>

D

Dietrich Liko

Dietrich Liko

\

\

0ag
°°—°[ZZO
0—0

 We will visit many places

A tour of the world ...

« We will stay only short
 You will get an overview

e |If you want to know these places better, you will have to
visit them yourself afterwards

Dietrich Liko

N

70000
—[Z]O The C++ programming language

0—0

« Was created by Bjarne Stroustrup

— You can visit him on

http://ww. research. att. conf ~bs/ honepage. ht m
e You find also an audio file to pronounce his name

Is better than C

Supports data-abstraction

Supports object-oriented programming
Supports generic programming

Dietrich Liko

Stop 1 : Hello world (

#i ncl ude <i ostreanr

int main(int argc, const char** argv) {
std::cout << “Hello Wrld” << std::endl;

return O;

Dietrich Liko

This is what we well know from FORTRAN or C

#i ncl ude <cmat h>
doubl e do_sonet hi ng(doubl e a) {

double b = a * 2;
return std::sqrt(b);

Dietrich Liko

P>

D

\

0ag
00—0[170
0—0

Build in data types

e float int a;

e double int b = 5

= Int char ¢ = ‘¢’;

e long : .
char nane[] = “Dietrich”;

e short

e char

C++ allows to define your own data types. There
IS a number of prefabricated available like
strings and complex numbers

Better then C

string nane = “Dietrich”;

Dietrich Liko

>

D

Things in between variables

e assignment
e arithmetic
e shortcut

e comparison

e Increment

e more exotic

double a =d >0 ? sqrt(d) : sqgrt(-d);

Dietrich Liko

Operators
+ - * /
+= = *= =
== 1= < > >= <=
a=-a+1
oo ++a;
? & KLK>>

P

D

!
How to pass arguments ? g

. Pass by value voi d do_it(doubl e b) {

_C b =40
}
void do_it(double * b) { doubl e a = 5;
*b = 4.0 do_it(a)

doubl e a = 5;
do it(&a);

Dietrich Liko

0

e Pass by reference
- FORTRAN

SUBROUTI NE DO | T(B)
REAL B

B=4.0

END

PROGRAM TEST
REAL A

A = 5.

CALL DO I T(A)
END

Dietrich Liko

WO How to pass arguments cont.

SFSSI0)>

How to pass arguments cont.

void do it (double b & {
b = 4.0;

e Pass by reference
- C++

}

double a = 5;
do it(a);

void do it (const double b & {
b = 4.0;

Dietrich Liko

P

D

Pointers & References

e Pointer to avariable *

<::i I 38.0 I tenperature double tenperature = 38.0;

doubl e * pTenp = &t enper at ur e;

| oxoaBcO26 | *pTenp

*pTenp += 5. 0;

e Reference to a variable &

voi d do_sonet hi ng(double b & {
b += 5.0;

Better then C

}
Dietrich Liko

if (a>5) {
} else {
/. }
/ }
whi l e(a>5) {
}

Dietrich Liko

Control structures

P

D

..... for (int i=0; i<100; ++i) {

Programming paradigm

e Decide which procedures you want
e Use the best algorithms you can find

e Functions are used to create order

o Leads to structured programming

Dietrich Liko

e (C++ allows us to make our own data types

struct Particle {
doubl e xpos;
doubl e ypos;
doubl e zpos;
doubl e xnom
doubl e ynom

doubl e znom

doubl e nass:

Dietrich Liko

70000
—WO If 1 want to know the energy ...

0—0

e energy = sqrt(p.mass*. p.mass + p.xnonmp. xnom + ...)

(=

struct NewParticle {
doubl e xpos;
doubl e ypos;
doubl e zpos;
doubl e nom
doubl e thet a;

doubl e phi;

doubl e nass:

Dietrich Liko

Better use classes

class Particle {
public:

voi d set Monment un(doubl e x, doubl e v,
doubl e z);

doubl e energy();

private:

.What ever | prefer

}

e Only public part visible to outside world
e Obviously Interface design most important aspect
 Dependencies are minimized

Dietrich Liko

0ag
OO—DIZ]O
0—0

Abstraction level - Reality

(=

boost
| collide
Q Particle
decay
Physical Properties » Apply transformations
* position]
* physics laws
* momentum
* mass

Dietrich Liko

Abstraction level - Program

Variables - Usual arithmetic

- .

Objects Functionality
<= accordingto

‘ interface

Dietrich Liko

Stop 3: Classes and Objects %
D]

e A class is the definition
— In C++ i1t is a real data type
« An object is an instance of a class
— You can create as many instances as you like

voi d do_sonet hi ng() { Particle * p = new Particle();

Risk of memory leaks

Dietrich Liko

N

0ag
°°—°[Z]o
0—0

 Each object has its own set of variables associate to it

Member Attributes

#,

e Usually attributes are “private”

e Often a naming convention is used “m_name”
e Attributes define the state of an object

e Static attributes exists only once

Dietrich Liko

\

\

0ag
00—0[170
0—0

Also called “Methods”

Member Functions ??
|

e Usually public

e Provide functionality
« They act on an instance of a class

« They can change the state of the object

Dietrich Liko

Constructor - Destructor %
i

e Special Member Function

e Particle::Particle (constructor)
— Called when the object is created
— defines the initial state
— allocate resources (open file, open window ...)
— allocate other objects

e Particle::~Particle (destructor)
— cleanup
- delete other objects

Dietrich Liko

More exotic

e Copy constructor

— Particle newParticle = oldParticle;

e Assignment operator

— Particle p;
- p = otherParticle;

Dietrich Liko

And even more ...

#,

\

e« Complex numbers in C++
e Not build in, but a feature added later on
e QOperators can be defined

— Operator overloading

conplex a = conpl ex(4.,5.);

a + 5.;

conplex b

b.re a.re + 5.

b.im= a.im

Dietrich

Programming Paradigm %
a

e Decide which types you want
e Provide a full set of operations

e A step in anew direction
for program organization

Dietrich Liko

» But needs abit more....

Stop 4: Object oriented
programming
« Add some more ingredients

Dietrich Liko

Define an Interface A

virtual double energy() = O;

class Particle {

virtual void boost(double x, double y, double z,
double t) = O;

Define what your object should do

Provide an implementation

Dietrich Liko

Implementation A

class MyParticle : public virtual Particle {

vi rtual doubl e energy():

doubl e MyParticle::energy() {

return

Dietrich Liko

How to use 7?77

e | can write now a program in terms of “particles” and 1 do
not need to know at all which particles are there

Particle * particle = new M/Particle();

doubl e energy = particl e->energy();

« As a matter of fact I can have a number particles, which are
In truth MyParticles and YourParticles at the same time, and
I do not know or care what they do to provide the answer

Dietrich Liko

OoDD
—

Q

WO Dynamic Bindings

Other name for virtual methods
Only in the last moment it is known what is going to happen

. o=
y S

The programmer tells the object to do something
The object does it in its own specific way

Dietrich Liko

e

Dietrich Liko

o3 A
(= —WO Messages between objec
o <P
energy/y

— 50

\

\
calculate

PAN

Just a different point of view

doubl e Tot al Energy: : cal cul ate() {

doubl e sum = O;
for(int i=0;i<3;++) {

sum += particle[i].energy();

return sum

Dietrich Liko

PAN

Inheritance tree

Dietrich Liko

In our case ...

Dietrich Liko

Another Use

| am just an
Interface
- ‘..

(=

| do the wor

OOO’

Dietrich Liko

Is-a Relation A

cl ass SpinlParticle : public Particle {

-}

Dietrich Liko

Has-a Relation A

class Particle {

Monent unvect or nomn

}

Dietrich Liko

Dietrich Liko

Programming paradigmA

e Decide which classes you want
e Provide a full set of operation
e Avoid being dependent on implementation

Program will be organized
as Interaction objects

Dietrich Liko

Booch

Rumbaugh
Jacbosen

Dietrich Liko

UML

N\

Current way to

speak about classes

0ag
°°—°[Z]o
0—0

Object Solutions

Design patterns

\

e very useful

e Solves the problems you did not have before you used

objects Gang of Four
e You will use them every day e Gamma
e Helm
e Johnson

Dietrich Liko e Vlissides

e A further idea ...

e« Often a similar operation can be applied to different data
types

e An example:

— Lets try to implement complex numbers

Dietrich Liko

Example complex numbers

cl ass conpl ex {

public:
float real () const;
float i1 nmaginary() const;

float mag() const;

private :
float re;
float iIm
}

e Polymorphism does not help,
A way how to automatically generate the source

Dietrich Liko

t enpl ace <cl ass T>

cl ass conpl ex<T> {

private :
T re;
T im
}

Dietrich Liko

conpl ex<doubl e> a;

conpl ex<f | oat > b;

e Practica

e Used for many libraries

Programming Paradigm/

e Decide which algorithm you want

e« Parameterize them so that they work with a variety of data
types

e C++ libraries are written in
that style

* Probably you will ssimply
use the features provided for
you for sometime ...

Dietrich Liko

Stop 6: Standard Library

Manly based generic programming

example

— complex
— string

— streams
— containers

Dietrich Liko

| — -

PR
\\

OODD
(p—

Q

0
0 O[Z]

There are many (for each experiment different)
Taligent (used by root)

Naming Conventions

Class Test

Method doSomething or do_something
Member attribute m_momentum

Cont MAX

Other Rules: C++ FAQ'’s, Books by Scott Mayer

Dietrich Liko

\

\

0ag
00—0[170
0—0

e Truly dynamic strings

e template usually hidden
e Safer then c strings

e Better then c strings

« Many member functions

Strings

|- -

std::string name;

Int length = name.size();

 No reason why still to use c strings

Dietrich Liko

1/0 Streams

|- -

e New I/0 syntax
e Modeled after UNIX pipes

cout << “Hello Wrld” << endl;
Particle p;

cout << p;

 Fast, easy
e But hard to make “nice” output

Dietrich Liko

Replacement of C arrays
- Safer

vector<double>

list<particles>

Dietrich Liko

STL Containers

Better then C

| -

lterator

vector<int> array;
e A possible wa
P y I nt sum = O;
for(int i = 0;i<array.size();++) {
sum += array[i];

}

 Another way (if [] is very expensive!)

I nt sum = O;

for (vector<int>.:iterator elem = array. begin();
elem!= array. end();
++elem) ({
sum += *el em

Dietrich Liko

Stop 7: Other Librarie(@

e CLHEP for Physics Quantities

— Vectors, LorentzVectors
— Geometry & Transformations
- S Units
— Random Numbers
e many distributions @)

Thisyou will have to learn

- Obsolete packages In any case

e strings, list etc.

Dietrich Liko

GEANTA4 /@

e Detector simulation
- geometry
— particles
— physics process

e very large toolkit
e experiments are starting to use it

— Hard to start (no CERN software!)
— But quite easy to use !

Dietrich Liko

PYTHIA 7 /@

e Still in development

 Replacement for PHYTHIA 6 event generator

Dietrich Liko

\

\

000—00[]]0

Anaphe /@
0—0

A number of packages defining the computing at CERN

e CLHEP (foundation)

e GEANT4 (detector simulation)

e HTL (Histograms)

e Gemini (Fitting)

e Openlnventor/OpenGL (Graphics)
 Objectivity/DB (Persistency)

Dietrich Liko

How to continue the journey

e Get started
— Follow the Training session (this afternoon)
— Get a good book (it's a great Xmas present!)
— Attend the CERN C++ course (in few weeks)
— Try a smaller project

e Get an expert
— Trough it away and program it again (several times)
— Get other books (FAQ, Efficient C++) (Easter presents?)
— Study how other person solve the problem
— Attend the OO Design course (in some months)

Dietrich Liko

0ag
°°—°[Z]o
0—0

The difference between C and C++

A Final Warning

(=

C lets you shoot yourself in the foot rather easily.

C++ allows you to blow your whole leg off.

Dietrich Liko

