
Dietrich Liko

A Scenic tour of C++

Dietrich Liko

Dietrich Liko

A tour of the world ...

• We will visit many places

• We will stay only short

• You will get an overview

• If you want to know these places better, you will have to
visit them yourself afterwards

Dietrich Liko

The C++ programming language

• Was created by Bjarne Stroustrup

– You can visit him on

http://www.research.att.com/~bs/homepage.html

• You find also an audio file to pronounce his name

• Is better than C
• Supports data-abstraction
• Supports object-oriented programming
• Supports generic programming

Dietrich Liko

Stop 1 : Hello world

#include <iostream>

int main(int argc, const char** argv) {

std::cout << “Hello World” << std::endl;

return 0;

}

Dietrich Liko

Stop 2: Procedural programming

• This is what we well know from FORTRAN or C

#include <cmath>

double do_something(double a) {

double b = a * 2;
return std::sqrt(b);

}

Dietrich Liko

Build in data types

• float
• double
• int
• long
• short
• char

int a;

int b = 5;

char c = ‘c’;

char name[] = “Dietrich”;

C++ allows to define your own data types. There
is a number of prefabricated available like
strings and complex numbers

string name = “Dietrich”;
Better then C

Dietrich Liko

Operators

Things in between variables

• assignment =
• arithmetic + - * /
• shortcut += -= *= /=
• comparison == != < > >= <=

• increment ++ --

• more exotic ? & << >>

double a = d > 0 ? sqrt(d) : sqrt(-d);

a = a + 1;

++a;

Dietrich Liko

How to pass arguments ?

• Pass by value
– C

void do_it(double b) {

b = 4.0

}

double a = 5;

do_it(a);

void do_it(double * b) {

*b = 4.0

}

double a = 5;

do_it(&a);
What happens to “a” ?

Dietrich Liko

How to pass arguments cont.

• Pass by reference
– FORTRAN

SUBROUTINE DO_IT(B)

REAL B

B = 4.0

END

PROGRAM TEST

REAL A

A = 5.

CALL DO_IT(A)

END

What happens to “a” ?

Dietrich Liko

How to pass arguments cont.

• Pass by reference
– C++

void do_it (double b &) {

b = 4.0;

}

double a = 5;

do_it(a);

void do_it (const double b &) {

b = 4.0;

}
Illegal

Dietrich Liko

• Pointer to a variable *

• Reference to a variable &

Pointers & References

double temperature = 38.0;

double * pTemp = &temperature;

*pTemp += 5.0;

38.0 temperature

0x0ABC026 *pTemp

void do_something(double b &) {

b += 5.0;

}

Better then C

Dietrich Liko

Control structures
if (a>5) {

……

} else {

……

}

while(a>5) {

……

}

switch a {
case 5 :

……
break;

case 3 :
… …
break;

default:
… …

}

for (int i=0; i<100; ++i) {

……

}

Dietrich Liko

Programming paradigm

• Decide which procedures you want
• Use the best algorithms you can find

• Functions are used to create order

• Leads to structured programming

Dietrich Liko

Stop 2: Data abstraction

• C++ allows us to make our own data types

struct Particle {

double xpos;

double ypos;

double zpos;

double xmom;

double ymom;

double zmom;

double mass;

}

Dietrich Liko

But sometimes later ...

struct Particle {

double xpos;

double ypos;

double zpos;

double xmom;

double ymom;

double zmom;

double mass;

}

struct NewParticle {

double xpos;

double ypos;

double zpos;

double mom;

double theta;

double phi;

double mass;

}

If I want to know the energy ...

• energy = sqrt(p.mass*.p.mass + p.xmom*p.xmom + ….)

Dietrich Liko

Better use classes

• Only public part visible to outside world
• Obviously Interface design most important aspect
• Dependencies are minimized

class Particle {

public:

void setMomentum(double x, double y,
double z);

double energy();

private:

…whatever I prefer …

}

Dietrich Liko

Abstraction level - Reality

Particle

boost

collide

decay

………..

More detail

Physical Properties
• position

• momentum

• mass

• Apply transformations

• physics laws

Dietrich Liko

Abstraction level - Program

Variables

Objects

More general

Functionality
according to
interface

Usual arithmetic

Dietrich Liko

Stop 3: Classes and Objects

• A class is the definition
– in C++ it is a real data type

• An object is an instance of a class
– You can create as many instances as you like

void do_something(){

………

Particle p;

………

}

Particle * p = new Particle();

………

delete p;

Risk of memory leaks

Dietrich Liko

Member Attributes

• Each object has its own set of variables associate to it

• Usually attributes are “private”

• Often a naming convention is used “m_name”
• Attributes define the state of an object

• Static attributes exists only once

Invisible
to the world

Dietrich Liko

Member Functions

• Also called “Methods”

• Usually public

• Provide functionality

• They act on an instance of a class

• They can change the state of the object

Dietrich Liko

Constructor - Destructor

• Special Member Function

• Particle::Particle (constructor)
– Called when the object is created
– defines the initial state
– allocate resources (open file, open window …)
– allocate other objects

• Particle::~Particle (destructor)
– cleanup
– delete other objects

Dietrich Liko

More exotic

• Copy constructor

– Particle newParticle = oldParticle;

• Assignment operator

– Particle p;
– p = otherParticle;

Dietrich Liko

And even more ...

• Complex numbers in C++
• Not build in, but a feature added later on
• Operators can be defined

– Operator overloading

complex a = complex(4.,5.);

complex b = a + 5.;

Somewhere it is defined
that this means ...

b.re = a.re + 5.;

b.im = a.im;

Dietrich Liko

Programming Paradigm

• Decide which types you want
• Provide a full set of operations

• A step in a new direction
for program organization

• But needs a bit more …

Dietrich Liko

Stop 4: Object oriented
programming

• Add some more ingredients

Inheritance

Polymorphism

Late Bindings

Dietrich Liko

Define an Interface

class Particle {

virtual double energy() = 0;

virtual void boost(double x, double y, double z,
double t) = 0;

………

}

Define what your object should do

Provide an implementation

Dietrich Liko

Implementation

class MyParticle : public virtual Particle {

virtual double energy();

……

};

double MyParticle::energy() {

return …..

}

Dietrich Liko

How to use ???

• I can write now a program in terms of “particles” and I do
not need to know at all which particles are there

• As a matter of fact I can have a number particles, which are
in truth MyParticles and YourParticles at the same time, and
I do not know or care what they do to provide the answer

Particle * particle = new MyParticle();

…………

double energy = particle->energy();

Dietrich Liko

Dynamic Bindings

• Other name for virtual methods
• Only in the last moment it is known what is going to happen

• The programmer tells the object to do something
• The object does it in its own specific way

boost

Dietrich Liko

Messages between objects

TotalEnergy

Particle 1

Particle 2

Particle 3

energy

5.0

calculate

25.0

11.0

9.0

Dietrich Liko

Just a different point of view

double TotalEnergy::calculate() {

double sum = 0;

for(int i=0;i<3;++i) {

sum += particle[i].energy();

}

return sum;

}

Dietrich Liko

Inheritance tree

Particle

MyParticle

MyParticle1 MyParticle2 YourParticle

Shared
implementation

Dietrich Liko

In our case ...

Particle

RecParticle SimParticle GenParticle

Dietrich Liko

Another Use

ThrustResult

I am just an
interface

ThrustByMethodA
calculate_on

ThrustByMethodB
calculate_on

I do the work

Dietrich Liko

Is-a Relation

Particle
boost
decay

Spin1 Particle
flip

class Spin1Particle : public Particle {

……

}

Dietrich Liko

Has-a Relation

Particle

MomentumVector

class Particle {

MomentumVector mom;

}

Dietrich Liko

Often difficult to decide

ThreeVector

FourVector

Has-it or Is-it ?

Hamlet,
Prince of
Denmark

Dietrich Liko

Programming paradigm

• Decide which classes you want
• Provide a full set of operation
• Avoid being dependent on implementation

Program will be organized
as interaction objects

Dietrich Liko

UML

Particle

SpecialParticle

Booch

Rumbaugh

Jacbosen

Current way to

speak about classes

Dietrich Liko

Design patterns

• Object Solutions

• very useful

• Solves the problems you did not have before you used
objects

• You will use them every day

Gang of Four

• Gamma

• Helm

• Johnson

• Vlissides

Dietrich Liko

Stop 5: Generic Programming

• A further idea …

• Often a similar operation can be applied to different data
types

• An example:

– Lets try to implement complex numbers

Dietrich Liko

Example complex numbers

• Polymorphism does not help,
• A way how to automatically generate the source

class complex {

public:

float real() const;

float imaginary() const;

float mag() const;

private :

float re;

float im;

}

Dietrich Liko

Complex numbers (generic)

templace <class T>

class complex<T> {

private :

T re;

T im;

}

complex<double> a;

complex<float> b;

• Practical

• Used for many libraries

Dietrich Liko

Programming Paradigm

• Decide which algorithm you want
• Parameterize them so that they work with a variety of data

types

• C++ libraries are written in
that style

• Probably you will simply
use the features provided for
you for some time …

Dietrich Liko

Stop 6: Standard Library

• Manly based generic programming

• example

– complex
– string
– streams
– containers

Dietrich Liko

Naming Conventions

• There are many (for each experiment different)
• Taligent (used by root)

• Class Test
• Method doSomething or do_something
• Member attribute m_momentum
• Cont MAX

• Other Rules: C++ FAQ’s, Books by Scott Mayer

Dietrich Liko

Strings

• Truly dynamic strings
• template usually hidden
• Safer then c strings
• Better then c strings
• Many member functions

• No reason why still to use c strings

std::string name;

int length = name.size();

Dietrich Liko

I/O Streams

• New I/O syntax
• Modeled after UNIX pipes

• Fast, easy
• But hard to make “nice” output

cout << “Hello World” << endl;

Particle p;

cout << p;

cout Basket

Dietrich Liko

STL Containers

• Replacement of C arrays
– Safer

• vector<double>

• list<particles>

Better then C

Dietrich Liko

Iterator

• A possible way

• Another way (if [] is very expensive!)

vector<int> array;

int sum = 0;
for(int i = 0;i<array.size();++i) {

sum += array[i];
}

int sum = 0;
for (vector<int>::iterator elem = array.begin();

elem != array.end();
++elem) {
sum += *elem;

}

Dietrich Liko

Stop 7: Other Libraries

• CLHEP for Physics Quantities

– Vectors, LorentzVectors
– Geometry & Transformations
– SI Units
– Random Numbers

• many distributions

– Obsolete packages
• strings, list etc.

This you will have to learn
in any case

Dietrich Liko

GEANT4

• Detector simulation
– geometry
– particles
– physics process

• very large toolkit
• experiments are starting to use it

– Hard to start (no CERN software!)
– But quite easy to use !

Dietrich Liko

PYTHIA 7

• Still in development

• Replacement for PHYTHIA 6 event generator

Dietrich Liko

Anaphe

• A number of packages defining the computing at CERN

• CLHEP (foundation)
• GEANT4 (detector simulation)
• HTL (Histograms)
• Gemini (Fitting)
• OpenInventor/OpenGL (Graphics)
• Objectivity/DB (Persistency)

Dietrich Liko

How to continue the journey

• Get started
– Follow the Training session (this afternoon)
– Get a good book (it’s a great Xmas present!)
– Attend the CERN C++ course (in few weeks)
– Try a smaller project

• Get an expert
– Trough it away and program it again (several times)
– Get other books (FAQ, Efficient C++) (Easter presents?)
– Study how other person solve the problem
– Attend the OO Design course (in some months)

Dietrich Liko

A Final Warning

The difference between C and C++

C lets you shoot yourself in the foot rather easily.

C++ allows you to blow your whole leg off.

Have fun!

