
BABA
Classes

B&N: “Scientific and engineering problems are
rarely posed directly in terms of the computer’s
intrinsic types: bits, bytes, integers and floating
point numbers”

Shocking statement?

In a detector’s tracking code, for example, the
problem is posed in terms of…

• tracks

• points

• list of points

• chamber

• cylinders

• layers

C++ with its mechanism of classes allows defining
new types and the operations on these types

When we do object-oriented programming with C++
we will be writing and using classes
R C++ Course 70 Paul F. Kunz

BABA
Examples from CLHEP

Class Library for High Energy Physics

Why?

• Provide some classes are specific to HEP

• Encourage code sharing between experiments and
between experimentalists and theorists.

• Reduce redundant work

Who?

• started by Leif Lönnblad, Nordita (via CERN, DESY
and Lund)

• now maintained by committee

Use

• http://proj-clhep.web.cern.ch/proj-clhep/

• will show version 1.4

• current is 2.0
R C++ Course 71 Paul F. Kunz

BABA
ThreeVector

CLHEP’s ThreeVector class (simplified)

• this is the declaration in the header file

• keyword class starts the declaration which is
contained within the {}

• class contains member functions

• an object can be an instance of a class

• an object of a class contains data members

class Hep3Vector {
public:
Hep3Vector();
Hep3Vector(double x, double y, double z);
Hep3Vector(const Hep3Vector &v);
double x();
double y();
double z();
double phi();
double cosTheta();
double mag();
// much more not shown

private:
double dx, dy, dz;

};
R C++ Course 72 Paul F. Kunz

BABA

#in
#in
usi

int
 d

 w

dl;
 }
 r
}

Using a class object

Consider

• Hep3Vector aVec(x, y, z); declares aVec, a
object of type Hep3Vector and initializes it

• aVec.mag() calls the member function mag() of
the object

• the “.” is the class member access operator

• use “->” access operator when one has pointer to
object:

clude <iostream>
clude <CLHEP/ThreeVector.h>
ng namespace std;

 main() {
ouble x, y, z;

hile (cin >> x >> y >> z) {
 Hep3Vector aVec(x, y, z);

cout << "r: " << aVec.mag();
cout << " phi: " << aVec.phi();
cout << " cos(theta): " << aVec.cosTheta() << en

eturn 0;
R C++ Course 73 Paul F. Kunz

BABA
Data members

Look again

• Hep3Vector contains 3 data members

• declaration is like any other except no initializers are
allowed

• every instance of the class Hep3Vector will have
its own 3 data members.

• Hep3Vector is a type

• an object of type Hep3Vector has a value (or state)
that is represented by the values of its data members
(like a complex number)

• the size of a Hep3Vector object is likely to be
3*sizeof(double)

class Hep3Vector {
public:

// member functions

private:
double dx, dy, dz;

};

Hep3Vector x(1.0, 0.0, 0.0);
Hep3Vector y(0.0, 1.0, 0.0);
Hep3Vector z(0.0, 0.0, 1.0);
R C++ Course 74 Paul F. Kunz

BABA
Memory model

Consider

In computer’s memory we have

• an object is an instance of a class (type)

• each object has its own data members

• one copy of the code for a class is shared by all
instances of the class

• hidden argument this is how it all works

Hep3Vector x(1.0, 0.0, 0.0);
Hep3Vector y(0.0, 1.0, 0.0);

Hep3Vector()
x()
y()
z()
mag()
phi()
cosTheta()

Code:Objects:

dx=1.
dy=0.
dz=0.

x:

dx=0.
dy=1.
dz=0.

y:
R C++ Course 75 Paul F. Kunz

BABA
Use of private keyword

We have

• the following compiles

• the following does not compile

• this is called data hiding

• by disallowing direct access, you hide how data is
stored.

• one can change how data is stored without breaking
user code because you disallowed direct access

class Hep3Vector {
public:

double mag();
double x();
double dummy;
// member functions

private:
double dx, dy, dz;

};

Hep3Vector x(1.0, 0.0, 0.0);
cout << x.dummy;

Hep3Vector x(1.0, 0.0, 0.0);
cout << x.dx; // WRONG
R C++ Course 76 Paul F. Kunz

BABA
Initializing a class object

At least 3 ways we would like to initialize an object

• no initial value

• with three double values

• copy of another object

• each calls a special member function called a
constructor

There are three constructors in the class

Hep3Vector a;

Hep3Vector a(1.0, 1.0, 1.0);

Hep3Vector a(1.0, 1.0, 0.0);
Hep3Vector b = a;

class Hep3Vector {
public:

Hep3Vector();
Hep3Vector(double x, double y, double z);
Hep3Vector(const Hep3Vector &v);
// much more not shown

private:
double dx, dy, dz;

};
R C++ Course 77 Paul F. Kunz

BABA

Hep {
d
d
d

}

Hep
d
d
d

}

Hep
}

Constructor Implementations

The constructor member functions

• called after memory space has been allocated

• when the class name and member name are the same,
then the member function is a constructor

• Foo::bar() says that bar() is a member function
of the class Foo

• :: is the scope resolution operator

• note that copy constructor uses a const reference

3Vector::Hep3Vector(double x, double y, double z)
x = x;
y = y;
z = z;

3Vector::Hep3Vector(const Hep3Vector &vec) {
x = vec.dx;
y = vec.dy;
z = vec.dz;

3Vector::Hep3Vector(){
R C++ Course 78 Paul F. Kunz

BABA
Data Hiding

Violation of private parts?

• objects of the same class have access to private data
members

• the purpose of data hiding is to hide implementation
from other classes

• can’t hide implementation from object of same class

• const qualifier says we wouldn’t change argument

Hep3Vector::Hep3Vector(const Hep3Vector &vec) {
dx = vec.dx;
dy = vec.dy;
dz = vec.dz;

}

R C++ Course 79 Paul F. Kunz

BABA
Access member functions

The declaration was

The implementation is

• inefficient?

• make function in-line

• always ask: “do I want the data to do some work or
do I want the object to do the work”

class Hep3Vector {
public:

double x();
double y();
double z();
// much more not shown

private:
double dx, dy, dz;

};

double Hep3Vector::x() {
return dx;

}
double Hep3Vector::y() {

return dy;
}
double Hep3Vector::z() {

return dz;
}

R C++ Course 80 Paul F. Kunz

BABA
Inline access member functions

Change declaration to

• can be used when execution of function body is
shorter than time to call and return from function

• any decent compiler should produce inline code
instead of function call for above

• inline keyword is just a hint, however

• data hiding is preserved

• implementation needs to be in the header file

• sometimes put in file with .icc suffix that is
included by the header file (not BaBar practice)

• program could be faster

• program could be larger

inline double Hep3Vector::x() {
return dx;

}
inline double Hep3Vector::y() {

return dy;
}
inline double Hep3Vector::z() {

return dz;
}

R C++ Course 81 Paul F. Kunz

BABA

in

}

in
);
}

in

}

More Implementation

Recall

Implementation

• note how object calls its own member function

• examples of letting object do the work

class Hep3Vector {
public:

double mag();
double phi();
double cosTheta();
// much more not shown

private:
double dx, dy, dz;

};

line double Hep3Vector::mag() {
return sqrt(dx*dx + dy*dy + dz*dz);

line double Hep3Vector::phi() {
return dx == 0.0 && dy == 0.0 ? 0.0 : atan2(dy,dx

line double Hep3Vector::cosTheta() {
double ptot = mag();
return ptot == 0.0 ? 1.0 : dz/ptot;
R C++ Course 82 Paul F. Kunz

BABA
Design decisions

Fortran style

Another Fortran style

Mark II VECSUB style

common/points/hits(3,100)
real*4 hits
real*4 x, y, z, r
! do some work
x = hits(1,i) ! or from ZEBRA bank
y = hits(2,i)
z = hits(3,i)
r = sqrt(x*x + y*y + z*z);

common/points/hits(3,100)
real*4 hits
real*4 x, y, z, r
! do some work
x = hits(1,i)
y = hits(2,i)
z = hits(3,i)
r = mag(x, y, z) ! or mag(hits(1,i))

common/points/hits(3,100)
real*4 r
! do some work
r = hitsmag(i)
R C++ Course 83 Paul F. Kunz

BABA
C++ design

C++ style

• efficient with inline functions

• don’t need knowledge of data structure

• modular

• re-usable

• later, we’ll get rid of the fixed or dynamic arrays

Hep3Vector hits[100];
// do some work
double r = hits[i].mag();
R C++ Course 84 Paul F. Kunz

BABA
Homework

Suppose

• write the implementation for this class

• constructors take x, y, and z as arguments, but must
intialize r, cos(theta), and phi data members

• try test program shown before, it should still work
with this small change

• write a program to exercise x(), y(), and z()
member functions

class Hep3Vector {
public:

Hep3Vector();
Hep3Vector(double x, double y, double z);
Hep3Vector(const Hep3Vector &v);
inline double x();
inline double y();
inline double z();
inline double phi();
inline double cosTheta();
inline double mag();

private:
double r, cos_theta, phi;

};

// #include <CLHEP/ThreeVector.h>
#include “ThreeVector.h”
R C++ Course 85 Paul F. Kunz

BABA

class H
public:
Hep3V
Hep3V
doubl
doubl
doubl
doubl
doubl
doubl
// mu

private
doubl

};
Another look at Hep3Vector

We’ll now look at the real Hep3Vector class and
explain those new language elements we need to
understand it

• uses default arguments

• const keyword after function means no data
member of the object will be changed by invoking
function

• this const is enforced when compiling the class

• the above are obvious, but it will be less obvious with
other classes in the future

ep3Vector {

ector(double x=0., double y=0., double z=0.);
ector(const Hep3Vector&);
e x() const;
e y() const;
e z() const;
e phi() const;
e cosTheta() const;
e mag() const;
ch more not shown
:
e dx, dy, dz;
R C++ Course 86 Paul F. Kunz

BABA
Initializing syntax

Two forms to invoke copy constructor

• the two are equivalent if argument is same type as
object being declared

• both invoke copy constructor

• the = form allows user defined conversions when
argument is not same type

• both forms allowed for built-in type

Consider

• might be equivalent to

• but following has no suprises

Hep3Vector x(1.0, 0.0, 0.0);
Hep3Vector y = x; // C style
Hep3Vector y(x); // C++ class style

Hep3Vector x = 1.0;

Hep3Vector tmp(1.0);
Hep3Vector x = tmp;

Hep3Vector x(1.0);
R C++ Course 87 Paul F. Kunz

BABA

He){

}

He :
Member Initializers

The constructor can be implemented like any other
member function…

• but data members need to be constructed before
assignment

• for Hep3Vector the custom constructor would be
called

An alternate form is use of member initializers

• note the : preceding the opening {

• dx(x) notation calls a constructor directly

• which constructor depends on argument matching

• in the above case, it is the copy constructor

• the function body is required, even if empty

p3Vector::Hep3Vector(double x, double y, double z
dx = x;
dy = y;
dz = z;

p3Vector::Hep3Vector(double x, double y, double z)
dx(x), dy(y), dz(z){}
R C++ Course 88 Paul F. Kunz

BABA
Function Return Types

A function returns a temporary hidden variable that
is initialized by the return statement

Consider

• it is as if

Consider

• it is as if

float f() {
return 1;

}
float x;
// ...
x = f();

float tmp = 1;
x = tmp;

float & Vector3::x() {
return dx;

}
Vector3 vec;
// ...
vec.x() = 1.0; // uh?

float &tmp = vec.dx;
tmp = 1.0;
R C++ Course 89 Paul F. Kunz

BABA
Operators are functions?

Operators can be thought of as functions

• add() operates on two arguments and returns a
result

• the symbol + operates on two operands and returns
a result

Use of mathematical symbols is more concise and
easier to read

C, C++, and Fortran all define operators for built-in
types

double add(double a, double b) {
return a + b;

}
double x, y, z;
//
z = x + y;
z = add(x, y);

double add(double a, double b);
double mul(double a, double b);
double a, b, x, y, z;
//
z = add(mul(a, x), mul(b,y));
z = a*x + b*y;
R C++ Course 90 Paul F. Kunz

BABA

class
public

inli
// m
Operator Functions

An operator function in Hep3Vector

• the name of the function is the word operator
followed by the operator symbol

• this function is called when

• the function is invoked on q ; the left-hand side

• the argument will be p ; the right-hand side

• q += p; is shorthand for q.operator+=(p);

• the function returns a Hep3Vector reference for
consistency with built-in types

Hep3Vector {
:
ne Hep3Vector& operator +=(const Hep3Vector &);
ore not shown

Hep3Vector p, q;
//
q += p;

Hep3Vector p, q, r;
//
r = q += p;
// r.operator=(q.operator+=(p))
R C++ Course 91 Paul F. Kunz

BABA

inline Hep p) {
dx += p.

 dy += p.
 dz += p.
 return *
}

Operator Function Implementation

Implementation

• does the accumulation as one would expect

• this is a hidden argument that is a pointer to the
object’s own self

• this->dx is thus equivalent to dx

• remember: use -> instead of . when you have a
pointer

• or dx is shorthand for this->dx

• recall that Hep3Vector::x() is an in-line function
itself

• return *this returns the address of the object,
thus the reference

3Vector& Hep3Vector::operator+=(const Hep3Vector&
x(); // could have been dx += p.dx
y();
z();
this;
R C++ Course 92 Paul F. Kunz

BABA
Compare Fortran and C++

Fortran vector sum

C++ vector sum

real p(3), q(3)
! ...
q(1) = q(1) + p(1)
q(2) = q(2) + p(2)
q(3) = q(3) + p(3)

Hep3Vector p, q;
// ...
q += p;
R C++ Course 93 Paul F. Kunz

BABA
Operator Functions

Essentially all operators can be used for user defined
types except “.” , “.*” , “::” , “sizeof” and
“?:”

Can not define new ones

• sorry, can’t do operator**() for exponentiation

• and there’s no operator one could use with the correct
precedence

• can’t overload operators for built-in types

One should only use when conventional meaning
makes sense

• is this cross product or dot product?

• Hep3Vector defines it to be dot product

Hep3Vector p, q;
double z;
// ………
z = p*q; // uh?
R C++ Course 94 Paul F. Kunz

BABA

inline H) {
 Hep3Ve
 return
}

dou
Hep
Hep
r +
Non-member Operator Function

Consider

• invoked by

• note return by value

• need a new object whose value is x*scale

• the temporary object is used as argument to
operator+=() and then discarded

• such temporary objects are generated by Fortran as
well

ep3Vector operator*(const Hep3Vector& p, double a
ctor q(a*p.x(), a*p.y(), a*p.z());
 q;

ble scale = 3.0;
3Vector p(1.0); // unit vector along x axis
3Vector r(0.0, 1,0);
= p*scale;

real scale, p(3), r(3)
r(1) = r(1) + p(1)*scale
r(2) = r(2) + p(2)*scale
r(3) = r(3) + p(3)*scale
R C++ Course 95 Paul F. Kunz

BABA

inline a) {
 Hep3
 retu
}
inline p) {
 Hep3
 retu
}

do
He
He
q
Need Symmetric Operator Functions

CLHEP has

• second one invoked by

• argument matching applies

• must use global function because
scale.operator*(p) doesn’t exist

 Hep3Vector operator*(const Hep3Vector& p, double
Vector q(a*p.x(), a*p.y(), a*p.z());
rn q;

 Hep3Vector operator*(double a, const Hep3Vector&
Vector q(a*p.x(), a*p.y(), a*p.z());
rn q;

uble scale = 3.0;
p3Vector p(1.0); // unit vector along x axis
p3Vector q(0.0, 1,0);
+= scale*p;
R C++ Course 96 Paul F. Kunz

BABA

Hep3V
Hep3V

~Hep

inli
inli
inli
inli
inli
inli
inli
inli
inli
inli
inli
inli
inli
The Complete List - I

Constructors

• also contains conversion constructor

Destructor

• invoked when object is deleted (more next session)

Accessor-like functions

ector(double x=0.0, double y=0.0, double z=0.0);
ector(const Hep3Vector &);

3Vector();

ne double x() const;
ne double y() const;
ne double z() const;
ne double mag() const;
ne double mag2() const;
ne double perp() const;
ne double perp2() const;
ne double phi() const;
ne double cosTheta() const;
ne double theta() const;
ne double angle(const Hep3Vector &) const;
ne double perp(const Hep3Vector &) const;
ne double perp2(const Hep3Vector &) const;
R C++ Course 97 Paul F. Kunz

BABA

v
v
v
v ;
H
H

ost ;
The Complete List - II

Manipulators

Set functions

Output function

• allows

oid rotateX(double);
oid rotateY(double);
oid rotateZ(double);
oid rotate(double angle, const Hep3Vector & axis)
ep3Vector & operator *= (const HepRotation &);
ep3Vector & transform(const HepRotation &);

inline void setX(double);
inline void setY(double);
inline void setZ(double);
inline void setMag(double);
inline void setTheta(double);
inline void setPhi(double);

ream & operator << (ostream &, const Hep3Vector &)

Hep3Vector x(1.0);
// ...
cout << x << endl;
R C++ Course 98 Paul F. Kunz

BABA

inlin
inlin
inlin
inlin

Hep3Vec &);
Hep3Vec &);
double &);
Hep3Vec
Hep3Vec

inline
inline
inline
inline
The Complete List - III

Vector algebra member functions

Vector algebra non-member functions

Assignment operators

e double dot(const Hep3Vector &) const;
e Hep3Vector cross(const Hep3Vector &) const;
e Hep3Vector unit() const;
e Hep3Vector operator - () const;

tor operator+(const Hep3Vector&, const Hep3Vector
tor operator-(const Hep3Vector&, const Hep3Vector
operator * (const Hep3Vector &, const Hep3Vector
tor operator * (const Hep3Vector &, double a);
tor operator * (double a, const Hep3Vector &);

 Hep3Vector & operator = (const Hep3Vector &);
 Hep3Vector & operator += (const Hep3Vector &);
 Hep3Vector & operator -= (const Hep3Vector &);
 Hep3Vector & operator *= (double);
R C++ Course 99 Paul F. Kunz

BABA
Summary

Hep3Vector implements vector algebra

It was long and tedious to implement

Now that we have it (thank you, Leif and Anders),
we can use it and never have to expand these details
in our own code

Besides objects of type int , float , and double,
we can use operators with objects of type
Hep3Vector

We have a new type with higher level of abstraction
R C++ Course 100 Paul F. Kunz

BABA
Levels of Abstraction in Physics

Do you recognize these equations?

∂Ei

∂xi

i
∑

∂Ex

∂x

∂Ey

∂y

∂Ez

∂z
---------+ + 4πρ= =

∂Bi

∂xi

i
∑

∂Bx

∂x

∂By

∂y

∂Bz

∂z
---------+ + 0= =

εijk x j∂
∂

i
∑ E

k 1
c

∂Bi

∂t
--------–=

∂Ez

∂y

∂Ey

∂z
---------–

1
c

∂Bx

∂t
---------–=

∂Ey

∂x

∂Ex

∂y
---------–

1
c

∂Bz

∂t
---------–=

∂Ex

∂z

∂Ez

∂x
---------–

1
c

∂By

∂t
---------–=
R C++ Course 101 Paul F. Kunz

BABA
Higher Level of Abstraction

Now do you recognize them?

or even

To advance in physics/math, we need higher levels of
abstractions, else we get lost in implementation details

C++ allows higher level of abstract as well

∇ E• 4πρ=

∇ B× 4π
c

------J
1
c
---∂E

∂t
-------+=

∇ E× 1
c
---∂B

∂t
-------–=

∇ B• 0=

∂αF
αβ 4π

c
------J

β
=

1
2
---εαβγδ∂αFγδ 0 ∂α

F
βγ ∂β

F
γα ∂γ

F
αβ

+ += =
R C++ Course 102 Paul F. Kunz

	Classes
	B&N: “Scientific and engineering problems are rarely posed directly in terms of the computer’s in...
	Shocking statement?
	In a detector’s tracking code, for example, the problem is posed in terms of…
	• tracks
	• points
	• list of points
	• chamber
	• cylinders
	• layers

	C++ with its mechanism of classes allows defining new types and the operations on these types
	When we do object-oriented programming with C++ we will be writing and using classes

	Examples from CLHEP
	Class Library for High Energy Physics
	Why?
	• Provide some classes are specific to HEP
	• Encourage code sharing between experiments and between experimentalists and theorists.
	• Reduce redundant work

	Who?
	• started by Leif Lönnblad, Nordita (via CERN, DESY and Lund)
	• now maintained by committee

	Use
	• http://proj-clhep.web.cern.ch/proj-clhep/
	• will show version 1.4
	• current is 2.0

	ThreeVector
	CLHEP’s ThreeVector class (simplified)
	class Hep3Vector {
	public:
	��Hep3Vector();
	��Hep3Vector(double x, double y, double z);
	��Hep3Vector(const Hep3Vector &v);
	��double x();
	��double y();
	��double z();
	��double phi();
	��double cosTheta();
	��double mag();
	��// much more not shown
	private:
	��double dx, dy, dz;
	};
	• this is the declaration in the header file
	• keyword class starts the declaration which is contained within the {}
	• class contains member functions
	• an object can be an instance of a class
	• an object of a class contains data members

	Using a class object
	Consider
	#include <iostream>
	#include <CLHEP/ThreeVector.h>
	using namespace std;
	int main() {
	double x, y, z;
	while (cin >> x >> y >> z) {
	Hep3Vector aVec(x, y, z);
	����cout << "r: " << aVec.mag();
	����cout << " phi: " << aVec.phi();
	����cout << " cos(theta): " << aVec.cosTheta() << endl;
	}
	return 0;
	}
	• Hep3Vector aVec(x, y, z); declares aVec, a object of type Hep3Vector and initializes it
	• aVec.mag() calls the member function mag() of the object
	• the “.” is the class member access operator
	• use “->” access operator when one has pointer to object:

	Data members
	Look again
	class Hep3Vector {
	public:
	��// member functions
	private:
	��double dx, dy, dz;
	};
	• Hep3Vector contains 3 data members
	• declaration is like any other except no initializers are allowed
	• every instance of the class Hep3Vector will have its own 3 data members.
	Hep3Vector x(1.0, 0.0, 0.0);
	Hep3Vector y(0.0, 1.0, 0.0);
	Hep3Vector z(0.0, 0.0, 1.0);

	• Hep3Vector is a type
	• an object of type Hep3Vector has a value (or state) that is represented by the values of its da...
	• the size of a Hep3Vector object is likely to be 3*sizeof(double)

	Memory model
	Consider
	Hep3Vector x(1.0, 0.0, 0.0);
	Hep3Vector y(0.0, 1.0, 0.0);

	In computer’s memory we have
	Hep3Vector()
	x()
	y()
	z()
	mag()
	phi()
	cosTheta()
	• an object is an instance of a class (type)
	• each object has its own data members
	• one copy of the code for a class is shared by all instances of the class
	• hidden argument this is how it all works

	Use of private keyword
	We have
	class Hep3Vector {
	public:
	��double mag();
	��double x();
	��double dummy;
	��// member functions
	private:
	��double dx, dy, dz;
	};
	• the following compiles
	Hep3Vector x(1.0, 0.0, 0.0);
	cout << x.dummy;

	• the following does not compile
	Hep3Vector x(1.0, 0.0, 0.0);
	cout << x.dx; �// WRONG

	• this is called data hiding
	• by disallowing direct access, you hide how data is stored.
	• one can change how data is stored without breaking user code because you disallowed direct access

	Initializing a class object
	At least 3 ways we would like to initialize an object
	• no initial value
	Hep3Vector a;

	• with three double values
	Hep3Vector a(1.0, 1.0, 1.0);

	• copy of another object
	Hep3Vector a(1.0, 1.0, 0.0);
	Hep3Vector b = a;

	• each calls a special member function called a constructor

	There are three constructors in the class
	class Hep3Vector {
	public:
	��Hep3Vector();
	��Hep3Vector(double x, double y, double z);
	��Hep3Vector(const Hep3Vector &v);
	��// much more not shown
	private:
	��double dx, dy, dz;
	};

	Constructor Implementations
	The constructor member functions
	Hep3Vector::Hep3Vector(double x, double y, double z) {
	��dx = x;
	��dy = y;
	��dz = z;
	}
	Hep3Vector::Hep3Vector(const Hep3Vector &vec) {
	��dx = vec.dx;
	��dy = vec.dy;
	��dz = vec.dz;
	}
	Hep3Vector::Hep3Vector(){
	}
	• called after memory space has been allocated
	• when the class name and member name are the same, then the member function is a constructor
	• Foo::bar() says that bar() is a member function of the class Foo
	• :: is the scope resolution operator
	• note that copy constructor uses a const reference

	Data Hiding
	Violation of private parts?
	Hep3Vector::Hep3Vector(const Hep3Vector &vec) {
	��dx = vec.dx;
	��dy = vec.dy;
	��dz = vec.dz;
	}
	• objects of the same class have access to private data members
	• the purpose of data hiding is to hide implementation from other classes
	• can’t hide implementation from object of same class
	• const qualifier says we wouldn’t change argument

	Access member functions
	The declaration was
	class Hep3Vector {
	public:
	��double x();
	��double y();
	��double z();
	��// much more not shown
	private:
	��double dx, dy, dz;
	};

	The implementation is
	double Hep3Vector::x() {
	��return dx;
	}
	double Hep3Vector::y() {
	��return dy;
	}
	double Hep3Vector::z() {
	��return dz;
	}
	• inefficient?
	• make function in-line
	• always ask: “do I want the data to do some work or do I want the object to do the work”

	Inline access member functions
	Change declaration to
	inline double Hep3Vector::x() {
	��return dx;
	}
	inline double Hep3Vector::y() {
	��return dy;
	}
	inline double Hep3Vector::z() {
	��return dz;
	}
	• can be used when execution of function body is shorter than time to call and return from function
	• any decent compiler should produce inline code instead of function call for above
	• inline keyword is just a hint, however
	• data hiding is preserved
	• implementation needs to be in the header file
	• sometimes put in file with .icc suffix that is included by the header file (not BaBar practice)
	• program could be faster
	• program could be larger

	More Implementation
	Recall
	class Hep3Vector {
	public:
	��double mag();
	��double phi();
	��double cosTheta();
	��// much more not shown
	private:
	��double dx, dy, dz;
	};

	Implementation
	inline double Hep3Vector::mag() {
	return sqrt(dx*dx + dy*dy + dz*dz);
	}
	inline double Hep3Vector::phi() {
	return dx == 0.0 && dy == 0.0 ? 0.0 : atan2(dy,dx);
	}
	inline double Hep3Vector::cosTheta() {
	double ptot = mag();
	return ptot == 0.0 ? 1.0 : dz/ptot;
	}
	• note how object calls its own member function
	• examples of letting object do the work

	Design decisions
	Fortran style
	common/points/hits(3,100)
	real*4 �������hits
	real*4 x, y, z, r
	! do some work
	x = hits(1,i) ! or from ZEBRA bank
	y = hits(2,i)
	z = hits(3,i)
	r = sqrt(x*x + y*y + z*z);

	Another Fortran style
	common/points/hits(3,100)
	real*4 �������hits
	real*4 x, y, z, r
	! do some work
	x = hits(1,i)
	y = hits(2,i)
	z = hits(3,i)
	r = mag(x, y, z) ! or mag(hits(1,i))

	Mark II VECSUB style
	common/points/hits(3,100)
	real*4 r
	! do some work
	r = hitsmag(i)

	C++ design
	C++ style
	Hep3Vector hits[100];
	// do some work
	double r = hits[i].mag();
	• efficient with inline functions
	• don’t need knowledge of data structure
	• modular
	• re-usable
	• later, we’ll get rid of the fixed or dynamic arrays

	Homework
	Suppose
	class Hep3Vector {
	public:
	��Hep3Vector();
	��Hep3Vector(double x, double y, double z);
	��Hep3Vector(const Hep3Vector &v);
	��inline double x();
	��inline double y();
	��inline double z();
	��inline double phi();
	��inline double cosTheta();
	��inline double mag();
	private:
	��double r, cos_theta, phi;
	};
	• write the implementation for this class
	• constructors take x, y, and z as arguments, but must intialize r, cos(theta), and phi data members
	• try test program shown before, it should still work with this small change
	// #include <CLHEP/ThreeVector.h>
	#include “ThreeVector.h”

	• write a program to exercise x(), y(), and z() member functions

	Another look at Hep3Vector
	We’ll now look at the real Hep3Vector class and explain those new language elements we need to un...
	class Hep3Vector {
	public:
	��Hep3Vector(double x=0., double y=0., double z=0.);
	��Hep3Vector(const Hep3Vector&);
	��double x() const;
	��double y() const;
	��double z() const;
	��double phi() const;
	��double cosTheta() const;
	��double mag() const;
	��// much more not shown
	private:
	��double dx, dy, dz;
	};
	• uses default arguments
	• const keyword after function means no data member of the object will be changed by invoking fun...
	• this const is enforced when compiling the class
	• the above are obvious, but it will be less obvious with other classes in the future

	Initializing syntax
	Two forms to invoke copy constructor
	Hep3Vector x(1.0, 0.0, 0.0);
	Hep3Vector y = x;��// C style
	Hep3Vector y(x);���// C++ class style
	• the two are equivalent if argument is same type as object being declared
	• both invoke copy constructor
	• the = form allows user defined conversions when argument is not same type
	• both forms allowed for built-in type

	Consider
	Hep3Vector x = 1.0;
	• might be equivalent to
	Hep3Vector tmp(1.0);
	Hep3Vector x = tmp;

	• but following has no suprises
	Hep3Vector x(1.0);

	Member Initializers
	The constructor can be implemented like any other member function…
	Hep3Vector::Hep3Vector(double x, double y, double z){
	��dx = x;
	��dy = y;
	��dz = z;
	}
	• but data members need to be constructed before assignment
	• for Hep3Vector the custom constructor would be called

	An alternate form is use of member initializers
	Hep3Vector::Hep3Vector(double x, double y, double z) :
	����dx(x), dy(y), dz(z){}
	• note the : preceding the opening {
	• dx(x) notation calls a constructor directly
	• which constructor depends on argument matching
	• in the above case, it is the copy constructor
	• the function body is required, even if empty

	Function Return Types
	A function returns a temporary hidden variable that is initialized by the return statement
	Consider
	float f() {
	����return 1;
	}
	float x;
	// ...
	x = f();
	• it is as if
	float tmp = 1;
	x = tmp;

	Consider
	float & Vector3::x() {
	����return dx;
	}
	Vector3 vec;
	// ...
	vec.x() = 1.0; // uh?
	• it is as if
	float &tmp = vec.dx;
	tmp = 1.0;

	Operators are functions?
	Operators can be thought of as functions
	double add(double a, double b) {
	����return a + b;
	}
	double x, y, z;
	//
	z = x + y;
	z = add(x, y);
	• add() operates on two arguments and returns a result
	• the symbol + operates on two operands and returns a result

	Use of mathematical symbols is more concise and easier to read
	double add(double a, double b);
	double mul(double a, double b);
	double a, b, x, y, z;
	//
	z = add(mul(a, x), mul(b,y));
	z = a*x + b*y;

	C, C++, and Fortran all define operators for built-in types

	Operator Functions
	An operator function in Hep3Vector
	class Hep3Vector {
	public:
	��inline Hep3Vector& operator +=(const Hep3Vector &);
	��// more not shown
	• the name of the function is the word operator followed by the operator symbol
	• this function is called when
	Hep3Vector p, q;
	//
	q += p;

	• the function is invoked on q ; the left-hand side
	• the argument will be p ; the right-hand side
	• q += p; is shorthand for q.operator+=(p);
	• the function returns a Hep3Vector reference for consistency with built-in types
	Hep3Vector p, q, r;
	//
	r = q += p;
	// r.operator=(q.operator+=(p))

	Operator Function Implementation
	Implementation
	inline Hep3Vector& Hep3Vector::operator+=(const Hep3Vector& p) {
	��dx += p.x(); �// could have been dx += p.dx
	dy += p.y();
	dz += p.z();
	return *this;
	}
	• does the accumulation as one would expect
	• this is a hidden argument that is a pointer to the object’s own self
	• this->dx is thus equivalent to dx
	• remember: use -> instead of . when you have a pointer
	• or dx is shorthand for this->dx
	• recall that Hep3Vector::x() is an in-line function itself
	• return *this returns the address of the object, thus the reference

	Compare Fortran and C++
	Fortran vector sum
	real p(3), q(3)
	! ...
	q(1) = q(1) + p(1)
	q(2) = q(2) + p(2)
	q(3) = q(3) + p(3)

	C++ vector sum
	Hep3Vector p, q;
	// ...
	q += p;

	Operator Functions
	Essentially all operators can be used for user defined types except “.” , “.*” , “::” , “sizeof” ...
	Can not define new ones
	• sorry, can’t do operator**() for exponentiation
	• and there’s no operator one could use with the correct precedence
	• can’t overload operators for built-in types

	One should only use when conventional meaning makes sense
	Hep3Vector p, q;
	double z;
	// ………
	z = p*q; // uh?
	• is this cross product or dot product?
	• Hep3Vector defines it to be dot product

	Non-member Operator Function
	Consider
	inline Hep3Vector operator*(const Hep3Vector& p, double a) {
	Hep3Vector q(a*p.x(), a*p.y(), a*p.z());
	return q;
	}
	• invoked by
	double scale = 3.0;
	Hep3Vector p(1.0);��// unit vector along x axis
	Hep3Vector r(0.0, 1,0);
	r += p*scale;

	• note return by value
	• need a new object whose value is x*scale
	• the temporary object is used as argument to operator+=() and then discarded
	• such temporary objects are generated by Fortran as well
	real scale, p(3), r(3)
	r(1) = r(1) + p(1)*scale
	r(2) = r(2) + p(2)*scale
	r(3) = r(3) + p(3)*scale

	Need Symmetric Operator Functions
	CLHEP has
	inline Hep3Vector operator*(const Hep3Vector& p, double a) {
	Hep3Vector q(a*p.x(), a*p.y(), a*p.z());
	return q;
	}
	inline Hep3Vector operator*(double a, const Hep3Vector& p) {
	Hep3Vector q(a*p.x(), a*p.y(), a*p.z());
	return q;
	}
	• second one invoked by
	double scale = 3.0;
	Hep3Vector p(1.0);��// unit vector along x axis
	Hep3Vector q(0.0, 1,0);
	q += scale*p;

	• argument matching applies
	• must use global function because scale.operator*(p) doesn’t exist

	The Complete List - I
	Constructors
	Hep3Vector(double x=0.0, double y=0.0, double z=0.0);
	Hep3Vector(const Hep3Vector &);
	• also contains conversion constructor

	Destructor
	~Hep3Vector();
	• invoked when object is deleted (more next session)

	Accessor-like functions
	inline double x() const;
	inline double y() const;
	inline double z() const;
	inline double mag() const;
	inline double mag2() const;
	inline double perp() const;
	inline double perp2() const;
	inline double phi() const;
	inline double cosTheta() const;
	inline double theta() const;
	inline double angle(const Hep3Vector &) const;
	inline double perp(const Hep3Vector &) const;
	inline double perp2(const Hep3Vector &) const;

	The Complete List - II
	Manipulators
	void rotateX(double);
	void rotateY(double);
	void rotateZ(double);
	void rotate(double angle, const Hep3Vector & axis);
	Hep3Vector & operator *= (const HepRotation &);
	Hep3Vector & transform(const HepRotation &);

	Set functions
	inline void setX(double);
	inline void setY(double);
	inline void setZ(double);
	inline void setMag(double);
	inline void setTheta(double);
	inline void setPhi(double);

	Output function
	ostream & operator << (ostream &, const Hep3Vector &);
	• allows
	Hep3Vector x(1.0);
	// ...
	cout << x << endl;

	The Complete List - III
	Vector algebra member functions
	inline double dot(const Hep3Vector &) const;
	inline Hep3Vector cross(const Hep3Vector &) const;
	inline Hep3Vector unit() const;
	inline Hep3Vector operator - () const;

	Vector algebra non-member functions
	Hep3Vector operator+(const Hep3Vector&, const Hep3Vector&);
	Hep3Vector operator-(const Hep3Vector&, const Hep3Vector&);
	double operator * (const Hep3Vector &, const Hep3Vector &);
	Hep3Vector operator * (const Hep3Vector &, double a);
	Hep3Vector operator * (double a, const Hep3Vector &);

	Assignment operators
	inline Hep3Vector & operator = (const Hep3Vector &);
	inline Hep3Vector & operator += (const Hep3Vector &);
	inline Hep3Vector & operator -= (const Hep3Vector &);
	inline Hep3Vector & operator *= (double);

	Summary
	Hep3Vector implements vector algebra
	It was long and tedious to implement
	Now that we have it (thank you, Leif and Anders), we can use it and never have to expand these de...
	Besides objects of type int , float , and double, we can use operators with objects of type Hep3V...
	We have a new type with higher level of abstraction

	Levels of Abstraction in Physics
	Do you recognize these equations?

	Higher Level of Abstraction
	Now do you recognize them?
	or even
	To advance in physics/math, we need higher levels of abstractions, else we get lost in implementa...
	C++ allows higher level of abstract as well

