gamma, Helm, Johnson, and Vlissides, ISBN 0-201-63361-2, Addison-Wesley

